STANDARDIZATION OF IRRIGATION AND FERTIGATION REQUIREMENT FOR SNAKE GOURD UNDER RAIN SHELTER

15 16 17

ABSTRACT

Aim: The study entitled "standardization of irrigation and fertigation requirement for snake gourd under rain shelter" was taken up to standardize the irrigation and fertigation requirement of snake gourd (*Trichosanthes cucumerina*) of Manusree variety under rain shelter.

Place and Duration of Study: The experiment was performed in instructional farm of PFDC, KCAET, Tavanur, Kerala, between October 2020 and January 2021.

Methodology: Penman Monteith method was used for the determination of crop water requirement and irrigation scheduling. There were three levels of irrigation i.e., T1 - 60%, T2 - 80% and T3 - 100% of ETc and three levels of fertigation viz: R1 - 100%, R2 - 125% and R3- 150% of recommended dose of fertilizer. Different crop and soil parameters and yield is noted in each bed.

Result: The treatment T3R3 showed comparatively better performance in yield and other growth characteristics as compared to the other treatment. These plants yield longer fruits and bloomed early compared to other fertigation levels. The cultivation is found to be feasible since the benefit cost ratio is greater than one. The result of the study can be used as a guide for the farmers to plan their irrigation and cropping pattern. Also the result can be extrapolated to the future to analyse the trends in future crop water demands.

Conclusion: The farming can run feasibly if we follow precision farming. Through this study we got that the optimum water content of snake gourd is 100% of Etc and 150% fertigation

18

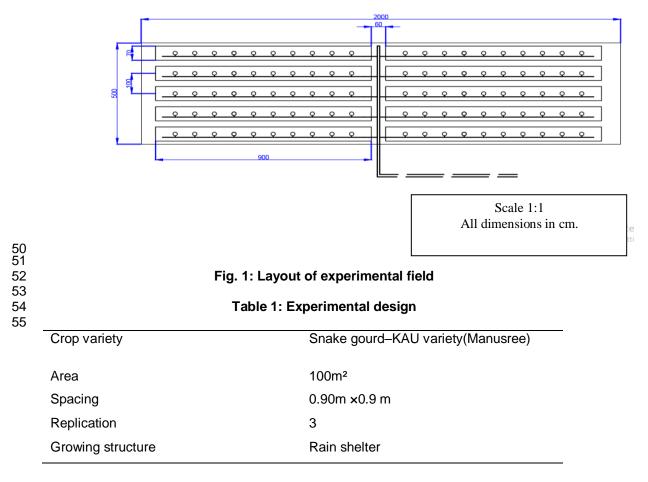
19 Keywords: fertigation, irrigation, rain shelter, snake gourd, yield

20

21 **1. INTRODUCTION**

Snake gourd scientifically known as Tricosanthes cucumerina is a plant which bears fruit that 22 is consumed as vegetable. It is an annual climbing plant which belongs to Cucurbitaceae. 23 Liyanage et al. (2016)(1). Rain shelters are roofed with plastic film and other water proof 24 materials to shelter crops from rain. The houses are effective in reducing crop damage 25 26 caused by diseases and insect pests, in promoting crop growth, and in achieving stable 27 production of high quality vegetables. Mabhaudhi et al. (2013)(2). One of the features of precision farming is to have maximum possible use efficiency of applied inputs especially 28 29 water and fertilizers. The main idea behind irrigation systems is to assist in the growth of

30 agricultural crops and plants by maintaining with the minimum amount of water required, suppressing weed growth in grain fields, preventing soil consolidation etc. Among all 31 irrigation methods, drip irrigation is the most efficient and can be practiced for a large variety 32 33 of crops. It is an effective type of irrigation as it minimizes evaporation and water runoff. The 34 fertilizers are dissolved at appropriate concentrations in water and applied through irrigation 35 water by micro irrigation systems. Paul et al. (2013)(3). Fertigation is the practise, where the 36 nutrients and water in required quantity at correct time are placed in the root zone so that maximum absorption of applied nutrients and water is assured to achieve more crops per 37 38 drop of water. So we use fertilizer more efficiently and get the best return on our inputs.


