Original Research Article A Preliminary In-Silico Analysis and Molecular Docking of Active Compounds in Coriandrum sativum As Potential Drug Targets Against SARS-COV-2 Infection #### **Abstract** A novel strain of coronavirus, namely, SARS-CoV-2 has already taken the lives of more than 2 million people worldwide, causing several socio-economic and political disturbances, affecting our daily life. There are no definite therapies available and research is still being conducted to identify and develop an effective antiviral drug leads against SARS-CoV-2. Therefore, there is an immediate need to identify and develop new or repurposed antiviral (anti-coronavirus) drug leads. The virus requires the main protease (Pdb ID:6WTT), a multifunctional protein involved in the processing and replication of the viral RNAs. This paper aims to screen potential phytochemical compounds of Coriandrum sativum against the viral main protease (PDB ID: 6WTT). In order to identify a novel potent inhibitor, we have performed docking studies on the SARS-CoV-2 main protease with the phytochemical compounds of Coriandrum sativum. Among studied compounds, Cosomosin, Erucic acid, and Pimentel appear to be potential inhibitors of the SARS-CoV-2 main protease. When docked against the crystal structure of the main protease, these four compounds revealed Libdock scores of 141.40, 143.89, and 148.60 respectively. However, all these identified phytochemical compounds need to be further validated by molecular dynamics and invitro lab experiments for clinical use only after appropriate trials. **Keywords:** Coriandrum sativum, SARS-CoV-2 main protease, Molecular Dynamic simulation, Molecular docking, Libdock score #### **Introduction:** The latest category of coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [initially recognized as 2019 novel coronavirus (2019-nCoV)], is responsible for this pandemic condition in the world [2]. At present, the newly mutated SARS-CoV-2 has caused millions of deaths around the world, representing a severe threat to general well-being. The most characteristic feature shared by SARS-2 coronaviruses is the single-strand, positive-sense RNA genomes with a total structural weight of 105.02 kDa. Coronavirus polyproteins encode two proteases, namely, the main protease called 3C-like protease (Mpro) and papain-like protease (Plpro), which correlate while releasing and processing the translated nonstructural proteins. Both Plpro and Mpro are essentially the focus of drug design and development against the ongoing COVID fatal epidemic disease, including SARS-CoV. and MERS – CoV [1]. Currently, there is no known effective treatment or vaccine that can mitigate/inhibit SARS-CoV-2. Available clinical interventions for COVID-19 are only palliative and limited to support [2,3]. In the absence of an effective vaccine and specific drug, the only option is immunity-boosting nutraceuticals and symptomatic treatment. It is no wonder that medicinal plants and their phytochemical compounds could be employed as a potent weapon against COVID-19. In the present study, the phytochemicals extract of leaves, stem, seeds of Coriandrum sativum (also known as curry leaves) have been screened in silico against the main