Original Research Article

Effect of Pre and Post emergence herbicides application on Economics of Pearl millet (Pennisetum glaucum L.)

ABSTRACT

An experiment entitled "Weed management in hybrid pearl millet (Adishakti) under rainfed condition" was conducted during kharif 2020 at Post Graduate Research Farm, Agronomy Section, College of Agriculture, Dhule to study the effect of pre and post emergent herbicides application on economics of pearl millet production. Experiment consisted of nine treatments laid out in randomized block design with three replications. Among the herbicidal treatments, grain yield and straw yield was observed better with application of pendimethalin @ 750 g/ha PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE (T₉) and it was found at par with application of pendimethalin @ 750 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE (T₈). Among the chemical weed management treatments, application of pendimethalin @ 750 g/ha PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE (T₉) observed higher gross and net monetary returns. However, the gross and net monetary returns were maximum under weed free treatment but lower B:C ratio as compared to sequential application of pendimethalin @ 750 g/ha PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE (T₉) and pendimethalin @ 750 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE (T₈) due to higher cost for labour weeding.

Keywords: Pearl millet; pre emergence; post emergence and herbicide.

1.INTRODUCTION

Heavy weed infestation is one of the major constraints that limit the productivity of pearl millet crop. Weeds emerge fast and grow rapidly competing with the crop severally for growth resources *viz.*, nutrients, moisture, sunlight and space during entire vegetative and early reproductive stages of pearl millet. The critical period for weed competition in pearl millet is up to 30-45 days after sowing [1]. Weeds cause lower grain and stover yield of pearl millet. On an average, 55% yield reduction due to heavy weed infestation in pearl millet crop [2]. Weeds emerge along with the crop causing serious competition during the initial growth period resulting in seed yield loss up to 40 % or more [3]. Hence, managing weeds during this period is most critical for obtaining higher yields. Almost all types of weed *viz.*, grassy, broad leaved weeds and sedges infested the pearl millet field. Atrazine and pendimethalin recommended as a pre emergence herbicide is not effective against some of the weeds both grassy and non-grassy as well the sedges *Cyperus rotundus*. Hence there is a need for some alternate post emergence herbicides which can be provide broad spectrum weed control in *kharif* pearl milet without affecting the crop growth and yield of crop.

2.MATERIAL AND METHODS

The field experiment was conducted in the kharif season of year 2020. Climatologically, this area falls in the sub-tropical region at the North. Generally monsoon commences by third week of June and retreats at the end of September with the average annual rainfall of 607 mm. Experiment consisted of nine treatments laid out in randomized block design with three replications. The treatments consist with weedy check (T_1) , weed free (T_2) , atrazine @ 500 g/ha PoE (T₃), 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE (T₄), 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE (T_5) , atrazine @ 500 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE (T₆), atrazine @ 500 g/ha PE fb 2,4-D (Na Salt) @ at 25-30 DAS PoE g/ha pendimethalin 750 g/ha PE fb 2,4-D (Dimethyl) amine) @ 500 g/ha at 25-30 DAS PoE (T₈), pendimethalin 750 g/ha PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE (T₉). The seed of pearl millet variety DHBH 9071 (Adishakti) was sown on 1st July 2020 at spacing of 45 x 15 cm² using seed rate 3-4 kg/ha. The fertilizer was applied as per the recommended dose to pearl millet crop as 60:30:30 kg NPK/ha. The required quantity of herbicides viz., atrazine, pendimethalin, 2,4-D (Na Salt) and 2,4-D (Dimethyl amine) was measured by weighing balance and measuring cylinder at the time of preparation of solution according treatments. The spraying was done by using knapsack sprayer with flat fan nozzle using 500 liters of water/ha. The crop was grown with recommended package of practices and was harvested at maturity on 5th October 2020.

