
Femtosecond pulse propagation in optical fibers under
higher order effects: a moment method approach

Abstract
In this paper, we use the moment method approach to investigate the evolution of pulse parameters
in nonlinear medium. The pulse propagation is modelled by higher order nonlinear Schrödinger
equation (NLSE). The application of moment method leads to variational equations that are be
integrated by the fourth order Runge-Kutta method (RK4). The results obtained show the variations
of some important parameters of the pulse namely the energy, the pulse position, the frequency
shift, the chirp and the width. For this form of the NLSE, the energy and frequency don’t vary.
The coefficient of quintic self phase modulation governs the dynamics of the pulse propagation. It
reveals the effects of the quintic coefficient α. The moment method is able to study the dynamics
of the optical pulse modelled by higher order nonlinear Schrödinger equations.

Keywords: optical soliton, moment method, higher order nonlinear Schrödinger equation, nonlinear
optical phenomena.
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Introduction

Nonlinear optical phenomena occur typically at high optical intensities and most of wave equations
involved are governed by the nonlinear Schrödinger equations (NLSE)[1]. The nonlinear Schrödinger
equation plays the role of Newton’s laws and conservation of energy in classic mechanics. It predicts
the futur behaviour of a dynamic system. The nonlinear Schrödinger equation is an example of
a universal nonlinear model that describes many physical nonlinear scenarios [2]. In order to better
understand nonlinear phenomena, it’s important to seek their exact solution. They can help to analyse
the stability of these solution and the mouvement role of the wave by making the graphs of the exacts
solution [3]-[13]. The propagation of optical soliton through optical fibers is governed by nonlinear
Schrödinger equation and it was first suggested by Hasegawa and Tappert [14] and first experimented
by Mollenaner et al. [15]. After, this study has been expanded all accross with various results due
to their application in telecommunicatin [16]-[25], severals forms of this nonlinear Schrödinger exist
The focus is one of them which take account of the second as well as third order dispersion effects,
cubic and quintic self phase modulation, self steepening and nonlinear dispersion effect ; it is known
as RKL and was proposed by Radhakrishnan, Kundu and Lakshman. The normalized (RKL) model
of a higher order nonlinear Schrödinger equation for the propagation of femtosecond pulse can be
written as:

i
∂ψ

∂z
+
∂2ψ

∂t2
+ ic1

∂3ψ

∂t3
+ 2|ψ|2ψ + ic2

∂

∂t
(|ψ|2ψ) + ic3

∂

∂t
(|ψ|4ψ) + α|ψ|4ψ = 0 (0.1)

and when

c1 = c2 = c3 = 0 (0.2)

we have the case of cubic-quintic law which has been studied by Shwetanshumoler and Biswas in
2007 with collective variables approach. The mathematical methodology adopted in this paper is
know as “moment method” which transform the nonlinear Schrödinger equation (NLSE) to system
of ordinary differential equations [26]-[29] solving by Runge-Kutta algorithm. Another method of
searching for exact solution to (NLSE) have been presented in the literature : the inverse scattering
method, the blacklund transformation, the Hirota bilinear method, the lie group method, the variable
separation method, the variation iteration, the Jacobi elliptic function, the expansion method, the split
Fourrier method [12]-[14], [23]. The aim of this paper is to apply the moment method to find a solitary
wave solution for (NLSE) which is straight forward and concise. The outline of the present paper is
as follows. In Section 1, we solve the equation by variational moment method. In Section 2, we use
a Gaussian function. We obtain the variational equations of the pulse parameters which are solve
by the fourth order Runge Kutta method. In Section 3, we present results in discussions. Finally, we
point out the concluding remarks.

1 Solving the problem by variational moment method

The basic idea of moment method is to treat the optical pulse like a particule whose energyE, position
T , the frequency Ω, the root mean square (RMS) σ and the moment related to the chirp of the pulse
are defined as [25, 27, 28, 30, 31] :
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E =

∫ +∞

−∞
|ψ|2dt (1.1)

T =
1

E

∫ +∞

−∞
t|ψ|2dt (1.2)

Ω =
i

2E

∫ +∞

−∞

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
dt (1.3)

σ2 =
1

E

∫ +∞

−∞
(t− T )2|ψ|2dt (1.4)

C̃ =
i

2E

∫ +∞

−∞
(t− T )

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
dt (1.5)

where ψ is the envelop of the pulse. Obviously, the evolution of these pulse parameters depends on
the evolution on the pulse itself in the fiber which is governed by the NLS equation (0.1). In order to
find the evolution of these pulse parameters, we use the equations (1.1) to (1.5) along with equation
(0.1).

