
 

 Steady flow of blood plasma through a non-deformed artery. 

ABSTRACT 

A mathematical model is developed here with the aim to study the laminar flow of blood plasma 

through a non-deformed arterial segment. The Navier- Stokes and continuity equations were 

solved analytically to obtain the axial velocity of blood plasma through the artery. Furthermore, 

the axial velocity was plotted against varied values of the radius of a sampled artery, results and 

conclusions were made between the relationships.  

Keywords: Newtonian fluid, blood pressure, laminar flow.  

 

INTRODUCTION 

The human blood circulatory system provides essential substances such as nutrients and oxygen 

to the cells and transports metabolic waste products away from the same cells. Human blood is 

composed of blood cells suspended in blood plasma. The blood plasma which constitutes 55% of 

blood fluid, is mostly water (92% by volume), and contains dissipated proteins, glucose, mineral 

ions, hormones and blood cells themselves (Blessy Thomas and K.S Sunam, 2016). The blood 

cells are mainly red blood cells (also called RBCs or erythrocytes) and white blood cells, 

including leukocytes and platelets. The red blood cells are small semisolid particles, increase the 

viscosity of blood and will affect the behaviour of fluid. It has been noted that plasma behaves as 

a Newtonian fluid whereas the whole blood displays non-Newtonian character. 

There are three major types of blood vessels: the arteries through which blood is carried away 

from the heart at higher physiologic pressures, the capillaries, which enable the actual exchange 

of water and chemicals between the blood and the tissues, and the veins, which carry blood from 

the capillaries and back toward the heart at lower physiologic pressures. Because of their 
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different roles, their structures and wall constituents are also different. The walls of blood vessels 

have a circumferentially layered structure. The most important layers are intima, media, and 

adventitia. The internal intima composed of the endothelium cell. The media, which is a layered 

one, is responsible for most of the vessel mechanical properties. The outer layer is adventitia. 

The artery possesses the thickest wall amongst the three major blood vessels which enables them 

to withstand the high pressure of arterial blood. It has a more elastic media which varies 

according to the size of the artery, with a thin collagenous adventitia compared to both the veins 

and capillaries.  

Laminar flow of fluid is characterized by fluid particles following smooth paths in layers, with 

each layer moving smoothly past the adjacent layers with little or no mixing. Arterial blood flow 

is considered as a laminar flow. The study of the laminar flow of blood in arteries plays an 

important role in the diagnosis and clinical treatment as well as in the fundamental understanding 

of many cardiovascular diseases.  

The Casson model for blood flow through a cylindrical tube states that 

                                     √  √   √  ̇                                        (1)                                      

Equation 1 (David A. Rubenstein, 2012, p.145) is the relationship between shear stress     and 

shear rate   ̇ , where    is a constant yield stress and   is an experimentally fit constant which 

approximates the fluid’s viscosity. The shear stress is defined as  
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The Casson model can be rewritten as 
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Fig 1.  The velocity profile of blood flowing through a cylindrical vessel using the Casson model. The 

profile is blunter than a purely Newtonian fluid’s velocity profile because the fluid that is between the 

centreline and    flows as a solid. At   , the shear stress     exceeds the yield stress      and the 

viscous forces take effect. 

The Casson model is a very important tool in the representation of blood flow through the 

arterial system. Since blood plasma behaves as a Newtonian fluid (Verma and Parihar, 2010, 

Biswas and Chakraborty, 2010), we make an approximation to the Casson model by allowing the 

yield stress,      and treat the flow of blood plasma through a non-deformed artery as a 

Hagen-Poiseuille flow.                      

MATHEMATICAL FORMULATION 

Consider the one dimensional steady flow of blood plasma through a cross-section of artery of 

radius   , centre   and length  . 

      

 

 

 

 

 

It is well established that the motion of fluids is governed by the Navier-Stokes equations which 

essentially can be seen as Newton’s second law of motion for fluids. 
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For a compressible Newtonian fluid, this yields 

                    ρ 
  ⃗⃗ 

  
   ⃗     ⃗   =          ⃗   ρF          (5) 

Where  ⃗ , is the fluid velocity,   is the fluid density and   is the fluid dynamic viscosity. The 

terms on the left correspond to the inertial forces, the first term on the right is the pressure forces, 

the second term is the viscous force and the last term is the applied external forces on the fluid.   