protease of SARS-CoV-2 to investigate the potent inhibitors [4]. The below Figure 1 shows the structure of SARS-COV-2 Figure 1. Structure of SARS-CoV-2. # **Highlights** - Active phytoconstituents of Ayurvedic medicinal plant Coriandrum sativum are predicted to significantly hinder the main protease of SARS-CoV-2. - Through molecular docking and molecular dynamics simulation study, Cosomosin, Erucic acid, Rosemarinic acid, and Pimentel were anticipated to impede the activity of the main protease of SARS-CoV-2. - Further, drug-likeness and ADMET profile prediction of best-docked compounds from the present study were predicted to be safe, drug-like compounds with no toxicity. ### **Methods and Material** ### 2.1 Software and program Discovery Studio Biovia 2020 (developed and distributed by Dassault Systemes BIOVIA) was employed to visualize and modify receptor and ligand structures. ### 2.2. Protein preparation RCSB (Research Collaboratory for Structural Bioinformatics) Protein Data Bank (https://www.rcsb.org/) was used to retrieve the three-dimensional crystal structure of novel SARS- CoV-2 (COVID-19) main protease with inhibitor GC-376 (Protein ID: 6WTT) was derived in pdb. format. It was used as it is a well-annotated model in the database that constitutes three chains A, B, and C with a good resolution of 2.15 Å. This model was employed because it has the largest number of non-hydrogen atoms in the deposited model (7,430) and the most recent release date (2020-05-20). Moreover, the 3D structure of the target protein was sterilized using the Discovery Studio Biovia 2020 (DS 4.0) software to remove the original ligand [5-7]. Protein preparation was done with the help of the 'Prepare protein' protocol of Discovery studio 4.0 (DS 4.0). Water molecules and heteroatoms and present in the crystal structure were removed at physiological pH 7.4 using DS 4.0. Further, the prediction of the active site in the prepared protein was done by using the receptor cavities option in the DS 4.0. ### 2.3. Ligands selection For the documentation of potential inhibitors of the main protease of SARS-CoV-2, a total of seventy-three active phytochemicals of Coriandrum sativum were retrieved from the literature. PubChem compound database (https://pubchem.ncbi.nlm.nih.gov/) was used for the retrieval of phytochemical structures in 2-dimensional SDF (Structure Data File) format. Afterward ligand optimization, energy minimization, and conversion of retrieved ligands to 3-D PDB format and clean geometry were done with the help of Discovery Studio client 4.0 [8]. ## A. Phytochemicals of Coriander (Coriandrum sativum) The phytochemical screening of coriander leaf, stem, and fruit powder extracted with methanol, chloroform, and distilled water for different phytochemical tests and the identification of different groups are listed below in the table 1,2, and 3. Further individual ligands along with their simile IDs are listed in table 4. Table 1: Phytochemical screening of Coriander sativum leaf extract | SN | Phytocompounds | Chloroform | Methanol | D/w | |----|--------------------|------------|----------|-----| | 1. | Cardiac glycosides | - | + | + | | 2. | Terpenoids | + | + | + | | 3. | Steroid | + | + | + | | 