
Calculus of orthogonal projectors

Abstract

It is possible to express all geometric notions connected with closed linear subspaces
in terms of algebraic properties of the orthoprojectors onto these linear spaces. In
this paper we give the conditions for ; The sum of a family of Orthoprojectors,
Product of orthoprojectors and difference of orthoprojectors to be a projector.
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1 Introduction

We observe that there is a natural one-to-one correspondence between the set of all closed linear
subspaces of a Hilbert space H and the set of all Orthoprojectors on H.

Proposition 1. Let H be a Hilbert space and P,Q be orthogonal projectors on H onto the closed
linear subspace M,N respectively. The following statements are equivalent.
(i) M ⊥ N
(ii) PQ = 0
(iii) QP = 0
(iv) Q(M) = {0}
(v) P (N) = {0} (note Q←→ P )

Proof. (i) ⇒ (ii). Let x ∈ H . Then Qx ∈ N . Now M ⊥N ⇒ N ⊆M⊥ (for, y ∈ N, ⟨y, z⟩ = 0 ∀z ∈M
⇒ y ∈ M⊥ i.e N ⊆ M⊥. Thus Qx ∈ M⊥ = ηP . So P (Qx) = 0 and this holds for all x ∈ y
therefore PQ = 0
(ii) ⇒ (iii) Take adjoints of both sides of PQ = 0, (PQ)∗ = 0∗ = 0 i.e Q∗P ∗ = 0 But
Q∗ = 0, P ∗ = 0 hence QP = 0
(iii) ⇒ (ii) Obviously since PQ = QP = 0, P ←→ Q
(ii) ⇒ (i) Let x ∈ N . Then Qx = x ( for RP = N). Now PQ = 0 ⇒ PQx=0 i.e P (Qx) = 0,
P (x) = 0 ⇒ x ∈ ηp = M⊥ therefore N ⊆ M⊥ in other words M ⊥ N which is (i). So (i) ←→ (ii)
←→ (iii)
(i) ⇒ (iv) M ⊥ N ⇒M ⊂ N⊥ = ηQ therefore Q(M) = {0} .
Conversely (iv)⇒ (i)
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For Q(M)={0} ⇒M ⊆ ηQ = N⊥ ⇒M ⊥ N . Similarly (i)⇒ (v)⇒ (i)

The definitions in this paper are standard and can be found in [3],[4],[5],[6],[7],[8],[9].

Definition 1. Let H be a Hilbert space and P,Q be orthogonal projectors on H. We say that P
is orthogonal to Q. In symbols P ⊥ Q if M ⊥ N, where M,N and ranges of P,Q respectively This
is equivalent to saying that PQ = 0.

2 Product of Orthoprojectors

Proposition 2. Let H be a Hilbert space and P,Q be orthoprojectors on H. Then PQ is an
orthoprojector if and only if P ←→ Q. In this case RPQ = M ∩ N , where M,N are the closed
linear subspaces of H onto which P,Q project.

Proof. Suppose P ←→ Q i.e PQ = QP . Now (PQ)∗ = Q∗P ∗ = PQ since P,Q are self-adjoint.
= PQ since P ←→ Q ⇒ PQ is self-adjoint. Note that PQ ∈ B(H)

(PQ)2=(PQ)(PQ) = P (QP )Q = P (PQ)Q = (PP )(QQ) = P 2Q2 = PQ.

Since P,Q being orthogonal projectors are idempotent. Thus PQ is idempotent. PQ is self adjoint
and idempotent implies PQ is an orthogonal projector. Conversely, let PQ be an orthoprojector.
We must show that P ←→ Q therefore PQ must be self-adjoint (PQ)∗ = PQ. But (PQ)∗ =
Q∗P ∗ = QP therefore, PQ = QP i.e P ←→ Q. To show that RPQ = M ∩N . Let x ∈ M ∩N .
Then x ∈ M and x ∈ N , x ∈ M ⇒ Px = x (for RP = M) QPx = Qx = x for x ∈ N
i.e PQx = Qx = x i.e PQx = x i.e x ∈ RPQ. Thus M ∩N ⊆ RPQ. Conversely let
x ∈ RPQ. So PQ(x) = x, P (Qx) = x implies x ∈ RP = M . Similarly, PQ = QP ⇒ QPx = x
i.e Q (Px) = x, QPx = x i.e x ∈ RP = N , x ∈M and x ∈ N ⇒ x ∈M ∩N .Therefore,

