
Spectral Properties Of Compact Operators

Abstract

The spectral properties of a compact operator T : X −→ Y on a normed
linear space resemble those of square matrices. For a compact operator, the
spectral properties can be treated fairly completely in the sense that Fredholm’s
famous theory of integral equations may be extended to linear functional equations
Tx − λx = y with a complex parameter λ. In this paper, we study and
investigate the spectral properties of compact operators in Hilbert spaces. The
spectral properties of compact linear operators are relatively simple generalization
of the eigenvalues of finite matrices. As a result, this paper gives a number of
corresponding propositions and interesting facts which are used to prove basic
properties of compact operators. We introduce the Fredholm theory to investigate
the solvability of linear integral equations involving compact operators.
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1 Introduction

Let X be a normed linear space and T : X → Y be a linear transformation. A point λ ∈ C is
said to belong to the resolvent set of T (denoted by ρ(T )) if T − λI is O- invertible. Thus

ρ(T ) = {λ ∈ C : (T − λI)} is 0-invertible

The complement of ρ(T ), i.e. the subset C − ρ(T ) is called the spectrum of T and represented
by the symbol σ(T ). Thus σ(T ) = {λ ∈ C : (T − λI) or (λI − T )} is not invertible. If λ is an
eigenvalue of T , then there exists an x ∈ X such that x ̸= 0̄ and Tx = λx (x is called on eigenvector
corresponding to the eigenvalue λ) [5].

Hence (T −λI)x = 0̄ for an x ̸= 0̄. Thus T −λI is not one to one. Hence T −λI is not O-invertible.
Therefore, λ is in the spectrum of T i.e. λ ∈ σ(T ). Thus λ is an eigenvalue of T implies that
λ ∈ σ(T ). Thus the spectrum of T includes all the eigenvalues of T [2].

In general, σ(T ) includes some points of C which are not even eigenvalues of T . For instance even
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if T − λI is a bijection for some λ ∈ C, if the set inverse (T − λI)−1 (which exists) is not bounded,
then λ ∈ σ(T ).
The null space ηT−λI of the operator T − λI is called the eigenspace of T corresponding to the
eigenvalue λ [8].

Illustration: We have seen that if X is a Banach space, T ∈ B(x) and |β| > limn→∞ ∥Tn||
1
n the

βI−T or T−βI is O-invertible [10]. Thus if |β| > limn→∞ ∥Tn∥
1
n then β ∈ ρ(T )

(
limn→∞ ∥Tn∥

1
n = rσ(T )

is the spectral radius of T ). Thus if |β| > rσ(T ) ⇒ β ∈ ρ(T )

Therefore, the complement of the spherical ball of radius rσ(T ) consists of points belonging to
the resolvent set of T . Hence the spectrum σ(T ) of T must be contained inside the neighborhood
N̄ (O, rσ(T )). The definitions in this paper are all standard and can be found in [1], [3], [4] , [6],
[7], [9], [10].

2 Spectral Properties

3 Spectral Properties

The spectral theory for compact linear operators represents the most natural introduction to the
general spectral theory of linear operators in a Hilbert space.

Proposition 1. Let H be a Hilbert space and T ∈ B(H). Then the following conditions are
equivalent dim (H) = ∞ :

(i) T is compact.

(ii) ∥T − Fn∥ → 0 as n → ∞.

(iii) There is a sequence (Fn) of operators of finite rank on (H) such that ∥T − Fn∥ → 0 as
n → ∞.

Proof. (i) ⇒ ( ii ) : Suppose (i) is satisfied. We know that en
w−→ 0. Since T is compact Ten

s→ 0.
Using the Cauchy–Bunyakovsky–Schwarz Inequality we have

lim
n→∞

|⟨Ten, cn⟩| ≤ lim
n→∞

∥Ten∥ = 0.

( ii ) ⇒ ( iii ) : Given a positive integer, consider the class H of all orthonormal sets E ∈ (H) for
which

|⟨Te, e⟩| ≥ 1

4n
(e ∈ E)

(We allow the void set as one possible choice of E). By the hypothesis, each E ∈ H is a finite
set. Since the union of a strictly increasing sequence of sets in H is again a member of H (and
therefore finite) each such sequence terminates. It follows that H has a maximal element E0. If
M is the (finite-dimensional) linear subspace of H generated by E0, then |⟨Tx, x⟩| < 1

4n
whenever

x ∈ M⊥ and ∥x∥ = 1; for otherwise H contains E0∪{x}, contradicting the maximality of E0. Then
|⟨Tx, x⟩| ≤ 1

n
whenever x ∈ M⊥ and ∥x∥ ≤ 1. From the relation

⟨Tu, v⟩ = 1

4
[⟨T (u+ v), u+ v⟩ − ⟨(u− v, u− v)⟩] + i[⟨T (u+ iv), u+ iv⟩ − ⟨T (u− iv), u− iv⟩]

it follows that

|⟨Tu, v⟩| ≤ 1

n
for u, v ∈ M⊥, ∥u∥ ≤ 1, ∥v∥ ≤ 1 (1)