Now a days farming is becoming a loss due to the high cost of seeds, fertilizers and other farming equipments. And the farmers are not able to meet the expenditure by selling the crops. So we have to apply optimum amount of fertilizers and water to reduce the expenditure. This study help to find the optimum level of water and fertilizer for higher productivity of snake gourd under rain shelter.

44

45 2. MATERIAL AND METHODS

46 The experiment was performed in instructional farm of KCAET, Tavanur, Kerala. 47 The study was conducted using snake gourd under naturally ventilated rain shelter of PFDC,

- 48 KCAET, Tavanur, Kerala.
- 49

	Irrigation	n level	T1=60% T2=80% T3=100%				
	Fertigati	on level	R1=100% R2=125% R3=150%				
	Design		Factorial CRD				
56 57	2 4 Tra	otmont dotailo					
57 58	2.1 Tre	atment details	Table 2: Treatment details				
	SI. No.	Treatment	Detail				
	1	T1R1	Crop with 60% irrigation and 100% fertigation				
	2	T1R2	Crop with 60% irrigation and 125% Fertigation				
	3	T1R3	Crop with 60% irrigation and 150% fertigation				
	4	T2R1	Crop with 80% irrigation and 100% fertigation				
	5	T2R2	Crop with 80% irrigation and 125% fertigation				
	6	T2R3	Crop with 80% irrigation and 150% fertigation				
	7	T3R1	Crop with 100% irrigation and 100% fertigation				
	8	T3R2	Crop with 100% irrigation and 125% fertigation				
	9	T3R3	Crop with 100% irrigation and 150% fertigation				
59 60	Table 3: Specifications of rain shelter						
	SI No	Particulars	Specifications				
	1	Rain shelter type	Gable shaped				
	2	Column height	2m				
	3	Centre height	3m				
	4	Inside area	100sq.m				
	5	Side walls	Covered with 50 mesh net on all four sides at a height of 1m from ground				
61	6	Roof covering	200 micron polythene with 85% light transmission				

62 Area of each bed was 6.3m². Beds were prepared inside rain shelter with 9 m 63 length, 0.7 m width and 0.065m height single row planting. Plants were grown at row to row 64 spacing of 0.30 m and plant to plant spacing of 0.90 m. The plants were irrigated daily 65 through drip irrigation system. Irrigation water was pumped using 5hp monoblock pump set 66 and conveyed through the main line of 68 mm diameter PVC pipes after filtering through the 67 disc filter. Discharge rate of single dripper is 2 lph. FYM was applied prior to transplanting. 68 Fruit fly is the most destructive pest of snake gourd. It cause premature fruit drop, yellowing 69 and rotting of fruits, other pest like aphids, Beetle also affect the growth of plant. Common 70 diseases like downy mildew and powdery mildew also occurs. Crop protection consisted of controlling the incidence of pest and disease. Ekalux insecticide was applied at 50ml/10L of 71 72 water. Also we used pheromone traps to trap the insects.

Fertilizers were applied through drip irrigation system using venturi assembly. Duration of crop was 120 days, so the fertigation was scheduled as 40 splits with the frequency of once in three days from planting till the end of crop.

Application stage	Fertilizers	100%(g)	125%(g)	150%(g)
Initial stage(split into	19:19:19	100	125	150
6 doses)	13:0:45	20	25	30
	urea	170	212.5	255
Development	19:19:19	50	62.5	75
stages(split into 12	13:0:45	230	287.5	345
doses)	urea	100	125	150
	12:61:0	15	87.5	22.5
Final stage(split into	19:19:!9	50	62.5	75
22 doses)	13:0:45	230	287.5	345
	urea	100	125	150
	12:61:0	15	68.7	22.5

Table 4: Fertigation schedule of snake gourd

79

77

78

80

81 Crop protection consisted of controlling the incidence of pest and disease. Ekalux 82 insecticide was applied at 50ml/10L of water. Also we used pheromone traps to trap the 83 insects.

Evapo-transpiration is a combination of two processes- evaporation and transpiration. Crop evapo-transpiration from an extensive surface of green grass of uniform height (0.12m), actively growing, completely shading the ground with an albedo of 0.23 and having ample water supply is called reference crop evapo-transpiration and is denoted by ETo. Various methods are in use for the determination of ET₀.