RPQ ⊆M ∩N

Thus,

RPQ = M ∩N

Proposition 3. Let H be a Hilbert space and P,Q be orthoprojectors and H onto the closed linear
subspace M,N respectively.The following statements are equivalent.
(i) P ⩽ Q
(ii) ∥Px∥ ⩽ ∥Qx∥ for all x ∈ H
(iii) PQ = P
(iv) QP = P
(v) M ⊆ N

Proof. (i) ⇒ (ii)

P ⩽ Q⇒ ⟨Px, x⟩ ≤ ⟨Qx, x⟩∀x ∈ H

But ⟨Px, x⟩ = ∥Px||2 for ⟨Px, x⟩ = ⟨Px2, x⟩ ( P is idempotent)

= ⟨PPx, x⟩ = ⟨Px, Px∗⟩ = ⟨Px, Px⟩
(

P is self-adjoint
)

=∥Px∥2
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Similarly,
⟨Qx, x⟩ = ∥Qx∥2

Hence (i)⇒ ∥Px∥2 ⩽ ∥Qx∥2 i.e ∥Px∥ ⩽ ∥ Qx∥ for all x ∈ H which gives (ii)

(ii ) ⇒ (v) Let x ∈ ηQ = N⊥. So Qx = 0 i.e ∥0x∥ = 0 But (ii) ∥Pz∥ ⩽ ∥Qz∥ for all z ∈ H
therefore ∥Px∥ = 0 i.e Px = 0 i.e x ∈ ηP = M⊥, N⊥ ⊆M⊥.

Taking orthogonal complements of both sides (N⊥)⊥ ⊇
(
M⊥)⊥ i.e N ⊇M i.e M ⊆ N

Next we show that (v)⇒ (iv)
Let x ∈ H. Then Px ∈M ⊆ N (by (v))

QPx = Q (Px) = Px (Px ∈ N = RQ)

QP = P

(iv)⇒(iii) Take adjoints of QP = P we get

(QP )∗ = P ∗

P ∗Q∗ = P ∗

i.e PQ = P which is (iii) . Also (iii) ⇒ (iv) obviously.

We finally show that (iii) ⇒ (i) . For any x ∈ H

⟨Px, x⟩ = ∥Px
∥∥2 =

∥∥PQx∥2(PQ = P )

Now,
∥PQx∥ = ∥P (Qx)∥ ⩽ ∥P∥∥Qx∥ ⩽ ∥Qx∥ (∥P∥ ⩽ 1)

Therefore,
∥PQx∥2 ⩽ ∥Qx∥2

Thus ⟨Px, x⟩ ⩽ ∥ Qx∥2 = ⟨ Qx, x⟩ for all x ∈ H. Which shows that P ⩽ Q and completes the
proof.

Remark 1. P ≤ Q⇒ P ←→ Q for QP = P and PQ = P

3 Differences of Orthoprojectors

Proposition 4. Let H be a Hilbert space and P,Q be orthoprojectors on H. Then P − Q is an
orthoprojector if P ≥ Q i.e Q ≤ P . In this case the range of P − Q is M ∩N⊥, where M = RP

and N = RQ.

Proof. Suppose Q ⩽ P, we already know that P ←→ Q (for QP = Q,PQ = Q). To show that,
P −Q is an orthoprojector (P −Q)∗ = P ∗ −Q∗ = P −Q
Since P,Q are self-adjoint. P −Q is self adjoint element of B(H)

(P −Q)2 = (P −Q)(P −Q) = P 2 − PQ−QP + P 2

= P −Q−Q+Q (P,Q are idempotent QP = Q and PQ = Q)
=P −Q

Thus P −Q is self -adjoint and idempotent. Hence P −Q is an orthoprojector. To find the range
of P −Q,

P −Q = P − PQ = P (I −Q)
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where I is the identity operator. Since Q is an orthoprojector, so is I −Q

(I −Q)∗=I∗ −Q∗ = I −Q (self-adjoint)
(I −Q)2 = I −Q−Q+Q2 = I −Q−Q+Q = I − P (idempotent).

RI−Q = N⊥ where N = RP and RI−Q = N⊥ Since P ←→ Q,P ←→ I − Q. So P, I − Q are
orthoprojectors with ranges M,N⊥ and P ←→ I − Q. So P (I − Q) is an orthoprojector and its
range is M ∩N⊥.

Definition 2. Let X be a normed linear space and {Tα : α ∈ ∧.} be a family of bounded linear
transformation on X into X. We say that {Tα : α ∈ ∧} is summable to T ∈ B(x), if for each x ∈ X
the family {TαX : α ∈ ∧] is summable to Tx, In this case we write

∑
α∈∧ Tα = T .