1.1 Energy evolution

Firstly, consider the evolution of the pulse energy. To find that, we differentiate (1.1) with respect to z
and get :

dE

dz
=

∫ +∞

−∞

(
ψ∗
∂ψ

∂z
+ ψ

∂ψ∗

∂z

)
dt (1.6)

Using (0.1) we find that :

∂ψ

∂z
= i

∂2ψ

∂t2
− c1

∂3ψ

∂t3
+ 2i|ψ|2ψ − c2

∂

∂t
(|ψ|2ψ)− c3

∂

∂t
(|ψ|4ψ) + iα|ψ|4ψ (1.7)

After performing calculations, we have :

dE

dz
=

∫ +∞

−∞
−i
(
ψ
∂2ψ∗

∂z2
− ψ∗ ∂

2ψ

∂z2

)
dt− c2

∫ +∞

−∞

[
ψ∗

∂

∂t

(
|ψ|2ψ

)
+ ψ

∂

∂t

(
|ψ|2ψ∗

)]
dt

−
∫ +∞

−∞
c1
(
ψ
∂3ψ∗

∂z3
+ ψ∗

∂3ψ

∂z3

)
dt− c3

∫ +∞

−∞

[
ψ∗

∂

∂t

(
|ψ|4ψ

)
+ ψ

∂

∂t

(
|ψ|4ψ∗

)]
dt. (1.8)

When we compute each over the integrals, the right handside of (1.8), we have

dE

dz
= 0. (1.9)

1.2 Evolution of pulse position

Differentiating (1.2) with respect to z we get :

dT

dz
=

1

E

∫ +∞

−∞
t
(
ψ∗
∂ψ

∂z
+ ψ

∂ψ∗

∂z

)
dt (1.10)
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We get :

dT

dz
=
−i
E

∫ +∞

−∞
t
(
ψ
∂2ψ∗

∂t2
− ψ∗ ∂

2ψ

∂t2

)
dt− c2

E

∫ +∞

−∞
t
[
ψ∗

∂

∂t

(
|ψ|2ψ

)
+ ψ

∂

∂t

(
|ψ|2ψ∗

)]
dt

−c1
E

∫ +∞

−∞
t
(
ψ
∂3ψ∗

∂t3
+ ψ∗

∂3ψ

∂t3

)
dt− c3

E

∫ +∞

−∞
t
[
ψ∗

∂

∂t

(
|ψ|4ψ

)
+ ψ

∂

∂t

(
|ψ|4ψ∗

)]
dt(1.11)

After integrating by parts and the definition of frequency in (1.3), we obtain:

dT

dz
= 2Ω− 3c1

E

∫ +∞

−∞

∣∣∣∂ψ
∂t

∣∣∣2dt+
3c2
2E

∫ +∞

−∞
|ψ|4dt+

c3
3E

∫ +∞

−∞
|ψ|6dt (1.12)

1.3 Evolution of frequency schift
Differentiating (1.3) with respect to z, we get :

dΩ

dz
=

i

2E

∫ +∞

−∞

[ ∂
∂z

(
ψ∗
∂ψ

∂t

)
− ∂

∂z

(
ψ
∂ψ∗

∂t

)]
dt (1.13)

∂

∂z

(
ψ∗
∂ψ

∂t

)
= ψ∗

∂2ψ

∂z∂t
+
∂ψ∗

∂z

∂ψ

∂t
(1.14)

From (1.7), we can write :

ψ∗
∂2ψ

∂z∂t
= iψ∗

∂3ψ

∂t3
−c1ψ∗

∂4ψ

∂t4
+2iψ∗

∂

∂t
(|ψ|2ψ)−c2ψ∗

∂2

∂t2
(|ψ|2ψ)−c3ψ∗

∂2

∂t2
(|ψ|4ψ)+iαψ∗

∂

∂t
(|ψ|4ψ)

(1.15)
and

∂ψ∗

∂z

∂ψ

∂t
= −i∂

2ψ∗

∂t2
∂ψ

∂t
−c1

∂3ψ∗

∂t3
∂ψ

∂t
−2i|ψ|2ψ∗ ∂ψ

∂t
−c2

∂

∂t

(
|ψ|2ψ∗

)∂ψ
∂t
−c3

∂

∂t

(
|ψ|4ψ∗

)∂ψ
∂t
−iα|ψ|4ψ∗ ∂ψ

∂t
(1.16)