90 Penman – Monteith Method

- 91 $ET_0 = 0.408\Delta (Rn-G) + \gamma 900 U_2$ (es-ea) 92
 - (T+273)
- 93 94 $\Delta + \gamma$ (1 +0.34 U_2)

2.2 Net Irrigation Requirement (NIR) 95

96 Irrigation is necessary when rainfall could not meet the evapo-transpiration demands of the crops. Irrigation should apply the right quantity of water at the right time. 97 98

NIR = WR - ER - Ge

99 Where, 100

102

103

110

- WR = Water Requirement (Etc)
- 101 ER = Effective Rainfall
 - Ge = Groundwater contribution from the water table (not considered in the study as this is negligible).

104 2.3 Duration of Irrigation

The quantity of water for irrigation to be applied was computed for every day. For 105 106 known discharge rate of emitters (2 lph), the duration of irrigation water was calculated by $T = Vn/(Ne \times Np \times q)$ 107

Where, 108

109 Vn =Net water requirement

- Ne = No of emitters per plant
- 111 Np = No of plants
- 112 q= Emitter discharge L/h

2.4 Irrigation Scheduling 113

114 Irrigation scheduling primarily aims at determining how to irrigate, when to irrigate 115 and how much to irrigate. The primary aim of scheduling is to maintain optimum water supply to improve productivity so that the water level in the root zone is maintained between 116 the confines of readily available water (RAW). The schedule not only enables the efficient 117 management of water but also develop effective water delivery schedules under restricted 118 119 supply conditions.

120

121 122 123

124

Fig. 2: Crop stand inside rain shelter 2.5 Determination of Irrigation Water Use Efficiency

- 125 Water use efficiency was calculated for each treatment. It is the ratio of yield
- 126 of crop in kg/ha and total water applied in mm.

127
$$WUE = \frac{Y}{W.A}$$
128129130WUE=Water use efficiency (kg/ha mm) of water used.131Y= Yield of the crops (kg ha⁻¹)132W.A = Total water applied (mm)

Table 5: Water use efficiency

Treatment combinations	Yield	Yield (kg /ha)	Gross depth of irrigation water	WUE
	(Kg/plant)		applied in mm	(kg/ha mm)
T1R1	1.23	19523.8	113.1	172.6
T1R2	1.58	25079.3	113.1	221.7
T1R3	2.22	35238.1	113.1	311.6
T2R1	2.38	37777.7	150.8	250.5
T2R2	2.54	40317.4	150.8	267.3
T2R3	2.84	45079.3	150.8	298.9
T3R1	3.32	52698.4	188.5	279.6
T3R2	3.92	62222.2	188.5	330.1
T3R3	5.26	83492.0	188.5	442.9

3. RESULTS AND DISCUSSION

Duration of irrigation is the time for which the irrigation water is supplied. It depends on the water to be irrigated, discharge of drippers, no. of drippers and no. of plants in each bed. The duration of irrigation is adjusted by opening and closing of cock valve in the lateral.

142 143 144	Table 6: Duration of irrigation								
144	SI no.	Stage of growth	Net Net water requirement (mm)	Duration of irrigation (minutes)					
	1	Initial stage	4.4 mm	13.2 min.					
	2	Development stage	15.25 mm	45.75 min.					
	3	Mid-season stage	28.62 mm	85.87 min.					
	4	Late season stage	31.1 mm	93.3 min.					

146 3.1 Growth parameters

147

148 Biometric readings are taken for first four week of transplanting. In each week the 149 plants with T3R3 treatment shows highest growth. The number of leaves, stem girth and 150 plant height is maximum in these plants. By observing growth parameters for a week, we 151 can identify that the irrigation and fertigation levels directly affect the plant growth. ie, fertigation boost the plant growth drastically. The plants with highest levels of irrigation and 152 fertigation showed the maximum growth properties. Considering the whole growing pattern 153 154 of plants, plants with 100% irrigation and150% fertigation showed the rapid growth, and more healthier than other treatments. 155