Proposition 5. Let T, S ∈ B(X) and {Tα : α ∈ ∧} be a summable family of elements of B(X)
such that

∑
α∈∧

Tα = T . Then STα : α ∈ ∧, TαS : α ∈ ∧} are summable to ST and TS respectively.

Proof. Since {Tα : α ∈ ∧} is sumable to T . So for each x ∈ X,{TαX : α ∈ ∧] is summable to Tx.
Hence for each real ε > 0, there exists a finite subset πε of ∧ such that for each finite subset π of

∧ satisfies π ⊇ πϵ, we have

∥∥∥∥ ∑
α∈π

Tαx− Tx

∥∥∥∥ < ε
∥s∥ . Where S ̸= 0 (If S = 0, then the results are

obvious). Now,

∥S(
∑
α∈π

Tαx)− S(Tx)∥ = ∥
∑
α∈π

STαx− STx∥

therefore ∥
∑
α∈π

STαx− STx∥ = ∥S(
∑
α∈π

Tαx− Tx)∥ ≤ ∥S∥∥
∑
α∈π

Tαx− Tx∥ < ε

Which shows that
∑
α∈∧

STα = ST i.e (STα)α∈∧ is summable to ST . Likewise {TαS : α ∈ ∧}.

4 Sum of Orthoprojectors

For a meaningful consideration of the sum of a family of orthoprojectors, we need first to introduce
the notion of a sum of not necessarily finite family of operators in B(H).

Proposition 6. Let P ∈ B(H) and {Pα : α ∈ ∧} be a family of orthogonal projectors on H which
is summable to P , i.e P =

∑
α∈∧

Pα. Then P is an orthogonal projector if and only if {Pα : α ∈ ∧}

is an orthogonal family i.e Pα ⊥ Pβ whenever α ̸= β(α, β ∈ ∧) in this case the range of P (i.e of∑
α∈∧ Pα) is ∨α∈∧Mα where Mα = range of Pα for each α ∈ ∧.

Proof. Let Pα ⊥ Pβ whenever α, β ∈ ∧ and α ̸= β and P =
∑
α∈∧

Pα. We shall show that P is an

orthogonal projector on H. We know that

Pα ⊥ Pβ =⇒ Mα ⊥Mβ =⇒ PαPβ = PβPα = 0 (Zero operator).

Now P 2 = PP = (
∑
α∈∧

Pα)(
∑
β∈Λ

Pβ) =
∑
α∈∧

∑
β∈∧

(PαPβ)

(Why?) For If S ∈ B(H) and {Tα : α ∈ ∧} is a summable family of elements of B(H) with
sum T . Then

ST = S

(∑
α∈∧

Tα

)
=
∑
α∈∧

STα
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Since
∑
β∈∧

Pβ = P therefore Pα

(∑
β∈∧

Pβ

)
=
∑
β∈∧

PαPβ for any α ∈ ∧. Each PαPβ ∈ B(H) and the

family

{∑
β

PαPβ : α ∈ ∧

}
is a family of bounded linear operators.

∑
α

(
∑
β

PαPβ) =
∑
α

∑
β

PαPβ

(
∑
α

Pα)(ΣPβ) =
∑
α

∑
β

PαPβ

But PαPβ = 0 if α ̸= β therefore P 2 =
∑
α

P 2
α =

∑
α Pα = P since each Pα is idempotent.

Thus P is idempotent.We show that P is self-adjoint. Let x, y ∈ H. Then,

⟨Px, y⟩ =
〈(∑

α Pα

)
x, y
〉
=
∑

α ⟨Pαx, y⟩ =
∑

α ⟨x, Pαy⟩ (since Pα is self-adjoint)

=

〈
x,

(∑
α

Pα

)
y

〉
= ⟨x, Py⟩ ∀x, y ∈ H therefore P is self-adjoint.

Thus P ∈ B(H) is self-adjoint and idempotent. Hence P is an orthogonal projector.
Conversely, let P be an orthogonal projector , we must show that the family {Pα : α ∈ ∧} is
orthogonal.
Take any x ∈Mα. Then x ∈ H. Since P is an orthogonal projector ∥P∥ ⩽ 1 and hence ∥x∥ ≥ ∥Px∥.