By taking u = (I − P )x and v = (I − P )y, where p is the orthoprojector on H onto M, we deduce
from (1) that

|⟨(I − P )T (I − P )x, y⟩| ≤ 1

n
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whenever x, y ∈ H, ∥x∥ ≤ 1 and ∥y∥ ≤ 1. Then ∥(I − P )T (I − P )∥ ≤ 1
n
. The operator

Fn = PT + TP − PTP

has finite rank and ∥T − Fn∥ ≤ 1
n
. Since Fn is compact and B∞(H) is closed in B(H), it follows

that T is compact.

Remark 1. If f is a mapping from a set A of infinite cardinality into a normed linear space X,
we shall say that f vanishes at infinity and write f(a) → 0 as n → ∞, if the following condition is
satisfied: Given any positive ε, the set

{a ∈ A : ∥f(a)∥ ≥ ε}

is finite. When this is so, the set {a ∈ A : f(a) ̸= 0} is at most countable since it is the union
of all the finite sets

{
a ∈ A : ∥f(a)∥ ≥ 1

n

}
(n ∈ N). Clearly, if

{∫
(a) : a ∈ A

}
is summable, then

f(a) → ∞ as n → ∞. With this interpretation, we can rewrite in place of condition (ii) in
Proposition 1 in the form:
( ii )′ For every orthonormal system ({eα : α ∈ Λ} ∈ H) ⟨Teα, eα⟩ → ∞ as n → ∞ (in the sense
described in the Remark above).

Proposition 2. Let T ∈ B(H) be compact and λ ∈ K be not 0 . Then R(λI − T ) is closed.

Proof. Let y ∈ R(λI − T ). So there is a sequence (x′
n) of elements in H such that

yn = (λI − T )x′
n

s−→ y

writing H = η⊥
λ1−T ⊕ ηλI−T , we have the decomposition x′

n = xn + x′′
n where xn ∈ η⊥

λI−T and
x′′
n ∈ ηλI−T and hence

yn = (λI − T )(xn + x′′
n)

s−→ y.

But (λI − T )x′′
n = 0̄ (x′′

n ∈ ηλI−T ) i.e. yn = (λI − T )xn
s−→ y.

We shall show that (xn) is bounded. Assume the contrary. Then we can choose a subsequence
(xnk ) of (xn) such that ∥xnk∥ → 0 as k → ∞. Without loss of generality, we may assume that
∥xn∥ → 0 as n −→ ∞. Define x̂n = ∥xn∥−1 xn ∀n ∈ N. (So x̂n ∈ η⊥

λI−T

)
so ∥x̂n∥ = 1 ∀n ∈ N.

Since (x̂n) is bounded (for ∥x̂n∥ = 1 ∀n ∈ N) and T is compact; there exists a subsequence (x̂nk )
of (x̂n) such that T x̂n converges strongly to some element of H. Now

x̂nk =
1

λ
{(λI − T )x̂nk − T x̂nk}

Since
(λI − T )x̂n = (λI − T )

xn

∥xn∥
=

yn
∥xn∥

−→ 0 (2)

So (λI − T )x̂nk

s−→ 0 by (2)

Therefore, x̂nk = 1
λ
{(λI − T )x̂nk − T x̂nk}

s−→ x for some x ∈ H
Now ∥x̂nk∥ = 1 ∀n ∈ N .
Therefore, ∥x̂nk∥ −→ ∥x∥ as k → ∞. Therefore ∥x∥ = 1. Since each x̂nk ∈ η⊥

λI−T and η⊥
λI−T is

closed, so λ ∈ η⊥
λI−T .

On the other hand, (λI − T )x̂n
s−→ 0. We get

(λI − T )x̂nk

s−→ 0 (3)

Since x̂nk

s−→ x and λI − T is bounded. Therefore, (λI − T )x̂nk → (λI − T )x = 0 by 3
i.e. x ∈ ηλI−T

But (2) contradicts (3) since ∥xn∥ = 1. This contradiction shows that the supposition (xn) is
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unbounded is unacceptable.
Therefore, (xn) must be bounded. Hence since T is compact there must be a sequence (xnk ) of (xn)

such that Tx′
nk

converges strongly. Hence there is a subsequence
(
x′
nk

)
of (xn) such that x′

nk

ω→ x
say (known result).
Since T is compact, Tx′

nk

s−→ Tx.