Murthy *et al.* (2020)(3) studied the effect of NPK fertigation with water soluble fertilizers (WSF) and conventional fertilizers and soil application of straight fertilizers on post-harvest soil nutrients status, nutrient uptake and yield of hybrid ridge gourd (*Luffa acutangula* (L.) Roxb.) Arka Vikram. They found that the vine/plant received fertigation with WSF @ 150:90:150 kg NPK ha⁻¹ recorded better growth and highest yield (53.73 t ha⁻¹). From this investigation it may be concluded that fertigation with WSF @ 150:90:150 kg NPK ha⁻¹ is found to be best for getting better growth, yield and nutrient uptake by hybrid ridge gourd

163

164 **3.2 Soil parameters**

165

The treatment T2R3 had a pH of 7.1. The bed with treatment with 60% irrigation 150% fertigation gives a pH of 7.2. And 7.3 are measured at bed with treatment T3R3. Soil temperature decreases as irrigation and fertigation increases. The soil pH, electrical conductivity, organic carbon and available macro and micronutrients status in soil after the harvest were significantly influenced by different treatments and treatment T3 *i.e.* fertigation with water soluble fertilizers @ 150:90:150 kg NPK ha⁻¹ found to maintain/ improve the soil fertility status compared to other treatments- (Murthy *et al.*,2020).

174 3.3 Yield parameters

175

177

176 Table 7: Yield from various treatments in the field during each harvest

Treatment	1 st harvest	2 nd harvest	3 rd harvest	4 th harvest	5 th harvest	Total yi	eld
	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	Kg/ha
T1R1	1.92	3.3	3.3	3.1	0.7	12.32	1232
T2R1	2.49	4.3	4.1	4.2	0.8	15.89	1589
T3R1	3.47	6.3	5.8	5.6	1.1	22.27	2227
T1R2	3.71	6.7	6.1	6.1	1.2	23.81	2381
T2R2	4.05	7.1	6.6	6.4	1.3	25.45	2545
T3R2	4.42	8.3	7.3	7	1.4	28.42	2842
T1R3	5.49	9.2	8.6	8.3	1.7	33.29	3329
T2R3	6.28	10.9	10.2	9.8	2.1	39.28	3928
T3R3	8.41	14.5	13.8	13.2	2.7	52.61	5261
Control	1	3	2.7	2	0.5	9.2	920

178

179 The first harvest was done on 01/12/2020, after seven week of planting. 43.33 kg of snake 180 gourd (Trichosanthes cucumerina L.) was obtained from that harvest alone. Last harvest 181 was on 02/02/2021, almost after three and half months of planting the crop. In each 182 harvesting fruits of T3R3 treatment showed maximum yield and longer fruits. Number of 183 female flowers was also higher in these plants. Total yield obtained for the five harvesting is 253.34 kg for 100m². To the end of cultivation size of fruits were also reduced. 184

185 Similar result was obtained by Murthy et al. (2020) that the fertigation with water 186 soluble fertilizer *i.e.* Urea, 19:19:19 and KNO3 @ 150:90:150 kg NPK/ha is found to be best 187 for field grown hybrid ridge gourd Arka Vikram for realizing better plant growth and fruit yield. 188 The higher level of fertigation, which had made the plants to respond in production higher 189 flowers per plant and percent of fruit set again, has helped in obtaining the highest fruit yield 190 per plant. Higher yield with application of balanced and optimum dose of N, P and K through 191 fertigation might have increased the number of female flowers which leads to increase in the 192 yield. Higher yield may also be due to increased fertilizer and water use efficiency owing to 193 better availability of moisture and nutrients through fertigation.

194 The increase in the number of early appearance of female flowers per vine made the 195 T3 plant populations to take minimum days for 50% flowering and fruit setting to maturity (Karthick et al., 2017)(5). 196

197 The highest fruit yield per hectare is due to more number of fruits per plant, fruit weight as 198 well as increased fruit yield per plant. This increase in yield might have been due to the 199 better performance of yield attributes as these attributes have a positive influence on the 200 yield (Rani et al., 2012)(6).