Since P =
∑
α∈∧

Pα, we have ∥x∥2 ≥ ∥Px∥2 = ⟨Px, Px⟩ =
〈
P 2x, x

〉
= ⟨Px, x⟩ =

〈∑
β

Pβx, x

〉
=∑

β ⟨Pβx, x⟩. We know that an orthogonal projector is a positive operator ⟨Px, x⟩ = ∥Px∥2 ≥ 0 for

all x ∈ H each ⟨Px, x⟩ is real and non-negative≥ ⟨Pαx, x⟩ = ∥Pαx∥2 = ∥x∥2 ( since x ∈Mα = RPα).
So Pα = x

∥Pαx∥ = ∥x∥
Since we have ∥x∥2 at both ends of the above chain of inequalities it shows that equality must
hold throughout. So if x ∈ Mα (α fixed arbitrary) then ∥Px∥ = ∥x∥ and ⟨Pβx, x⟩ = 0 ∀β ̸=
α⟨Pβx, x⟩ = 0 for all x ∈Mα and β ̸= α implies

∥Pαx∥2 = 0 ∀x ∈Mα

So Pβ (Mα) = {0} ∀β ̸= α. This implies Pβ ⊥ Pα for all β ̸= α. Since this is true for any α ∈ ∧,
we get Pα ⊥ Pβ ∀β ̸= α Since ∥Px∥ = ∥x∥ =⇒ x ∈ RP = M

Lemma 1. If H is a Hilbert space and P is an orthogonal projector then ∥Px∥ = ∥x∥ if and only
if x ∈M = RP .

Proof. For if x ∈ M = RP , then Px = x and hence ∥Px∥ = ∥x∥. Conversely let ∥Px∥ = ∥x∥
for an x ∈ H. Then ∥Px− x∥2 = ⟨Px− x, Px− x⟩ = ⟨Px, x⟩ − ⟨Px, Px⟩ − ⟨x, Px⟩ + ⟨x, x⟩ =
∥Px∥2−∥Px∥2−∥Px∥2+∥x∥2 = ∥x∥2−∥Px∥2 = ∥x∥2 = ∥x∥2 (∥Px∥ = ∥x∥) = 0. Thus Px−x = 0
therefore Px = x i.e x ∈ RP = M . Thus we shown that x ∈ Mα then x ∈ RP = M ∀α ∈ ∧
therefore M ⊇Mα for all α ∈ ∧ therefore M ⊇

[ ⋃
α∈∧

Mα

]
therefore M ⊇ [

⋃
α∈∧

Mα] =
∨

α∈∧
Mα. It

remains to show M ⊆
∨

α∈∧
Mα. Since P =

∑
α∈∧

Pα for any x ∈ H

Px = (
∑
α

Pα)x =
∑
α

Pαx (But Pαx ∈Mα)
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Px ∈
∑
α∈∧

Mα =
∨

α∈Λ

Mα therefore RP =
∨

α∈∧
Mα

Proposition 7. If P,Q are orthogonal projectors on M,N respectively and P ←→ Q then PQ is
an orthogonal projector with range M ∩N and P +Q− PQ is an orthogonal projection with range
M ∨N . Thus

P ∧Q = PQ
P ∨Q = P +Q− PQ

}
where P ←→ Q

Proof. We have already seen that PQ is an orthogonal projector if and only if P ←→ Q and then
RPQ = M ∩N . Let {Mα : α ∈ ∧} be a family of closed linear subspace of H∨
α∈∧

Mα,
∧

α∈∧
Mα

( ∧
α∈∧

Mα

)
are both closed linear subspace of H. If Pα represents the orthogonal

projector on H onto Mα (for each α ∈ ∧) then we represent the orthogonal projectors onto
∨

α∈∧
Mα

and
∧

α∈∧
Mα by the symbol

∨
α∈∧

Pα and
∧

α∈∧
Pα. By definition P ∧ Q is the projector on H onto

M ∩N(= M ∧N) therefore P ∧Q = PQ when P ←→ Q. Since M = RP , N = RQ so PV Q is the
orthogonal projector corresponding to M ∨N . Specifically when P ←→ Q,

P ∨Q = P +Q− PQ.

We show this,

P +Q− PQ = P + (Q− PQ) = P + (I − P )Q

Since P ←→ Q, so I−P ←→ Q,P is an orthogonal projector←→ I−P is an orthogonal projector.
Thus (I − P ), Q are orthogonal projectors and (I − P ) ←→ Q. Hence (I − P ) Q is an orthogonal
projector with range = RI-P ∩RQ = M⊥ ∩N . For any x ∈ H, Px ⊥ (I − P )Qx. Indeed

⟨Px, (I − P )Qx⟩ = ⟨(I − P )∗Px,Qx⟩ = ⟨(I − P )Px,Qx⟩ for (I − P )∗ = I − P =
〈
Px− Px2, Qx