Now y′
nk

= (λI − T )x′
nk

. Since yn
s−→ y and

(
y′
nk

)
is a subsequence of (yn) so y′

nk

s→ y Now

x′
nk

=
1

λ

(
y′
nk

+ Tx′
nk

)
(4)

Since yn
s−→ y so

(
y′
nk

)
being a subsequence of (yn) also converges to y, i.e. y′

nk
−→ y. We have

seen above that
(
Tx′

nk

)
converges strongly. Hence xnk

s−→ x̂ ∈ H. Using this in (4)

x̂ =
1

λ
(y + T x̂) i.e. λx̂ = y + T x̂ or

(λI − T )x̂ = y which implies y ∈ RλI−T

Therefore R̄λI−T ⊆ RλI−T

Thus, RλI−T is closed

Proposition 3. Let T ∈ B(H) be compact. Then Pσ(T )− {0} = σ(T )− {0}.

Proof. Since Pσ(T ) ⊆ σ(T ), so Pσ(T ) ⊆ σ(T )− {0}. We need to prove the reverse inclusion i.e.

Pσ(T )− {0} ⊆ σ(T )− {0}

i.e. for a λ ̸= 0,

λ /∈ Pδ(T ) ⇒ λ /∈ σ(T )

i.e. λ ∈ ρ(T ). Let λ /∈ Pσ(T ). Hence λI − T is one to one. Hence the inverse linear map
(λI − T )−1 : RλI−T → H exists.

By proposition 2, RλI−T is closed in H and so RλI−T is a Hilbert space (A closed linear subspace
of a Banach space is a Banach space (with induced norm)).
Now λI−T : H → RλI−T is a bounded bijection and hence by the Banach inverse theorem, λI−T
is invertible i.e. (λI − T )−1 ∈ B(RλI−T , H). We will show that RλI−T = H; it would then follow
that λ ∈ ρ(T ) ie λ /∈ σ(T ). Suppose H is not true, that RλI−T = H in which case RλI−T is a
proper closed subspace of H.

Define H0 = H and let Hn = (λI − T )nH = R(λI−T )n ∀n ∈ N. Thus we get a decreasing nested
sequence of linear subspaces (all of which are closed)

H = H0
λI−T−→ H1

y
R(λI−T )

λI−T−→ H2
y

R
(λI−T )2

λI−T−→ H3
y

R
(λI−T )3

. . . Hn−1
y

R
(λI−T )n−1

λI−T−→ Hn
y

R(λI−T )n

Indeed, Hn = R(λI − T )n. Now,

(λI − T )n = λnI − λn−1T + λn−2T 2 + · · ·+ (−1)nTn

= λnI − T
[
λn−1I − λn−2T + · · ·+ (−1)n−1Tn−1]

= λnI − Ts

Where s = λn−1I − λn−2T + · · · + (−1)n−1Tn−1. Since T ∈ B(H), so s ∈ B(H). Since T is
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compact, so TS is compact. Thus Hn = R(λI−T )n = R (λnI − Ts). We claim that the sequence
(Hn) is strictly nested (decreasing). Suppose the contrary, in which case there is n0 ∈ N such that

Hn0 = Hn0+1 i.e R(λI−T )n=R
(λI−T )n0+1

H = H0
λI−T−→ H1

y
R(λI−T )

λI−T−→ H2
y

R
(λI−T )2

λI−T−→ . . . Hn−1
y

R
(λI−T )n−1

. . . Hn
y

R(λI−T )n

λI−T−→ Hn+1
y

R
(λI−T )n+1

In this case, we get
(
(λI − T )−1

)n0 Hn = H i.e. (λI−T )−n0Hn0 = H(λI−T )−n0Hn0+1 = H1.
Since Hn0 = Hn0+1, so H = H1 which is a contradiction to our assumption. Hence the sequence
(Hn)

∞
n=1 is strictly nested i.e. H = H0 ⊂ H1 ⊂ H2 ⊂ H3 ⊂ . . .

Since Hn−1 ⊂ Hn∀n ∈ N, we can from the subspaces Hn−1 ⊖ Hn = Hn−1 ∩ H⊥
n which are all

non-empty. (Note Hn−1 ⊖Hn = {x ∈ Hn−1 : x ⊥ Hn}). Choose an xn ∈ Hn−1 such that ∥xn∥ = 1
and xn ⊥ Hn ∀n ∈ N. Since xn ∈ Hn−1, so (λI −T )xn ∈ Hn. Now Txn = λxn︸︷︷︸

∈Hn−1ΘHn

− (λI − T )xn︸ ︷︷ ︸
∈Hn

Therefore λxn ⊥ (λI − T )xn.
Hence by Pythagorean theorem,

∥Txn∥2 = ∥λxn∥2 + ∥(λI − T )xn∥2 ≥ |λ|2 ∥xn∥2 = |λ|2 ∀n ∈ N i.e. ∥Txn∥ ≥ λ ∀n ∈ N (5)

Now (xn) is an orthonormal sequence in H. {Indeed: xn ∈ Hn−1 ⊖ Hn : xn ∈ Hn−1 and xn ∈
Hnxn+1 ∈ Hn and xn+1 ⊥ Hn+1

Therefore, xn ⊥ xn+1 ∀n ∈ N and∥xn∥ = 1 ∀nN }. Hence (xn)
ω−→ 0.