4. | Saponin | - | - | + | | 5. | Tannin | - | - | - | | 6. | Flavonoid | - | - | - | | 7. | Alkaloid | - | - | - | Table 2: Phytochemical screening of Coriander sativum stem extract | SN | Phytocompounds | Chloroform | Methanol | D/w | |----|--------------------|------------|----------|-----| | 1. | Cardiac glycosides | + | + | + | | 2. | Terpenoid | + | + | + | | 3. | Steroid | + | + | + | | 4. | Saponin | - | - | - | | 5. | Tannin | - | - | - | | 6. | Flavonoid | - | - | - | | 7. | Alkaloid | - | - | - | Table 3: Phytochemical screening of Coriander sativum fruit extract | SN | Phytocompounds | Chloroform | Methanol | D/w | |----|--------------------|------------|----------|-----| | 1. | Cardiac glycosides | + | + | + | | 2. | Terpenoid | + | + | + | | 3. | Steroid | + | + | + | | 4. | Saponin | - | + | - | | 5. | Tannin | - | + | - | | 6. | Flavonoid | - | - | + | | 7. | Alkaloid | - | + | - | Table 4. List of Active Phytochemical Composition in Coriandrum sativum | S.N | PARTS | ACTIVE | SIMILES (Simplified Molecular Input Line Entry System) | |-----|-----------|-------------|--| | O | INGREDIEN | NTS PRESENT | | | | IN TH | E PART | | | 1 | Aniseed | C[C@@H]10[C@@H](OCC20[C@@H](O)[C@H]([C@H]([C@@ | |----|----------------------------|--| | | | H]2O)O)O)[C@@H]([C@@H]([C@H]1O)O)O.Oc1cc(O)c2c(c1)oc(c | | | | (c2=O)O)c1ccc(c(c1)O)O.O=c1ccc2c(o1)cccc2.C/C=C/c1ccc(cc1)OC | | | | | | 2 | Coriandrone D | COc1cc2C[C@H](C)OC(=O)c2c(c1CC(C(O)(C)C)OC(=O)C)O | | | | | | 3 | Phytosterols | CC[C@H](C(C)C)CC[C@H]([C@H]1CCC2[C@]1(C)CC[C@H]1[C | | | | @H]2CC=C2[C@]1(C)CC[C@@H](C2)O)C | | | | | | 4 | Sinapaldehyde Glucoside | O=CC=Cc1cc(OC)c(c(c1)OC)OC1O[C@H](CO)[C@H]([C@@H]([C | | | | @H]1O)O)O | | | | | | 5 | Linalool | C=C[C@@](CCC=C(C)C)(O)C | | | | | | 6 | 1-Decanol | CCCCCCCCO | | | | | | 7 | 1-Dodecanol | CCCCCCCCCC | | | | _ | | 8 | Z-Ligustilide | CCCC=C1OC(=O)C2=C1CCC=C2 | | | | | | 9 | 1-Tricosanol | CCCCCCCCCCCCCCCCCCC | | | | | | 10 | 2-(4-Hydroxyphenyl)Ethanol | OCCc1ccc(cc1)O | | | | | | 11 | 2-Tridecenal | CCCCCCCC/C=C/C=O | | | | | | 12 | 2,4-Dihydroxycinnamic Acid | OC(=O)/C=C/c1ccc(cc1O)O | | | | | | 13 | 3-Carene | CC1=CCC2C(C1)C2(C)C | |----|---|--| | 14 | 3-Hydroxycoumarin | O=c1oc2cccc2cc1O | | 15 | 3-O-Caffeoyl-D-Quinic Acid | O=C(O[C@@H]1C[C@@](O)(C[C@H]([C@H]1O)O)C(=O)[O-
])/C=C/c1ccc(c(c1)O)O | | 16 | 3-O-Methylquercetin | COc1c(oc2c(c1=O)c(O)cc(c2)O)c1ccc(c(c1)O)O | | 17 | 3-Octenal | CCCC/C=C/CC=O | | 18 | 4-Hydroxybenzoic Acid | Oc1ccc(cc1)C(=O)O | | 19 | 4-Hydroxyphenethylene Glycol | OCC(c1ccc(cc1)O)O | | 20 | 5-Decenal | CCCC/C=C/CCCC=O | | 21 | 6-Methylsulfinylhexyl Isothiocyanate | S=C=NCCCCCS(=O)C | | 22 | 7-Methyl-4-Methylidene-1-
Propan-2-Yl-2,3,4a,5,6,8a-
Hexahydro-1h-Naphthalene | CC1=CC2C(CC1)C(=C)CCC2C(C)C | | 23 | AC1N75QA | CC1S/C(=Nc2cccc2Cl)/N(C1)C(=O)c1ccc(cc1)F | | 24 | Acetylcholine | CC(=O)OCC[N+](C)(C)C | | 25 | Aflatoxin B1 | COc1cc2O[C@@H]3[C@H](c2c2c1c1CCC(=O)c1c(=O)o2)C=CO3 | |----|------------------------|---| | 26 | Aflatoxin B2 | COc1cc2O[C@@H]3[C@H](c2c2c1c1CCC(=O)c1c(=O)o2)CCO3 | | 27 | Alpha-Eleostearic Acid | CCCC/C=C/C=CCCCCCCC(=O)O | | 28 | Astragalin | OC[C@H]10[C@@H](Oc2c(oc3c(c2=O)c(O)cc(c3)O)c2ccc(cc2)O)[C@@H]([C@H]([C@@H]1O)O)O | | 29 | Beta-Phellandrene | CC(C1CCC(=C)C=C1)C | | 30 | Choline | OCC[N+](C)(C)C | | 31 | Cis-Anethole | C/C=Cc1ccc(cc1)OC | | 32 | Coriandrin | COc1c2c(=O)oc(cc2cc2c1cco2)C | | 33 | Coriandrone C | COc1c2c(=O)oc(cc2cc2c1cco2)CO | | 34 | Cosmosiin | OC[C@H]1OC(Oc2cc(O)c3c(c2)oc(cc3=O)c2ccc(cc2)O)[C@@H]([C