These equations are always solved together with the continuity equation (conservation of mass) 

                    
  

  
       ⃗   = 0                   (6) 

Since blood plasma is an incompressible fluid,  

                                       
  

  
 = 0 and upon dividing by ρ, equation (6) becomes: 

                           ⃗  = 0          (7) 

Equation (5) becomes 

                          
  ⃗⃗ 

  
=          ⃗  

Where 
  ⃗⃗ 

  
 = ( 

  ⃗⃗ 

  
   ⃗     ⃗   and ρF = 0 (since external force F = 0). 

Dividing through by ρ gives 

                             
  ⃗⃗ 

  
 =  

 

 
    

 

 
   ⃗   

But  
 

 
 =   (kinematic viscosity) 

                             
  ⃗⃗ 

  
 =  

 

 
        ⃗          (8) 

This equation (8) is called the momentum equation. 

The boundary conditions for the solutions of equations (7) and (8) are 

                        ⃗ (r) =       and     ⃗ (   ) = 0. 
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Since we are considering the flow of blood plasma through the artery (which has a cylindrical 

structure), we transform equations (7) and (8) from rectangular coordinates (x, y, z) to cylindrical 

coordinates (r, θ, z). The cylindrical coordinates (r, θ, z) is a special case of orthogonal 

curvilinear coordinates ( 1,  2,  3).  

 Where 

                                1 = r,  2 = θ,  3 = z. 

Recall the continuity equation for blood plasma 

                                    ⃗  = 0 

Now, in the rectangular coordinates (x, y, z) the position vector    of a plasmic particle 

                                =          

The relationship between the rectangular coordinates (x, y, z) and the cylindrical coordinates    

(r, θ, z) is 

                                                     . 

Now, in the cylindrical coordinates the position vector is 

                          =        +        +    

Consider the unit vectors   ,    and    in the cylindrical coordinates 

                                                     
  ⃗⃗ 
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Therefore  

                                            =  . 
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Where 
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Therefore 
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Where 

                                                        = |
   

  
| 

                            = | |  =   

Therefore 

                                      . 

The terms   ,    and    are called scale factors.  

Now, consider a scalar field v and let  v be the change from point A to B. If the position vector 

of A is    , then that of B is     +    . 

Then    

                                v = 
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Where           is the components of    in the  ,   and   directions 
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                        =        +        +        

Again, 

                             v =          
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Equating coefficients, we have  
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Let  ⃗  =      +      +     , so equation (7) becomes 
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But in cylindrical coordinates   =   =   and   =   
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                            ⃗  = 
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 = 0                                             (9) 

This equation (9) is the continuity equation for a steady incompressible flow of blood plasma 

through the artery. 

Again, returning to the momentum equation  

                               
  ⃗⃗ 
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        ⃗                         (10) 

But    
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Also  
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This in incompressible flow reduces to 

                                 ⃗  =       

Where   =    ⃗ , the vorticity vector, (10) can be written as  

                          
  ⃗⃗ 

  
   ⃗    =   (

 

 
  

 

 
  )           

                         
  ⃗⃗ 

  
  ( 

 

 
  )    ⃗   =  

 

 
                              (11) 

In the orthogonal curvilinear coordinate, the components of the gradient and curl are: 
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But    =    =   and    =   in cylindrical coordinates 
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Similarly for curl  , that is      is 
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The component of      in the   ,    and    direction is respectively 
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In determining the term          in (11), it is found that the analysis simplifies if the zero 

expression        ⃗    is added 

Recall  
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Dividing through by  , we obtain 
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Simplifying to  
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Substituting (12) and (13) into equation (11), the momentum equation becomes 
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                                        (16) 

Equations (14), (15) and (16) are the  ,   and z coordinates respectively of the momentum 

equation in cylindrical coordinates. 

METHOD OF SOLUTION 

The motion of plasma in the artery is induced by axial pressure gradient. It is called a Hagen- 

Poiseuille flow. 