Since T is compact,
Txn

s−→ 0̄

i.e. by continuity of the norm ∥.∥ in H we have ∥Txn∥ → ∥0̄∥ = 0 as n → ∞.
But this contradicts (5) since λ ̸= 0. This shows that the supposition that RλI−T ̸= H is
unaccepted. Therefore, RλI−T = H i.e. λ ∈ ρ(T ) i.e. λ /∈ σ(T ) and the proof is complete.

Corollary 1. Let dim H = ∞ and T be compact.Then σ(T ) = Pσ(T ) ∪ 0.

Proof. In this case, (by proposition 3). So

(σ(T )− {0}) ∪ {0} = (Pσ(T )− {0}) ∪ {0}
∴ σ(T ) = Pρ(T ) ∪ {0}

It follows from proposition 3 and the corollary that when dim H = +∞ any non-zero complex
number must be either in ρ(T ) or be an eigenvalue of T i.e.

λ ̸= 0 ⇒ λ ∈ σ(T ) or λ ∈ σ(T )

⇒ λ ∈ ρ(T ) or λ ∈ Pσ(T ) ∪ {0}
⇒ λ ∈ ρ(T ) or λ ∈ Pσ(T )

Proposition 4. Let T ∈ B(H) be compact and ρ > 0. Then there can be at most a finite number
of linearly independent eigenvectors of T corresponding to eigenvalues λ of T satisfying |λ| ≥ ρ.

Proof. Suppose there is an infinite set of linearly independent eigenvectors corresponding to all
eigenvalues λ with |λ| ≥ ρ.
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{Background knowledge: If an eigenvalue λ is of geometric multiplicity n i.e. dim ηλI−T = n
then there exists a linearly independent set {x1, . . . , xn} such that

[{x1, . . . , xn]] = ηλI−T .

If λ, µ are distinct eigenvalues and x, y are eigenvectors corresponding to λ, µ respectively, then {x, y}
is linearly independent. So if {x1, . . . , xn} , {y1, . . . , yn} are linearly independent sets spanning the
eigenspaces ηλI−T , ηµI−T respectively then {x1, . . . , xn} , {y1, . . . , ym is also linearly independent.

Choose a sequence (xn) of distinct eigenvectors from this linearly independent set. So {x1, x2, . . . , xn, . . .}
is linearly independent. Let the eigenvalue corresponding to xn be λn.
By employing the Gram- Schmidt orthogonalization process, we can find an orthornomal sequence
(en) such that

[{x1, . . . , xn}] = [{e1, . . . , en}] ∀n ∈ N
and so for each en we can write
en = αn,1x1 + αn,2x2 + · · ·+ αn,nxn.
∴ Ten = αn,1Tx1 + αn,2Tx2 + · · ·+ αn,nTxn.
Now Txn = λnxn ∀n ∈ N.
∴ Ten = αn,1λ1x1 + αn,2λ2x2 + . . .+ αn,nλnxn.
∴ Ten − λnen = (αn,1λ1x1 + αn,2λ2x2 + . . .+ αn,nλnxn)− λn (xnαn,1 + αn,2x2 + · · ·+ αn,nxn) .
= αn,1 (λ1 − λn)x1 + αn,2 (λ2 − λn)x2 + · · ·+ αn−1 (λn−1 − λn)xn−1

= βn−1,1e1 + βn−2,2e2 + · · ·+ βn−1,n−1en−1

Since [{x1, . . . , xn−1}] = [{e1, . . . , en−1]]
∴ Ten = βn−1,1e1 + βn−1,2e2 + · · ·+ βn−1,n−1en−1 + λnen.
Hence

⟨Ten, en⟩ = ⟨λnen, en⟩ = λ2 ∥en∥2 = λn

since (en) is an orthornormal sequence. (But en
ω−→ 0 and T is compact. So Ten

s−→ 0 etc.)
Infact, we have already seen that, if T is compact

lim
n→∞

|⟨Ten;βn⟩| = 0 (previous lemma)

i.e. limn→∞ |λn| = 0 (For ⟨Ten, en⟩ = λn∀n ∈ N) and this contradicts the hypothesis for we
consider all eigenvalues λ with |λ| ≥ ρ ( so |λn| ≥ ρ > 0). Hence the supposition that there are
infinitely many linearly independent eigenvectors corresponding to all eigenvalues λ with |λ| ≥ p is
unacceptable and this proves the theorem.

Corollary 2. Let T ∈ B(H) ( dim H = ∞) be compact. Then for each λ ̸= 0 ηλI−T must be finite
dimensional.