Adding (1.15) and (1.16) and substituting into (1.14), we find :

∂

∂z

(
ψ∗
∂ψ

∂t

)
= i

[
ψ∗
∂3ψ

∂t3
− ∂2ψ∗

∂t2
∂ψ

∂t

]
− c1

[
ψ∗
∂4ψ

∂t4
+
∂3ψ∗

∂t3
∂ψ

∂t

]
+ i2ψ∗

∂

∂t
(|ψ|2ψ)− i2∂ψ

∂t
ψ∗|ψ|2

− c2ψ∗
∂2

∂t2
(|ψ|2ψ)− c2

∂ψ

∂t

∂

∂t
(ψ∗|ψ|2)− c3ψ∗

∂2

∂t2
(|ψ|4ψ)− c3

∂ψ

∂t

∂

∂t
(ψ∗|ψ|4)

+ iαψ∗
∂

∂t
(|ψ|4ψ)− iα∂ψ

∂t
ψ∗|ψ|4 (1.17)

Also, we can write

∂

∂z

(
ψ
∂ψ∗

∂t

)
= −i

[
ψ
∂3ψ∗

∂t3 − ∂2ψ

∂t2
∂ψ∗

∂t

]
− c1

[
ψ
∂4ψ∗

∂t4
+
∂3ψ

∂t3
∂ψ∗

∂t

]
− i2ψ ∂

∂t
(|ψ|2ψ∗) + i2

∂ψ∗

∂t
ψ|ψ|2

−c2ψ
∂2

∂t2
(|ψ|2ψ∗)− c2

∂ψ∗

∂t

∂

∂t
(ψ|ψ|2)− c3ψ

∂2

∂t2
(|ψ|4ψ∗)− c3

∂ψ∗

∂t

∂

∂t
(ψ|ψ|4)

−iαψ ∂

∂t
(|ψ|4ψ∗) + iα

∂ψ∗

∂t
ψ|ψ|4 (1.18)

Using (1.17) and (1.18) into (1.13), we can find the evolution of frequency along the fiber to be
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dΩ

dz
=

1

2E

∫ +∞

−∞

[(∂2ψ∗

∂t2
∂ψ

∂t
+
∂ψ2

∂t2
∂ψ∗

∂t

)
−
(
ψ
∂3ψ∗

∂t3
+ ψ∗

∂3ψ

∂t3

)]
dt

− ic1
2E

∫ +∞

−∞

[(
ψ∗
∂4ψ

∂t4
− ψ∂

4ψ∗

∂t4

)
+
(∂3ψ∗

∂t3
∂ψ

∂t
− ∂ψ3

∂t3
∂ψ∗

∂t

)]
dt

− ic2
2E

∫ +∞

−∞
|ψ|2

(
ψ∗
∂2ψ

∂t2
− ψ∂

2ψ

∂t2

)
dt− ic2

2E

∫ +∞

−∞

∂

∂t
|ψ|2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∂t

)
dt

− 2

E

∫ +∞

−∞
|ψ|2 ∂

∂t
|ψ|2dt− ic3

2E

∫ +∞

−∞
|ψ|4

(
ψ∗
∂2ψ

∂t2
− ψ∂

2ψ

∂t2

)
dt+

− ic3
2E

∫ +∞

−∞

∂

∂t
|ψ|4

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∂t

)
dt− 3α

E

∫ +∞

−∞
|ψ|4 ∂

∂t
|ψ|2dt (1.19)

In order to calculate dΩ
dz

, we evaluate one by one the integrals on right hand side of the (1.19).
After computation, we get :

dΩ

dz
= 0 (1.20)

1.4 Evolution of chirp parameter

Next we find the evolution of the chirp parameter. Differentiating (1.5) with respect to z, we can write

dC̃

dz
=

i

2E

∫ +∞

−∞
(t− T )

[ ∂
∂z

(
ψ∗
∂ψ

∂t

)
− ∂

∂z

(
ψ
∂ψ∗

∂t

)]
dt (1.21)

From (1.17) and (1.18), we have :

dC̃

dz
=

1

2E

∫ +∞

−∞
(t− T )

[(∂2ψ∗

∂t2
∂ψ

∂t
+
∂ψ2

∂t2
∂ψ∗

∂t

)
−
(
ψ
∂3ψ∗

∂t3
+ ψ∗

∂3ψ

∂t3

)]
dt

− i

2E
c1

∫ +∞

−∞
(t− T )