¹⁷³

3.4 Economic analysis

The total expenditure for the cultivation was about 4329rupees. This includes the cost of rain shelter and also the cost farming. Total amount obtained by selling the snake gourd is 6703.25 rupees. And the benefit cost ratio of the cultivation is obtained as 1.55. ie., expenditure is less compared to the revenue

Table 8: Cost benefit calendar

SI. No.	Item description	Quantity(unit)	Rate	Total	No. of useful seasons	Cost/seaso n
1	Structure and irrigation	o components (fiz	ked cost))		
1.1	Rain shelter			50000	60	833
1.2	Drip lateral (Outer diameter 16 mm CL 11×100 m)	90 (m)	15	1350	40	33.75
1.3	Drip poly grommet take off 16 ×13 mm	10 (no)	6.5	65	40	1.625
1.4	Drip lateral end stop 8 shape 16 mm	10 (no)	3.5	35	40	0.87
1.5	Disc filter armas 50 mm	1 (no)	2650	2650	40	66.5
1.6	Mulching sheet 400 metre 30 micron 1.2m silver/black	1(284 m)	3350	2378.5	8	297.5
1.7	Mini valve	10(no)	40	400	40	10
1.8	Drip j-lock dripper 2lhp	100 (no)	3.6	3600	40	90
1.9	Extra fitting bend, tee and solvent			500	40	12.5
1.10	1.5" PVC pipe	25.5 (6 m)	200	850	40	21.25
1.11	Venturi injector system			500	40	12.5
1.12	Cladding material	400 (m²)	50	20000	20	1000
2	Cultivation (variable co	st)				
2.1	Workers wage for bed preparation, planting	2 (men days)	700	1400	1	1400

	etc.					
2.2	Fertilizers	0.5 (kg)	100	100	1	50
2.3	FYM	300 (kg)	1	300	1	300
2.4	Seedling	100(no.)	2	200	1	200
3	Total expenditure					4329
4	Benefit from cultivation					6703.25
5	Benefit cost ratio					1.55

213 4. CONCLUSION

214

215 The experiment revealed that the irrigation and fertilizer management is an 216 important factor in crop production. Higher water application and inefficient fertilizer application is the current farming scenario. We should standardize the water and fertilizer 217 218 application according to our area and mode of cultivation. Water use efficiency of the crops 219 has to be increased in order to reduce the water loss from the field. Drip irrigation system is 220 considered as the most effective micro irrigation method, as water is applied directly to the 221 crop root zone. Hence it can be concluded that drip fertigation with 100% of ETc and 222 Fertigation of 150% of RDF is best suited for cultivation of snake gourd under rain shelter. 223

223

225

243

244 **REFERENCES**

- 1. Liyanage, R., Nadeeshani, H., Jayathilake, C., Visvanathan, R., Wilmalasiri,
- 246 S. Comparative Analysis of Nutritional and Bioactive Properties of Aerial

247 248		Parts of Snake Gourd (<i>Trichosanthes cucumerina Linn.</i>). Int. J. Food Sci. 2016
249 250	2.	Mabhaudhi, T., Modi, A.T., and Beletse, Y.G. Growth, phenological and yield responses of a bambara groundnut (<i>Vignasubterranea</i> L. Verdc) landrace to
250 251		imposed water stress: II. Rain shelter conditions. Water. 2013 39(2)
252	3.	Paul, J.C., Mishra, J.N., Pradhan, P.L., and Panigrahi, B. Effect of drip and
253		surface irrigation on yield, water use-efficiency and economics of capsicum
254		(capsicum annum I.) Grown under mulch and non mulch conditions in
255		eastern coastal India. Eur. J. Sustain. Dev. 2013. 2(1): 99-108.
256		
257	4.	Murthy, A.H.C., Nair, A.K., Anjanappa, M., Kalaivanan, D., Hebbar, S.S.,
258		Laxman, R.H. Growth and Fruit Yield of Hybrid Ridge Gourd [Luffa
259		acutangula L. Roxb] ArkaVikram in Relation to NPK Fertigation. Int. J. Curr. Microbiology Applied Sci. 2020 9(6): 3954-3963
260		Microbiology Applied 30. 2020 9(0). 3934-3903
261	5.	Karthick, K., Patel, G. S. and Prasad, J. G. R.Performance of Ridge gourd
262		(Luffa acutangula L. Roxb). Varieties and nature of cultivation on growth and
263		flowering attribute. Int. J. Agril. Sci. 2017. 9: 3910-3912.
264		
265	6.	Rani, R., Nirala, S. K. and Suresh R. Effect of fertigation and mulch on yield
266		of pointed gourd in calcareous soil of north Bihar. Environ. Ecology. 2012.
267		30(3A): 641- 645.