Proof. Suppose ηλI−T is infinite dimensional. Let {xn : x ∈ N} be a linearly independent subset of
H spanning ηλI−T .
Now |λ| ̸= 0. So we have an infinite set of linearly independent eigenvectors corresponding to the
eigenvalue λ.

{
(T − λI)xn = 0 ∀n ∈ N

}
.

Hence there are infinitely many linearly independent eigenvectors corresponding to eigenvalues µ
with |µ| ≥ |λ| which contradicts the result of the proposition 4.
Hence the supposition that ηλI−T is infinite dimensional is unacceptable.

Proposition 5. Let T ∈ B(H) be compact. Then T has atmost Countably many eigenvalues. If
the number of eigenvalue of T is infinite, then 0 is the only limit point of Pσ(T ).

Proof. Suppose a non-zero λ is a limit point of Pσ(T ). Then we can find an infinite sequence (λn)
of distinct eigenvalues such that λn → λ as n → ∞.
Thus there will exist a sequence (xn) of elements of H such that xn ̸= 0 and xn is an eigenvector
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corresponding to the eigenvalue λn. From a result of linear algebra we see that {xn : n ∈ N} is
linearly independent.

Let Hn = [{x1, · · · , xn}] ∀n ∈ N, {H0 = {ō}}. So we have the strict containment

H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hn−1 ⊂ Hn ⊂ . . . .

All the Hn are closed linear subspaces of H, (= Hilbert spaces). Consider Hn ⊖ Hn−1 for each
n ∈ N. For each n ∈ N,∃yn ∈ Hn such that ∥yn∥ = 1 and yn ⊥ Hn−1. Thus we obtain a sequence
(yn) of unit vectors. This sequence is orthonormal.
Indeed, let m ̸= n (m,n ∈ N) and for definiteness, let m < n consider the elements ym, yn. Now
ym ∈ Hm⊖Hm−1, yn ∈ Hn⊖Hn−1. Therefore, yn ∈ Hn and ⊥ Hn−1 and ym ∈ Hm (and ⊥ Hm−1).
Since m < n, so m ⩽ n− 1

∴ Hn ⊆ Hn−1 ⊆ Hn.

ym ∈ Hn, yn ∈ Hn.

∴ yn ∈ Hn−1, yn ∈ Hn

Now yn ∈ Hn ⊖Hn−1 ⇒ yn ⊥ Hn−1. From ym ∈ Hm−1 and yn ⊥ Hn−1 we get ym ⊥ yn and this is
valid ∀m ̸= n.
Thus (yn) is orthonormal. Hence yn

ω−→ 0 and since T is compact, Tyn
s−→ 0 ∈ H say. Now

Tyn = λnyn − (λnI − T ) yn ∀n ∈ N (6)

the element λnyn ∈ Hn ⊖Hn−1

On the other hand, since yn ∈ Hn = [(x1, . . . , xn)] we can write

yn = an1x1 + an2x2 + . . . , annxn for scalars ani (i = 1, . . . n)

Consequently,

(λnI − T ) yn = (λnI − T ) (an1x1 + an2x2 + · · ·+ annxn)

= λn (an1x1 + · · ·+ annxn)− (an1Tx1 + . . .+ annTxn) .

= λn (anx1 + · · ·+ annxn)− (an1λ1x1 + · · ·+ annλnxn) .

Since λi is an eigenvalue with eigenvector xi ∀i ∈ N,

= (λn − λ1) an1x1 + · · ·+ (λn − λn−1) an1(n−1)xn−1

∈ [{x1, . . . , xn−1}] = Hn−1

Since λnyn ∈ Hn ⊖Hn−1, so

(λnI − T ) yn ⊥ λnyn

Hence it follows from 6, using Pythagorean theorem

∥Tyn∥2 = ∥λnyn∥2 + ∥(λnI − T ) yn∥2 ∀n ∈ N
∴ ∥Tyn∥ ≥ ∥λnyn∥ = ∥λn∥ → |λ|

(Since λn → λ as n → ∞). This contradicts the result Tyn
s−→ 0 (above). Hence the supposition

that λ ̸= 0 is a limit point of Pσ(T ) is unacceptable. Thus if the number of eigenvalues is infinite,
then 0 can be the only limit point.

Proposition 6. If λ ̸= 0 is an eigenvalue of a compact T ∈ B(H) then, λ̄ is an eigenvalue of T ∗.
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Proof. We saw earlier that T is compact implies T ∗ is compact. For any T ∈ B(H), we have the
result,

σ (T ∗) = σ(T ), where

σ(T ) = {λ̄ : λ ∈ σ(T )}
Since T ∗ is compact,

Pσ (T ∗)− {0} = σ (T ∗)− {0}

= σ(T )− 0

= σ(T )− {0}

= Pσ(T )− {0}

= Pσ(T )− {0}

Therefore, if λ ∈ Pσ(T ) and λ ̸= 0, then λ̄ ∈ Pσ (T ∗) and the proof is over.