〉
but P 2 = P = ⟨Px− Px,Qx⟩ = ⟨0, Qx⟩ = 0

Thus,

P ⊥ (I − P )Q

Using the result M ⊥ N ⇒ PM + PN . is a projection with range M ∨ N . Finite version of the
theorem proved. We observe that P+(I−P )Q is an orthogonal projector with range MV (M⊥∩N).
Now writing P +Q− PQ as Q+ P (I −Q) (Note Q←→ P ) and observing that I −Q←→ P , we
note that the range of the projection (I −Q)P is N⊥ ∩M. Since Q ⊥ (I −Q)P : we see that the
range of the projection P +Q− PQ is also N ∨

(
N⊥ ∩M

)
Thus,

RP+Q−PQ = M ∨
(
M⊥ ∩N

)
= N ∨

(
N⊥ ∩M

) } (1)

Certainly RP+Q−PQ ⊇ M,N and therefore ⊇ [M ∪N ] = M ∨ N . Since RP+Q−PQ is closed
therefore RP+Q−PQ ⊇ M ∨ N . On the other hand (1) also reveals RP+P−PQ ⊆ M ∨ N for
M ∨

(
N ∩M⊥) ⊆ M ∨N,N ∨

(
M ∩N⊥) ⊆ M ∨N . Thus RP+Q−PQ = M ∨N . Let M ⊥ N and

P,Q be orthogonal projectors onto M,N respectively

(P +Q)∗ = P +Q
(P +Q)2=P 2 + PQ+QP +Q2 But PQ = QP = 0
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P 2 +Q2 = P +Q

So P +Q is an orthogonal projector for any x ∈ H

(P +Q)x = Px+Qx ∈M +N
therefore RP+Q ⊆M +N = [M ∪N ] = M ∨N

On the other hand, if x ∈ M , then (P +Q)x = Px+Qx = x+ 0̄ = x i.e x ∈ RQ+P therefore
M ⊆ RP+Q

Similarly,

N ⊆ RP+Q

M ∪N ⊆ RP+Q

therefore [M ∪N ] ⊆ RP+Q since RP+Q is closed M ∨N ⊆ RP+Q therefore

RP+Q = M ∨N

Remark 2. In the infinite version as given ; x ∈ Mα ⇒ x ∈ M = RP ∀α ∈ ∧ therefore
Mα ⊆ RP [

UαMα

]
⊆ RP (RP is closed )

Vα∈∧Mα ⊆ RP (2)

On the other hand for each x ∈ H

Px =
∑
α

Pαx ∈
∑
α

Mα = M = M

( Since Mα : α ∈ ∧ is an orthogonal family of subspace. )

RP ⊆M =
∨
α∈∧

Mα (3)

(2) and (3) imply RP =
∨

α∈∧
Mα

4.1 Conclusion

The results has clearly discussed the sum, difference and product of orthogonal projectors. For
the product its clear that if P and Q are projectors then P ≤ Q ⇒ P ←→ Q for QP = P and
PQ = P .

UNDER PEER REVIEW



References

[1] Baksalary J, et al. A property of orthogonal projectors.Linear algebra and its
applications.(2002).354(1-3),35-39.

[2] Berberian, S. Introduction to Hilbert space. (1999)287(46),1-10.

[3] Damle, A, et al. Compressed representation of Kohn–Sham orbitals via selected columns of the
density matrix.Journal of chemical theory and computation.(2015).11(4),1463-1469.

[4] Davies, E Brian, Linear operators and their spectra , Cambridge University Press. (2007).

[5] Friedrichs, K.O. Spectral theory of operators in Hilbert space.Linear Algebra and its
Applications.(2012).9(47), 50–75.

[6] Kubrusly, Carlos S , Spectral theory of operators on Hilbert spaces, Springer Science & Business
Media .(2012).

[7] Sengupta A.Orthogonal Projections.Journal of Math on Functional
Analysis.(2002).7330(2),25-70.

[8] Simon, Barry, Operator theory, American Mathematical Soc.(2015).

[9] Yanai H, et al. Projection Matrices, Generalized Inverse Matrices, and Singular Value
Decomposition.Statistics for Social and Behavioral Sciences.(1999).1007(978),32.

[10] Weidmann, Joachim, Linear operators in Hilbert spaces , Springer Science & Business Media
.(2012).

UNDER PEER REVIEW

http://creativecommons.org/licenses/by/2.0

	Introduction
	Product of Orthoprojectors
	Differences of Orthoprojectors
	Sum of Orthoprojectors
	Conclusion

	REFERENCES