@H]([C@@H]1O)O)O | | 35 | Coumarin | O=c1ccc2c(o1)cccc2 | | 36 | Cyclodecane | C1CCCCCCC1 | | 37 | Cyclododecanol | OC1CCCCCCCC1 | | 38 | Cynaroside | OC[C@H]1O[C@@H](Oc2cc(O)c3c(c2)oc(cc3=O)c2ccc(c(c2)O)O)[| |----|-----------------|--| | | | C@@H]([C@H]([C@@H]1O)O)O | | 39 | D-Citronellol | OCC[C@@H](CCC=C(C)C)C | | 40 | Daucosterol | CC[C@@H](C(C)C)CC[C@H]([C@H]1CC[C@@H]2[C@]1(C)CC[| | | | C@H]1[C@H]2CC=C2[C@]1(C)CC[C@@H](C2)O[C@@H]1O[C | | | | @H](CO)[C@H]([C@@H]([C@H]1O)O)O)C | | | | | | 41 | Dipentene | CC1=CCC(CC1)C(=C)C | | | | | | 42 | Dodecanal | CCCCCCCCCC=0 | | | | | | 43 | Epoxyoleic Acid | CCCCCCC[C@H]10[C@H]1CCCCCCC(=0)0 | | | | | | 44 | Erucic Acid | CCCCCCC/C=CCCCCCCCCC(=0)0 | | 45 | Euganal | C=CCc1ccc(c(c1)OC)O | | 43 | Eugenol | | | 46 | Eupatin | COc1cc2oc(c3ccc(c(c3)O)OC)c(c(=O)c2c(c1OC)O)O | | | | | | 47 | Falcarindiol | CCCCCC/C=C[C@@H](C#CC#C[C@@H](C=C)O)O | | 10 | | OC[C@H]([C@@H]([C@@H]((CO)O)O)O)O | | 48 | Galactitol | ວວເວສາາງ(ເວສສາງ(ເວສສາງ(ເວສສາງ(ເວລາວ)ວາວ) | | 49 | Geraniol | OC/C=C(/CCC=C(C)C)C | | 50 | Geranyl Acetate | C/C(=CCOC(=O)C)/CCC=C(C)C | | | | | | 51 | Hex-3-En-1-Ol | OCCC=CCC | |----|-------------------|---| | 52 | Isokaempferide | COc1c(oc2c(c1=O)c(O)cc(c2)O)c1ccc(cc1)O | | 53 | Isoquercitin | OC[C@@H]10[C@H](Oc2c(oc3c(c2=O)c(O)cc(c3)O)c2ccc(c(c2)O) O)[C@H]([C@@H]([C@H]1O)O)O | | 54 | L-Ascorbic Acid | OC[C@@H]([C@H]1OC(=O)C(=C1O)O)O | | 55 | L(-)-Borneol | O[C@@H]1C[C@@H]2C([C@]1(C)CC2)(C)C | | 56 | Linalyl Acetate | C=CC(OC(=O)C)(CCC=C(C)C)C | | 57 | Neryl Acetate | C/C(=C/COC(=O)C)/CCC=C(C)C | | 58 | Octanal | CCCCCCC=O | | 59 | Oleic Acid | CCCCCCC/C=CCCCCCC(=O)O | | 60 | Petroselinic Acid | CCCCCCCCC/C=CCCCCC(=O)O | | 61 | Phthalide | O=C1OCc2c1cccc2 | | 62 | Phytol | OCC=C(CCCC(CCCC(C)C)C)C)C | | 63 | Pimentol | C=CCc1cc(O[C@@H]2O[C@H](COC(=O)c3cc(O)c(c(c3)O)O)[C@
H]([C@@H]([C@H]2O)O)O)c(c(c1)OC)O | | 64 | Quercetin | Oc1cc(O)c2c(c1)oc(c(c2=O)O)c1ccc(c(c1)O)O | |----|--------------------|--| | 65 | Rosmarinic Acid | O=C(O[C@@H](C(=O)O)Cc1ccc(c(c1)O)O)/C=C/c1ccc(c(c1)O)O | | 66 | Scopoletin | COc1cc2ccc(=O)oc2cc1O | | 67 | Tetradec-13-Enal | C=CCCCCCCCCC=O | | 68 | Tetradecanal | CCCCCCCCCCC=O | | 69 | Trans-2-Decenal | CCCCCC/C=C/C=O | | 70 | Trans-2-Dodecenal | CCCCCCCC/C=C/C=O | | 71 | Trans-2-Hexen-1-Ol | CCC/C=C/CO | | 72 | Triacontane | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | | 73 | Undecanal | CCCCCCCCC=O | # *In Silico* ADME Properties The pharmacokinetics (ADME) properties of the selected compounds were predicted using the SwissADME web tool (http://www.swissadme.ch/). The phytochemical compounds' structure was retrieved from databases using the import tool on the input zone of the SwissADME submission page and converted into respectively SMILES format, and then calculations were run[9,10]. # In Silico Toxicity Risks' Assessment and Drug Likeliness OSIRIS Property Explorer's open-source program was used to evaluate