Proposition 7. Let H be a Hilbert space and T ∈ B(H) be compact. Let λ ̸= 0. Then λ ∈ ρ(T ) if
and only if RλI−T = H.

Proof. If λ ∈ ρ(T ), we have RλI−T = H, as seen in proposition 2 (since T is closed). Conversely,
let RλI−T = H(λ ̸= 0). Suppose λ ∈ σ(T ). Then by Proposition 2, λ ∈ Pσ(T ). Let x1 be a
corresponding eigenvector. Since RλI−T = H, we can inductively construct a sequence such that.

(T − λI)xn = xn−1∀n ≥ 1
(
x0 = 0

)
Again by induction we show that the vectors xn (n ≥ 1) must be linearly independent. Clearly,
x1 ̸= 0 for x1 is an eigenvector. Suppose {x1, · · · , xn−1} is linearly independent and

n∑
k=1

αkxk = 0 (7)

Then we have

0 = (T − λI)

(
n∑

k=1

αkxk

)
=

n∑
k=1

αk(T − λI)xk =

n∑
k=1

αkxk−1

(
x0 = 0

)
We conclude that α2 = α3 = · · · = αn = 0 and by (7) since x1 ̸= 0, also α1 = 0. Therefore
{x1, · · · , xn} is linearly independent. Let. {en}∞n=1 be the orthonormal sequence obtained from
{xn}∞n=1 by the Gram-Schmidt orthonormalization process. As in the proof of Proposition 4, we
have (writing en = αn1x1 + αn2x2 + · · ·+ αnnxn)

(T − λl)en = (T − λI)

(
n∑

k=1

nnkxk

)
=

(
n∑

k=1

σnk(T − λl)xk

)

=

n∑
k=1

αnkxk−1 = gn(say)

Hence gn = V n−1
k=1 {xk} = V n−1

k=1 {ck}. We can therefore write

gn = βn1e1 + · · ·+ βn,n−1en−1.

Thus gn ⊥ en. Now Ten = λen + gn. Therefore

< Ten, en >=< λen + gn, en >= λ < en, en >= λ ̸= 0∀n ∈ N

and this contradicts Proposition 1((i) ⇒ (ii)). Hence λ is not in Pσ(T ), so λ is not in σ(T )
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An immediate consequence of Proposition 7 is the next result.

Proposition 8. Let T be a compact linear operator in a Hilbert space H and if for a fixed λ ̸= 0
the equation

Tx− λx = y (8)

has a solution for each y ∈ H, then the equation

Tx− λx = 0 (9)

has the unique solution x = 0, i.e λ is not an eigenvalue of the operator T. The conclusion holds in
pre-Hilbert spaces as well.

Proof. It is clear from (8) that RT−λl = H), since λ ̸= 0, λ ∈ Pσ(T ) or ρ(T ). Since x = 0 is the
only solution of (9), it. follows that λ is not. in Pσ(T ).

We now establish Proposition 8 when H is a pre-Hilbert space. Assume the contrary, namely, that
equation (9) has a solution x1 ̸= 0. Thus vector x2 : Tx2 − λx2 = x1. Then we find a vector x3

such that Tx3 − λx3 = x2. Continuing this process we find an infinite sequence of vectors (xn)
∞
n=1

such that
Txk − λxk = xk−1(k ∈ N).

We now claim that the set of vectors {xk : k ∈ N} is linearly independent. We do this as we did
in the proof of Proposition 7. Orthogonalizing this sequence, we get an orthogonal sequence (x̃k),
where

x̃1 = α11x1, x̄2 = α21x1 + α22x2, · · · , x̄k = αk1x1 + αk2x2 + · · ·+ αkkxk

It follows that

T x̃k = αk1Tx1 + αk2Tx2 + · · ·+ αkkTxk

= αk1λx1 + αk1 (x1 + λx2) + · · ·+ αkk (xk−1 + λxk)

= (αk2x1 + αk3x2 + · · ·+ αkkxk−1) + λ (αkx1 + αkx2 + · · ·+ αkkxk)

= (αk2x1 + αk3x2 + · · ·+ αkkxk−1) + λx̃k

= βk1x̃1 + βk2x̃2 + · · ·+ βk,k−1x̃k−1 + λx̃k(k ∈ N)

Since < Tx̃k, x̄k >= λ ̸= 0∀k ∈ N we have limk→∞ < Tx̄k, x̄k > ̸= 0. On the other hand, since T
is compact, we must have limk→∞ < Tx̃k, x̃k >= limk→∞ βkk = 0. Thus we have a contradiction.
Hence the assumption x1 ̸= 0 is inadmissible. Hence x1 = 0. This proves that (9) has unique
solution x = 0.