3.RESULTS AND DISCUSSION

3.1 Effect of weed management

treatments on yield attributes and yield

The important yield contributing characters like earhead/plant weight of (g), grain weight/earhead (g) and test weight (g) were significantly more under weed free treatment. Among the different herbicidal treatments, application of pendimethalin @ 750 g/ha PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE (T₉) was significantly superior over other chemical weed management treatments but it was at par with pendimethalin @ 750 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE (T₈). The grain and straw yield (kg/ha) of pearl millet was found to be significantly higher (2896.92 and 5316.87 kg/ha, respectively) in treatment of weed free (T₂). Among the different chemical treatments, spraying of pendimethalin @ 750 g/ha PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE (T₉) which recorded significantly maximum grain and straw yield (2718.73 and 5099.12 kg/ha) as compared to other treatments of weed control and it was found at par with application of pendimethalin @ 750 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE (T₈) (2548.76 and 4974.99 kg/ha). Among the herbicidal treatments tried in the experiment, application of pre-emergence herbicide followed by post emergence herbicide treatment was found significantly better than application of post-emergence herbicide only in respect of grain and straw yield of pearl millet may probably be due to management resulting better weed improvement in all growth and sink parameters which contributed higher yield owing to favourable condition in absorbing soil moisture, nutrient content and sunlight penetration during crop growing period. The grain and straw yield was significantly lowest

under weedy check treatment. These results correlate with the findings of Dobariya *et al.* (2014)^[4], Kamble *et al.* (2015)^[5] and Kumar and Chawla (2019)^[6].

3.2 Effect of different weed management practices on economics of pearl millet

The gross and net monetary returns were found maximum (\Box 136449 and \Box 94695 /ha, respectively) in weed free (T_2) treatment. Among chemical weed management treatments, application of pendimethalin @ 750 g/ha PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE (T_9) (\Box 128122 and \Box

91909/ha, respectively) recorded more gross and net monetary returns than other chemical weed management treatments followed by pendimethalin @ 750 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE (T_8) (\Box 120228 and \Box 83980 /ha, respectively), atrazine @ 500 g/ha PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE (T_7) (\Box 111156 and \Box 74937/ha, respectively) and atrazine @ 500 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE (T_6) (\Box 104199 and \Box 67945/ha, respectively). The benefit cost ratio was maximum in application of pendimethalin @ 750 g/ha.

Table 1. Weight of earhead/plant (g), grain weight/earhead (g) and test weight (g) as influenced by different herbicidal treatments

Tr. No.	Treatments	Weight of earhead/ plant (g)	Grain weight/ earhead (g)	Test weight (g)
T ₁	Weedy check	45.13	30.45	7.21
T ₂	Weed free	69.12	52.27	12.87
T ₃	Atrazine @ 500 g/ha PoE	54.67	43.78	8.70
T ₄	2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE	56.08	44.07	9.08
T ₅	2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE	57.16	44.21	9.31
T ₆	Atrazine @ 500 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE	60.12	47.14	10.71
T ₇	Atrazine @ 500 g/ha PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE	63.26	48.26	10.81
T ₈	Pendimethalin 750 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE	66.61	50.74	12.20
T ₉	Pendimethalin 750 g/ha PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE	68.89	51.84	12.25
	S. Em (±)	0.92	0.55	0.45
	CD (P=0.05)	2.76	1.66	1.35
	General mean	60.12	45.86	10.35

Table 2. Grain yield (kg/ha), straw yield (kg/ha), total cost of cultivation (□/ha), gross returns (□/ha), net returns (□/ha) and B:C ratio in pearl millet crop as influenced by different treatments