[(
ψ∗
∂4ψ

∂t4
− ψ∂

4ψ∗

∂t4

)
+
(∂3ψ∗

∂t3
∂ψ

∂t
− ∂ψ3

∂t3
∂ψ∗

∂t

)]
dt

− ic2
2E

∫ +∞

−∞
(t− T )|ψ|2

(
ψ∗
∂2ψ

∂t2
− ψ∂

2ψ

∂t2

)
dt− ic2

2E

∫ +∞

−∞
(t− T )

∂

∂t
|ψ|2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∂t

)
dt+

− 2

E

∫ +∞

−∞
(t− T )|ψ|2 ∂

∂t
|ψ|2dt− ic3

2E

∫ +∞

−∞
(t− T )|ψ|4

(
ψ∗
∂2ψ

∂t2
− ψ∂

2ψ

∂t2

)
dt+

− ic2
2E

∫ +∞

−∞
(t− T )

∂

∂t
|ψ|4

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∂t

)
dt− 3α

E

∫ +∞

−∞
(t− T )|ψ|4 ∂

∂t
|ψ|2dt (1.22)

After many integrations by parts, finally, we get :
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dC̃

dz
=
−2

E

∫ +∞

−∞

∣∣∣∂ψ
∂t

∣∣∣2dt+
3ic1
2E

∫ +∞

−∞

[(∂2ψ∗

∂t2
∂ψ

∂t
− ∂ψ2

∂t2
∂ψ∗

∂t

)
dt

− ic2
2E

∫ +∞

−∞
|ψ|2

(
ψ
∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
dt+

ic2
E

∫ +∞

−∞
(t− T )

∂

∂t
|ψ|2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
dt

+
1

E

∫ +∞

−∞

∣∣∣ψ∣∣∣4dt− ic3
E

∫ +∞

−∞
|ψ|4

(
ψ
∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
dt

+
ic3
2E

∫ +∞

−∞
(t− T )

∂

∂t
|ψ|4

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
dt

+
ic3
2E

∫ +∞

−∞
|ψ|4

(
ψ
∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
dt+

α

E

∫ +∞

−∞

∣∣∣ψ∣∣∣6dt (1.23)

1.5 Evolution of the RMS width

We differentiate (1.4), with respect to z to obtain

2σE
dσ

dz
=

∫ +∞

−∞
(t− T )2(ψ∗

∂ψ

∂z
+ ψ

∂ψ∗

∂z
)dt (1.24)

After calculating, we can write

2σE
dσ

dz
=

∫ +∞

−∞
−i(t− T )2

(
ψ
∂2ψ∗

∂z2
− ψ∗ ∂

2ψ

∂z2

)
dt−

∫ +∞

−∞
c1(t− T )2

(
ψ
∂3ψ∗

∂z3
+ ψ∗

∂3ψ

∂z3

)
dt

−c2(t− T )2

∫ +∞

−∞

[
ψ∗

∂

∂t

(
|ψ|2ψ

)
+ ψ

∂

∂t

(
|ψ|2ψ∗

)]
dt

−c3(t− T )2

∫ +∞

−∞

[
ψ∗

∂

∂t

(
|ψ|4ψ

)
+ ψ

∂

∂t

(
|ψ|4ψ∗

)]
dt (1.25)

After many integrations by parts we get:

dσ

dz
=

2c̃

σ
− 3c1
σE

∫ +∞

−∞
(t− T )

∣∣∣∂ψ
∂t

∣∣∣2dt (1.26)

2 Numerical simulation with Runge-Kutta 4

Let’s choose the pulse shape on the Gaussian form [30, 32]:

ψ(z, t) = A exp

[
(iϕ− iΩ(t− T )− (1 + iC)

(t− T )2

2τ2

]
, (2.1)

with τ2 = Kσ2, C = 2C̃, K = cte
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We obtain a variational equations for each parameter as follows:

dE

dz
= 0;

dT

dz
= 2Ω− 3c1

(
Ω2 +

1 + C2

2τ2

)
+

3c2E√
2π2τ

+
c3E

2

3π
√

3τ2
;

dΩ

dz
= 0;

dC

dz
= −4Ω2 − 4

1 + C2

2τ2
− 3c1

(
2Ω3 + 3Ω

1 + C2

τ2

)
+

2E + 2Ec1Ω− 2Ec2Ω + 2Ec3Ω√
2πτ

+
4c3E

2Ω + 4c3E
2C

3π
√

3τ2
+

2αE2

π
√

3τ2
;

dτ

dz
=

4C

τ
− 12Ωc1C

τ
.