the toxicity risks of the compounds retrieved from PubChem. (http://www.organicchemistry.org/prog/peo/) # SARS-CoV-2 (COVID-19) Main Protease The 3 dimensional crystallographic structural coordinate files of the SARS-CoV-2 (COVID-19) main protease with inhibitor GC-376 (PDB ID 6WTT), was downloaded from the protein data bank (https://www.rcsb.org/pdb). The ligand-binding site in the main protease and interaction of ligands with residues in the cavity is depicted in Fig. 2. **Fig 2.** Represents the 3D structure of the main protease of SARS-CoV-2 virus with inhibitor GC-376: **Fig 3.** close up of the active site with residues involved in the interaction with the ligand (PDB ID 6WTT) #### **Results and Discussion:** ### **Molecular Docking** Molecular docking is a popular tool used in computer-assisted drug design and structural molecular biology. It is been widely used to screen the phytochemicals from the plant extract, which acts as a ligand especially when the 3D structure of the target protein is available. This method could help predict both the binding affinity between protein and ligand and the structure of the protein-ligand complex, which is useful information for lead optimization. Indeed, molecular docking is routinely been applied for more than two decades and a great number of novel drug leads have been discovered and developed accordingly. The Discovery studio module of Biovia client 2020 software was used to perform molecular docking and to identify molecular interaction of the protein-ligand complex [11]. The results of the dock score and its relative energy is listed in table 5. Table 5. Results of Docking of phytochemicals with DIMETHYL SULFOXIDE Ligand | Ligand | LibDoc | No. of | Interacting residues | Absolute | Relative | |---------|---------|----------|-------------------------------|---|--| | | k score | H-bonds | | Energy | Energy | | | | involved | | | | | Aniseed | 118.151 | 44 | Lys5, Phe3, Leu282, Glu288, | 27.9456 | 4.15725 | | | | | Gly288, Ser284,Leu286, Ala285 | | | | | | k score | k score H-bonds involved | k score H-bonds involved Aniseed 118.151 44 Lys5, Phe3, Leu282, Glu288, | k score H-bonds involved Energy Aniseed 118.151 44 Lys5, Phe3, Leu282, Glu288, 27.9456 | | 2 | Coriandrone D | 123.134 | 49 | Arg4, Lys5, Gln125,Ala7,Try126 | 57.7703 | 11.4375 | |----|------------------------------------|---------|----|--|---------|----------| | 3 | Phytosterols | 116.066 | 80 | Lle249, His Pro108, Pro293,
Lle249, Val202 | 51.7923 | 16.0754 | | 4 | Sinapaldehyde
Glucoside | 114.956 | 48 | Tyr126,Arg4,Glu127,Lys5,Val125
,Tyr126,Val125,Lys5,Leu285 | 57.401 | 6.99006 | | 5 | Linalool | 74.2154 | 29 | Arg105,Pro241,Ala234,Met235,As
n238,Tyr239 | 31.7648 | 7.89998 | | 6 | 1-Decanol | 78.5364 | 29 | Gly183,Asn231,Phe134,Met235,Pr
o241 | 10.5379 | 0.074453 | | 7 | 1-Dodecanol | 91.4449 | 37 | Ala234,Phe134,Met235,Pro241, Arg105 | 6.82342 | 8.66001 | | 8 | Z-Ligustilide | 86.7166 | 28 | Lys5,Arg4,Tyr126,Glu127,Ala7 | 24.5875 | 0.338344 | | 9 | 1-Tricosanol | 133.595 | 72 | Arg4,Lys5,Phe291,Ala7 | 13.3024 | 10.9539 | | 10 | 2-(4-
Hydroxyphenyl)Eth
anol | 78.6807 | 20 | Arg4,Lys5,Ala7,Val125 | 18.2502 | 6.00369 | | 11 | 2-Tridecenal | 105.588 | 43 | Lys5,Ala7,Trp207,Phe3,Arg4 | 17605 | 5.12637 | | 12 | 2,4-