Tr. No.	Treatment Details	Grain yield (kg/ha)	Straw yield (kg/ha)	Total cost of cultivation (□/ha)	Gross returns (□/ha)	Net returns (□/ha)	B:C ratio
$\overline{T_{1}}$	Weedy check	1180.35	2709.34	33754	45938	12184	1.36
T_2	Weed free	2896.92	5316.87	41754	136449	94695	2.27
T ₃	Atrazine @ 500 g/ha PoE	1805.65	3911.23	35079	85407	50328	1.43
T ₄	2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE DAS PoE	1834.29	3968.53	34929	86759	51830	1.48
T ₅	2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE	1982.61	4165.23	34894	93700	58806	1.69
T ₆	Atrazine @ 500 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE	2205.05	4610.53	36254	104199	67945	1.87
T ₇	Atrazine @ 500 g/ha PE <i>fb</i> 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE	2356.02	4630.78	36219	111156	74937	2.07
T ₈	Pendimethalin 750 g/ha PE fb 2,4-D (Dimethyl amine) @ 0.5 kg ha ⁻¹ at 25–30 DAS PoE	2548.76	4974.99	36248	120228	83980	2.32
T ₉	Pendimethalin 750 g/ha PE <i>fb</i> 2,4-D (Na Salt) @ 0.5 kg ha ⁻¹ at 25-30 DAS PoE	2718.73	5099.12	36213	128122	91909	2.54
	S. Em (±)	63.64	114.35	-	-	-	-
	CD (P=0.05)	190.80	342.84	-	-	-	-
	General mean	2169.82	4376.29	-	-	-	-

PE fb 2,4-D (Na Salt) @ 500 g/ha at 25-30 DAS PoE (T_9) (2.54) followed by pendimethalin @ 750 g/ha PE fb 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS PoE 30 DAS PoE (T_8) (2.32) due to higher market price of atrazine herbicide as compare to 2,4-D (Na Salt). These results corroborate with the findings of Kamble et al. (2015)^[5], Dobariya et al. (2014)^[4] and Sivamurugan (2017)^[7].

4.CONCLUSION

Among the herbicidal treatments application of pre-emergence herbicide *i.e.* pendimethalin @ 750 g/ha followed by post-emergence herbicide *i.e.* 2,4-D @ 500 kg/ha at 25-30 DAS should be adopted for effective weed control and higher pearl millet production. From the economic point of view application of pre-emergence spray of pendimethalin @ 750 g/ha followed by post-

emergence herbicide 2,4-D (Na Salt) @ 500 kg/ha at 25-30 DAS 30 DAS PoE (T_9) and preemergence spray of pendimethalin @ 750 g/ha followed by post-emergence herbicide 2,4-D (Dimethyl amine) @ 500 g/ha at 25-30 DAS 30 DAS PoE (T_8) could be economical viable treatments based on B:C ratio.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company

rather it was funded by personal efforts of the

REFERENCES

- Bhan, V. M., Singh, V. P., Kumar, S. and Dixit, A. 1998. Weed management in Fifty years of Agronomic Research in India. Ed. By Yadav et al. Indian Society of Agronomy, New Delhi, pp. 164.
- Banga, R. S., Yadav, A., Malik, R. K., Pahwa, S. K. and Malik, R. S. 2000. Evaluation of tank mixture of acetachlor and atrazine or 2,4-D Na against weeds in pearl millet. *Indian J. of Weed Sci.*, 32(3 & 4): 194–198.
- Sharma, O. L. and Jain, N. K. 2003. Integrated weed management in pearl millet. Indian J. of Weed Sci., 35(1 & 2): 134-135.
- 4. Dobariya, V. K., Mathukia, R. K., Gohil, B. S. and Chhodavadia, S. K. 2014. Integrated

authors.

- weed management in sweet corn. *Indian J. Weed Sci.*, 46(2): 195-196.
- Kamble, A. S., Yogeesh, L. N., Prashanth,
 M., Channabasavanna, A. S. and Channagoudar, R. F. 2015. Effect of weed management practices on weed growth and yield of maize. *Int. J. Sci. Environ.*, 4(6): 1540-1545.
- Kumar, M. and Chawla, J. 2019. Comparative study on weed control efficacy of different pre-and post-emergence herbicides in *kharif* maize. *Indian J. Weed* Sci., 51(1): 32-35.
- Sivamurugan, A. P., Ravikesavan, R., Yuvaraja, A., Singh, A. K. and Jat, S. L. 2017. Weed Management in Maize with New Herbicides. Chemical Science Review and Letters 2017, 6(22): 1054-1058.