Since the blood plasma flow parallel to the axis of the artery  

                                      =    =            

From the continuity equation (equation (9)): 
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Therefore    is a function of   alone (        )  

Since the flow is steady, it holds that  
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From the momentum equation,  

Equation (14) becomes 
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Equation (15) becomes 
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Equation (16) becomes 
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 + µ*

 

 

 

  
( 

   

  
)+ = 0 

                                µ*
 

 

 

  
( 

   

  
)+ = 

  

  
 

                                       
 

  
( 

   

  
) = 

 

 

  

  
  

                                               
   

  
 = 

  

  

  

  
       (20) 

                                                 
   

  
 = 

 

  

  

  
 + 

 

 
  

                                                   = 
  

  

  

  
 +      +      (21) 

Boundary conditions 

               is finite,   =   (along the axis) 

                ,   =    (no slip condition) 
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When   =  ,    is finite and  
   

  
  is also finite 

Applying boundary conditions  

When   = 0, (20) becomes  

                                         A = 0 

When   =   , (21) becomes 
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But  
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 ,    =    at z = 0 and   =    at z = L 

Where L is the length of the cross-section of the artery and   ,    are the pressures at both ends 

of the cross-section of the artery. 

                                    =  
     

   
        

  ,                    (22) 

This equation (22) is the axial velocity of blood plasma through a cross-section of artery of 

length L. 

RESULTS AND DISCUSSIONS 

The axial velocity of blood plasma through a cross section of an artery of length L is defined as: 

                      = 
     

   
        

              

We consider a cross-section of a radial artery of  

 L = 10cm = 100mm  

    = 1mm  

   = 1.30mpa.s = 0.0013pa.s 
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    = 50mmHg  

    = 40mmHg  

  p = -10mmHg = -1333.32pa 

Table 1 The relation between axial velocity of blood plasma and radius of the artery 

 

         r (mm)    (mm/s) 

0 2564.079 

0.2 2461.516 

0.4 2153.827 

0.6 1641.011 

0.8 923.069 

1 0 

 

 

 

 

 

Data obtained from Nnamdi, Azikiwe, University Teaching 

Hospital, Nnewi, Anambra State, Nigeria. 
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Fig 2  Variation of axial velocity of blood plasma      with radius of artery     

From figure 2, we see that as the radius of the artery increases, the axial velocity decreases and 

vice versa. The velocity is highest at the centre of the artery and reduces as     , it is zero at 

    , which is at the walls of the artery. The zero velocity at the walls of the artery is as a 

result of viscous forces in the fluid, which are very high at the vicinity of the walls of the artery 

(Batchelor, 1967, p.149). This result is used to explain why the velocity of flow is at the highest 

value at the centre of a river and solid materials tend to move to the shore of the river because the 

velocity is low to move the materials. This can also be seen in turning tea in a tea cup, the 

velocity of the tea is highest at the centre, which is why there is a depression at the centre of the 

tea. 

In medicine, this result can be used to explain the situation in stenosis, where the blood flow into 

a region of reduced radius in a blood vessel is lowered, that is the blood flow is strongly 

proportional to the blood vessel radius. The resistance     to blood flow into a region in a blood 

vessel is given by (Poiseuille’s Law):  R 
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Fig 3 The velocity profile of blood plasma through a cross section of an un-deformed artery. The 

velocity is at the highest value at the centre       and zero at the walls        of the artery 

because of viscous forces. 

CONCLUSION  

The model in equation 22 and the graph in figure 2 show the relationship of the arterial velocity 

of blood plasma flow to the radius of the artery. This result shed light into the dynamics of blood 

flow where blood flow into a region in a blood vessel depends on the radius of the vessel in that 

region. 

Consumption of fatty foods should be lowered so as to avoid cholesterol building up on the walls 

of the artery. Smoking causes an increase in blood pressure since the chemicals in tobacco 

damages the blood vessel walls, causing inflammation and narrowing the arteries.  

This work will be able to help readers and researchers understand the necessity of taking 

precautions to avoid self-inflicted causes that result in shrinkage of the arterial walls. The model 

helps to illustrate the relationship of the axial velocity of blood plasma and the radius of the 

artery. Preventive measures and perhaps prescriptive measures can be adopted to ensure that the 

rate of health issues resulting from shrinkage of arterial walls. 
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