Corollary 3. If for a fixed λ ̸= 0, equation (8) is solvable for each y ∈ H, then given y ∈ H, this
equation has a unique solution and consequently the operator (T − λI) has an inverse on all of H.

Proof. The main Proposition shows that if (8) is solvable for each y ∈ H then (9) has the unique
solution x = 0 ( λ fixed). Now fix y at y0 and assume that (8) is solvable. Suppose there are two
vectors x1, x2 ∈ H which solve (8) for the given λ and the given yh. Then

Tx1 + λx1 = Tx2 + λx2 = y0, i.e, T (x1 − x2)− λ (x1 − x2) = 0

Proposition 9. Let H be a Hilbert space and T ∈ B∞(H). A complex number λ ̸= 0 is an eigenvalue
of T if and only if λ̄ is an eigenvalue of T ∗.

Proof. This follows from σ (T ∗) = σ(T ) = {λ̄ : λ ∈ σ(T )} and σ (T ∗) /{0} = Pσ (T ∗) /{0}.
The last equality holds since T ∗ is compact.
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Remark 2. The last Proposition cannot be extended to bounded normal operators on H.

Proposition 10. Let T be a compact linear operator in a pre-Hilbert space H and fix λ ̸= 0. Then
there exists a constant L depending on T and λ such that if the equation

Tx− λx = y (10)

is solvable for a fixed right member y, at least one of its solutions x satisfies

∥x∥ ≤ L∥y∥ (11)

Remark 3. Before providing the proof, we clarify as to what the Proposition conveys. In asking
whether λ ∈ σ(T ), we could be interested in the invertibility of (T −λI). An inverse of T −λI would
assign to every y ∈ RT−λI a unique x. Moreover, if (T − λI)−1 is bounded, then we must have
∥x∥ ≤ L∥y∥ for some constant L (which depends only on T and λ ). The statement of Proposition
10 asserts that we can always reverse the action of (T −λI) in a bounded way. Ignoring the question
of uniqueness of (T − λI)−1({y}) (when (10) is solvable for a y ∈ H ) there is always a candidate
x associated with y by some sort of bounded inverse of (T − λI), the bound being L.

Proof. Fix y and assume that (10) has a solution x∗. If λ is an eigenvalue of T, let x1, · · · , xk be a
linearly independent set. of eigenvectors spanning ηT−λl. In this case, the general solution of (10)
has the form

x = x∗ + α1x1 + · · ·+ αkxk

where α1, · · · , αk are arbitrary complex numbers. We select these numbers solution of (10) with
minimum norm. If λ ∈ ρ(T ), then x̃ = x∗(k = 0). Now let y vary over the: set M of all vectors
for which (10) is solvable. To each vector y ∈ M , there corresponds a minimal solution x̄. We now
claim that.

sup
y∈M

∥i∥
∥v∥ < ∞

Suppose the contrary. Then there exists a sequence (yk) of vectors such that as k →→ ∞, ∥r̄λ∥
∥yk∥

→
∞, where x̄k is the minimal solution of (10) with right. member yk. Dividing both sides of the
equation

T x̃k − λx̃k = yk(k ∈ N)

by ∥x̄k∥, we get
T x̄′

k − λx̄′
k = y′

k(k ∈ N)

where y′
k = ∥x̄k∥−1 yk, ∥x̄′

k∥ = 1∀k ∈ N. Thus, the minimal solution x̄′
k of (10) has norm 1 if the right

member is y′
k. Since T is compact, there exists a subsequence

(
x̄′
ni

)
of (x̃′

k) for which s−limi→∞ T x̃′
ni

exists. Since y′
ks→0 as k → ∞, s− limi→∞ T x̃ni also exists, say z, and consequently, Tz − λz = 0

where ∥z∥ = 1. Thus z is an eigenvector of the operator T. Both the vectors x̄′
n2

− z and x̄′
ni

are
solutions of (10) with right member y′

ni
. But because of the minimum norm of a solution of this

equation being 1 , we have for each i ∥∥x̃′
n1

− z
∥∥ ≥ 1

Since this is impossible, the proposition is proved.

Example 1. When H is a Hilbert. space, we can modify the proof of Proposition 10 as follows: Let
Pλ be the orthoprojector on H onto ηT−λl. Given any y ∈ RT−λI and any x such that (10) holds,
we observe that

(T − λI)
(
x− x′) = y if and only if x′ ∈ ηT−λI .