Dihydroxycinnamic | 63.5768 | 21 | Lys5, Gly127 | 25.7424 | 0.219025 | | | Acid | | | | | | |----|---------------------------------------|---------|----|---|----------|-----------| | 13 | 3-Carene | 47.283 | 26 | Lys90, Lys88, Val35, Phe134 | 6.53094 | 0 | | 14 | 3-
Hydroxycoumarin | 81.1711 | 18 | Glu83,Glu107,Pro108,Glu240,Asn
8,Asn180,His246,Val202,Ile200 | 15.9292 | 0 | | 15 | 3-O-Caffeoyl-D-
Quinic Acid | 133.729 | 42 | Trp207,Arg4,Lys5,Try126,Ala7,Gl
y283 | 48.5074 | 6.37039 | | 16 | 3-O-
Methylquercetin | 81.9545 | 35 | Asp187,Arg188,Pro52,Glu55,Tyr5 | 47.9591 | 1.56 | | 17 | 3-Octenal | 68.4019 | 23 | Phe134,Gly138,Pro241,Met235 | 8.60701 | 3.64684 | | 18 | 4-Hydroxybenzoic Acid | 66.2651 | 16 | Arg298,Met6,Ser123,Phe8 | 13.5963 | 0 | | 19 | 5-Decenal | 78.5364 | 29 | Glu183,Asn231,Phe134,Met235,Pr
o241 | 6.82342 | 0.0744534 | | 21 | 6-Methylsulfinyl Hexyl Isothiocyanate | 80.0797 | 28 | Asn231,Arg105 | 0.680324 | 1.76116 | | 22 | AC1N75QA | 103.051 | 37 | Trp207,Leu282,Glu288,Arg4,Lys5
,Phe291 | 56.6422 | 0 | | 23 | Acetylcholine | 70.1588 | 26 | Val125,Lys5,Gln127,Tyr126,Arg4 | 25.3034 | 6.9487 | | 36 | Cosmosiin | 141.405 | 51 | Lys5,Val125,Gly127,Try126,Arg | 68.9448 | 19.5372 | |-----|-------------------|---------|----|---|---------|-----------| | 35 | Coriandrone C | 107.932 | 28 | Lys5,Val125,Gly127,Try126,Arg4 | 110.9 | 0.0431361 | | 34 | Cis-Anethole | +7.2031 | 23 | p207 | 33.037 | J | | 2.4 | Ci A d l | 49.2831 | 23 | Ser284,Ala285,Leu286,Glu288,Tr | 33.839 | 0 | | 33 | Choline | 48.4115 | 21 | Val125,Lys5,Glu127,Arg4 | 23.932 | 1.72103 | | 32 | CHEMBL466340 | 115.043 | 66 | Leu282,Trp207,Ala7,Lys5,Arg4 | 16.8817 | 7.91866 | | | | | | | | 45 | | 31 | Carvacrol | 63.9266 | 25 | Lys5,Ala7,Val125 | 16.8817 | 0.0007366 | | 30 | Carotene | 135.784 | 96 | Leu282,Arg4,Lys137,Leu287,Trp2
07,Phe291 | 76.4506 | 7.22769 | | 29 | Calendic Acid | 126.392 | 50 | Gly284,Ala285,Leu286,Lys5 | 26.3634 | 9.72789 | | 28 | Beta-Phellandrene | 66.7045 | 26 | Lys5, Ala7 | 13.5804 | 0 | | | | | | 285,Leu286,Lys5,Arg4,Phe3 | | | | 27 | Astragalin | 110.33 | 52 | Asp289,Glu288Glu290,Ser284,Ala | 67.273 | 15.4238 | | | Acid | | | | | | | 26 | Alpha-Eleostearic | 132.627 | 50 | Ala7,Lys5,Leu286,Ala285 | 32.7699 | 17.2519 | | 25 | Aflatoxin B2 | 102.887 | 37 | Glu288,Trp207,Phe291,Arg4,Lys5 | 38.8822 | 1.12275 | | 24 | Aflatoxin B1 | 61.817 | 35 | Ile152,Phe8,Pro9,Ser121,Ser123 | 78.8822 | 6.63177 | | | | | | 4 | | | |----|------------------|---------|-----|--|---------|----------| | 37 | Cyclodecane | 47.4703 | 30 | Lys5 | 9.68652 | 0.928145 | | 38 | Cynaroside | 138.906 | 52 | Phe3,Leu282,Lys137,Arg4,Lys5,A | 52.4034 | 2.13696 | | 39 | D-Citronellol | 78.2316 | 31 | Arg4, Lys5, Ala7 | 16.6225 | 4.39559 | | 40 | Daucosterol | 88.33 | 101 | Leu238,Met276,Leu237,Lys137,A
sp197 | 63.7068 | 16.1358 | | 41 | Dillenetin | 91.4346 | 38 | Ser284,Glu288,Lys5,Arg4,Ala7 | 65.0223 | 3.61216 | | 42 | Dipentene | 67.0584 | 26 | Arg4,Tyr126,Lys5,Ala7 | 22.8945 | 13.1956 | | 43 | Dodecanal | 92.4528 | 37 | Ala7, Arg4, Lys5 | 3.66006 | 1.78216 | | 44 | Epoxy Oleic Acid | 133.906 | 55 | Arg4,Ala7,Lys5,Glu288 | 19.5827 | 5.03521 | | 45 | Erucic Acid | 138.34 | 66 | Phe291,Trp207,LYs5,Arg4,Val1