(2.2)

We solve the variational equations by the fourth order Runge-Kutta method [24].
The results obtained for the case ci = 0 (i ∈ {1, 2, 3}) and α 6= 0 are showed in Figure 1.
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(a) c1 = 0; c2 = 0 ; c3 = 0 ; α = 2 (b) c1 = 0; c2 = 0 ; c3 = 0 ; α = 3.272

(c) c1 = 0; c2 = 0 ; c3 = 0 ; α = 3.273 (d) c1 = 0; c2 = 0 ; c3 = 0 ; α = 10

(e) c1 = 0; c2 = 0 ; c3 = 0 ; α = 100

Figure 1: Numerical simulations for case ci = 0 (i ∈ {1, 2, 3}) and α 6= 0

For small values of α (α ≤ 3.272), Ω and C decrease. The concavity of Ω and C changes when
α ≥ 3.273. For large values of α (α ≥ 50), Ω and C increase asymptotically. In addition, E, T and τ
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remain constant.
Now, we consider the case ci 6= 0 (i ∈ {1, 2, 3}) and α 6= 0 showed in Figure 2.

(a) c1 = 0.01; c2 = 0.2 ; c3 = 0.001 ; α = 2 (b) c1 = 0.01; c2 = 0.2 ; c3 = 0.001 ; α = 2.5

(c) c1 = 0.01; c2 = 0.2 ; c3 = 0.001 ; α = 3.272 (d) c1 = 0.01; c2 = 0.2 ; c3 = 0.001 ; α = 3.273

(e) c1 = 0.01; c2 = 0.2 ; c3 = 0.001 ; α = 10 (f) c1 = 0.01; c2 = 0.2 ; c3 = 0.001 ; α = 100

Figure 2: Numerical simulations for case ci 6= 0 (i ∈ {1, 2, 3}) and α 6= 0
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Ω, C, E and T have the same behaviour as the case above. But, we notice that T is a line with
positive slope.

3 Discussion

Since dE
dz

= 0 and dΩ
dz

= 0, therefore the pulse energy and frequency remain constant when the pulse
propagates along the fiber.

The equation (1.12) shows that the variation of T is not affected by quintic coefficient α.
The variation of C is affected by all parameters of the pulse (1.23).
Only the coefficient of the third order dispersion c1 affected the variation of τ (1.26).
Finally, the equation (2.2) is the model of nonlinear dynamics. In fact, we have a system of ODEs

and it requires to set initial conditions : E(0) = 1 ; T (0) = 0 ; Ω(0) = 1 ; C(0) = 0 and τ(0) = 0.
We use fourth order Runge-Kutta method for integration. In order to examine the effect of quintic

coefficient α on the propagation, we have studied pulse parameters for the case ci = 0 ; i ∈ {1, 2, 3}
and α 6= 0, particularly α = 2 ; α = 3.272 ; α = 3.273 ; α = 10 and α = 100 ; and the case ci 6= 0 ;
i ∈ {1, 2, 3} and α 6= 0 ; particularly :

X c1 = 0.01 ; c2 = 0.2 ; c3 = 0.001 ; α = 2

X c1 = 0.01 ; c2 = 0.2 ; c3 = 0.001 ; α = 2.5

X c1 = 0.01 ; c2 = 0.2 ; c3 = 0.001 ; α = 3.272

X c1 = 0.01 ; c2 = 0.2 ; c3 = 0.001 ; α = 3.273

X c1 = 0.01 ; c2 = 0.2 ; c3 = 0.001 ; α = 10

X c1 = 0.01 ; c2 = 0.2 ; c3 = 0.001 ; α = 100

In the work of Shwetanshumala and Biswas (2008) with the same equation using collective
variables approach, it shows that the influence of self steepening c2 is the largest on the beam center.

4 Conclusion

In this paper, we have applied the moment method approach to investigate the dynamics of a femtosecond
pulse propagation in optical fibers under higher order effects. In order to achieve this, Gaussian
ansatz was chosen and fourth order Runge-Kutta method was used to integrate the system of
ordinary differential equations. We used initial conditions. For the set of model parameters, we
computed the results that are depicted in figures. The variations of each parameter of system show
the effect of the quintic coefficient α. The parameter α governs the dynamics of the pulse propagation.
The further work will be interested to generalize this equation by using the same method.
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