25 | 28.5827 | 12.6351 | | 46 | Eugenol | 78.441 | 24 | Ala7, Val125, Gly127, Tyr126,
Lys5 | 30.5116 | 7.04983 | | 47 | Eupatin | 124.066 | 42 | Ala285,Ser284,Glu288,Arg4,Lys5,
Glu127,Tyr126 | 94.7884 | 19.2729 | | 48 | Falcarindiol | 118.907 | 43 | Lys5,Val125,Ala7,Leu286 | 24.2959 | 8.5714 | | 49 | Galactitol | 61.0296 | 26 | Trp207,Leu282,Phe3 | 30.4851 | 15.9603 | |----|-------------------|---------|----|---|---------|----------| | 50 | Geraniol | 77.1257 | 29 | Arg4,Lys5,Ala7,Val125 | 29.2909 | 13.0908 | | 51 | Geranyl Acetate | 93.2983 | 34 | Leu286,Ala285,Leu282,Phe291,Tr
p207,Phe3 | 36.2569 | 14.3989 | | 52 | Hex-3-En-1-Ol | 59.8697 | 19 | Lys5 | 6.62332 | 0.88783 | | 53 | Isokaempferide | 68.7736 | 34 | Ser284,Ala285,Glu288 | 45.5596 | 0 | | 54 | Isoquercitrin | 77.0977 | 53 | Glu290,Arg4,Lys137,Leu282,Gly2
83 | 8.79095 | 8.79095 | | 55 | L-Ascorbic Acid | 73.0891 | 20 | Phe3,Leu282,Ile281,Ser284 | 16.8568 | 0.175813 | | 56 | L(-)-Borneol | 59.7107 | 28 | Lys5 | 5.75242 | 0 | | 57 | Linalyl Acetate | 66.6891 | 34 | Lys5, Arg4 | 32.8924 | 2.0246 | | 58 | Neryl Acetate | 86.0377 | 34 | Phe291,Trp207,Leu282,Ala285,Le
u286 | 34.4921 | 12.3707 | | 59 | Octanal | 67.5401 | 25 | Ala7, Lys5 | 5.86413 | 4.34243 | | 60 | Oleic Acid | 127.665 | 54 | Arg4,Ala7,Lys5,Glu288 | 23.6839 | 8.05438 | | 61 | Petroselinic Acid | 127.143 | | Ala7,Arg4,Lys5,Phe291,Try207,G
lu288 | 29.5445 | 13.8553 | | 62 | Phthalide | 50.4438 | 16 | Leu282,Phe291,Ser284,Trp207 | 44.8596 | 0 | |----|------------------------|---------|----|---|---------|---------| | 63 | Phytol | 116.177 | 61 | Ala7,Lys5,Phe291,Trp207 | 34.5686 | 14.6342 | | 64 | Pimentel | 148.609 | 61 | Glu288,Phe3,Lys5,,Lys286,Ala28 | 64.6044 | 13.6068 | | | | | | 5,Glu283 | | | | 65 | Rosmarinic Acid | 133.894 | 42 | Val125,Ala7,Lys5,Glu288,Phe3 | 49.1213 | 6.85707 | | 66 | Scopoletin | 70.8988 | 22 | Glu288,Ser284 | 24.0601 | 0 | | 67 | Tetradec-13-Enal | 104.476 | 41 | Ala7,Lys5,Trp207,Phe291 | 7.41774 | 1.38985 | | 68 | Tetradecanal | 105.588 | 43 | Ala7,Lys5,Trp207,Phe3,Arg4 | 7.17605 | 5.12637 | | 69 | Trans-2-Decenal | 78.8444 | 29 | Phe3,Met6,Gln127 | 9.30399 | 4.2512 | | 70 | Trans-2-Dodecenal | 90.0352 | 35 | Pro241,Met235,Arg105 | 9.20399 | 0 | | 71 | Trans-2-Hexen-1-
Ol | 60.2978 | 19 | Met165,Met45,Clu189,Asp197 | 4.57 | 1.89929 | | 72 | Triacontane | 133.946 | 92 | Arg105,Met235,Pro241,Ala234,Ph
e134,Try237,Try239,Leu287 | 24.6 | 9.7126 | | 73 | Undecanal | 80.4531 | 34 | Pro234,Ala234,Met235,Pro108,Le
u232,Phe134 | 67.1 | 14.8472 | In this process first, the Sdf. files of the phytochemicals found in the Coriandrum sativum plant were downloaded from the website (https://cb.imsc.res.in/imppat/basicsearchauth). The protein database code of screened phytochemical compounds was identified from the same website. In the same way, target protein (PDB id: 6WTT) was retried in PDB, the format from protein data bank (https://www.rcsb.org/). After loading the protein and the ligands, the active site of the target protein was identified via the "receptor cavities" protocol found under the "receptor-ligand interaction" menu. Molecular docking was done using the Dock ligands (LibDock) protocol of Biovia software under "receptor-ligand interaction". The target protein (enzyme) molecule was treated as the receptor molecule and the identified phytochemicals were treated as the ligands. The "LibDock score", Binding energy, Relative energy, and the number of hydrogen atoms involved in the docking interaction were used as indicators to access the quality of performed molecular docking. The high positive LibDock score of those indicators presented a good interaction between the ligand and the receptor. Thus, the ligand with the highest Libdock score may further be investigated, especially on molecular dynamics to vadiate its interactions [12]. #### **Conclusion** In this study, the bioactive compounds in Coriandrum sativum were subjected to several experiments, such as Lipinski's rule of five, pharmacokinetics, and molecular dynamics simulations, evaluation with the protein target 6WTT of SARS-CoV-2. Among all the photoactive ligands, cosomosilin, erucic acid and pimental exhibited excellent stability during molecular docking analysis using discovery studio software. Further investigation, particularly molecular dynamic and pathway prediction, are recommended to confirm its intereaction properties. #### **Reference:** - 1. https://proteopedia.org/wiki/index.php/6wtt - 2. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01241-1/fulltext - 1. Abella B.S., Jolkovsky E.L., Biney B.T. Efficacy and safety of hydroxychloroquine vs placebo for pre-exposure SARS-CoV-2 prophylaxis among health care workers: A randomized clinical trial. JAMA Intern Med. 2021;181(2):195–202. DOI: 10.1001/jamainternmed.2020.6319. [PMC free article] [PubMed] [CrossRef] [Google Scholar] - 4. 2. Saag M.S. Misguided use of hydroxychloroquine for COVID-19: The infusion of politics into science. JAMA. 2020;324(21):2161–2162. DOI: 10.1001/jama.2020.22389. [PubMed] [CrossRef] [Google Scholar]. - 5. 3. ICMR Advisory on the use of Hydroxychloroquine as prophylaxis for SARS-CoV-2 infection dated May 22, 2020. Available at: https://www.icmr.gov.in/pdf/covid/techdoc/V5_Revised_advisory_on_the_use_of_HCQ_S ARS_CoV2_infection.pdf. As accessed on July 6, 2021. - 6. https://cb.imsc.res.in/imppat/basicsearchauth - 7. 4. Ministry of AYUSH advisory page 8, available at https://www.ayush.gov.in/docs/ayurved-guidlines.pdf. As accessed on June 15, 2021. - 8. 5. Verma N., Gupta S.K., Tiwari S. Safety of Ashwagandha root extract: A randomized, placebo-controlled, study in healthy volunteers. Complement Ther Med. 2021;57 DOI: 10.1016/j.ctim.2020.102642. [PubMed] [CrossRef] [Google Scholar] - 9. Sonale, R.S., Kadimi, U.S. 2012. Characterization of gingerol analogues in supercritical carbon dioxide (SC CO2) extract of ginger (Zingiber officinale, R.,). J.Food Sci. Technol.51(11): 3383–3389,https://doi.org/10.1007/s13197-012-0851-4. - 10. Stierand, K., Maaß, P., Rarey, M. 2006. Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformat.22:1710–1716, https://doi.org/10.1093/bioinformatics/btl150 - 11. Badyal D.K., Mahajan R. Chloroquine: Can it be a novel drug for COVID-19. Int J Appl Basic Med Res. 2020;10(2):128–130 - Sahu A. Leptin and Neuroendocrinology. Ch.4, In Leptin (Eds.Castracane VD and Henson MC) Springer Science & Business Media NY,USA, 2006. pp. 53-77.