For x′ = PAx ∈ ηT−λl and x̄ = x− Pλx we obtain

(T − λI)r̃ = y (12)

UNDER PEER REVIEW



where ∥ẋ∥ = ∥x− PXx∥ = min {∥x− x′∥ : x′ ∈ ηT − λ} and therefore

∥x̄∥ = min
{∥∥x′′∥∥ : (T − λI)x′′ = y

}
(13)

Note that in this manner we have associated every y ∈ RT−λI with a unique vector x̄ such that
(12) holds. We now assert that there is a real constant L > 0 such that ∥x̂∥ ≤ L∥y∥ ∀y ∈ RT−λl.
Assuming the contrary we have

sup

{
∥⃗i∥
∥y∥ : y ̸= 0, y ∈ RT−λI

}
= ∞

We can therefore choose a sequence (yn)
∞
n=1 of elements from RT−λl such that yn ̸= 0y n ∈ N and

limn→∞
∥Ĩn∥
∥yn∥ = ∞. For x̃′

n = x̄n
∥x̃n

∥∥∥1y′
n = yn

∥Īn

∥∥∥, we obtain from (12) and (13)

(T − λI)x̃′
n = y′

n (14)∥∥x̄′
n

∥∥ = min
{∥∥x′′∥∥ : (T − λI)x′′ = y′

n

}
(15)

lim
n→∞

y′
n = 0

Let
(
x̃′
nk

)
be a weakly converging subsequence of (x̃′

n) (Every bounded sequence in a Hilbert space
contains a weakly convergent subsequence). Then T x̄′

nk
converges strongly to some vector z and as

a consequence
lim
k→∞

λx̄′
nk

= lim
k→∞

(
T x̃′

nk
− y′

nk

)
= z

Since λ ̸= 0, the sequence
(
x̃′
nk

)
converges strongly and its limit is the vector z′ = z

λ
. From

(T − λI)z′ = lim
k→∞

(T − λI)x̃′
nk

= lim
k→∞

y′
nk

= 0

and (14) we conclude
(T − λI)

(
x̄′
n − z′

)
= y′

n

while limk→∞ ∥x̃nk − z′∥ = 0 and therefore ∥x̃′
n − z′∥ < 1 for infinitely many n ∈ N. This however

contradicts (15).
We now strengthen Proposition 8 which asserts that if λ ̸= 0 is an eigenvalue of a compact

linear operator T in a pre-Hilbert space H, then the equation

Tx− λx = y (16)

is not solvable for every y ∈ H. If H is a Hilbert space, we shall determine the set of all vectors y
for which (16) is solvable.

Proposition 11. Let T be a compact linear operator in a Hilbert space H and let λ be a nonzero
element of K. Then the equation (16) not an eigenvalue of T ∗, then ηT∗−λ̄I = {0}, that is, in this
case, equation (16) is solvable for every y ∈ H.

Proof. Now Tx− λx = y is solvable for each y ∈ RT−λI . By Proposition 1, RT−λI is closed. Now,
R̄T−λI = η⊥

T∗−λ̄I . Hence RT−λI = η⊥
T∗−λ̄I . Thus equation (16) is solvable if and only if y ∈ η⊥

T∗−λ̄I∗

If λ̄ is not an eigenvalue of T ∗ (which is compact since T is compact) it follows (by the Corollary
to Proposition 8) that (16) is uniquely solvable for all y ∈ H

Remark 4. The reader can formulate an analogous proposition for the compact operator T ∗. (see
proposition 13).

Proposition 12. Suppose H is a Hilbert space and T ∈ B∞(H). If λ ̸= 0 is an eigenvalue of T
(hence λ̄ is an eigenvalue of T ∗ ) then ηλI−T and ηλ̄I−T∗ have the same dimension (which is finite)
(This is called Fredholm’s Third Theorem) (See proposition 13).
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Proof. We have dimηλI−T ≤ dimηλI−T . There exists an isometric operator V on ηλI−T into

ηλI−T∗ = R⊥
λI−T . Let P represent the orthoprojector on H onto ηλI−T . The operator is of finite

rank and hence is compact. Consider the operator T1 = T + V P . Clearly T1 is compact. We shall
show that ηλl−T1 = {0}, i.e, λ is not an eigenvalue of T1. Indeed, let (λ/− T1) r = 02 that is,
λx − Tx − V Px = 0 or λx − Tx = V Px. Now λx − Tx ∈ Rλ/−T , whereas ∥Px ∈ R⊥

λI−T . Hence
λx− Tx = 0 = V Px. Since V is an isometry, 0 = ∥V Px∥ = ∥Px∥. Hence x ∈ η⊥

λl−T . The relation
λx− Tx = 0 shows that x ∈ ηλI−T . Thus x = 0.

By Proposition 11, λ̄ is not an eigenvalue for T ∗
1 , that, is, ηλ̄/−T∗ = {0}. Since ηλ̄I−T1

= R⊥
λI−T1

.

We have R⊥
λI−T1

= {0}. We now show that.

RλI−T1 = RλI−T ⊕RV P .

If y ∈ RλI−T , then y = (λI − T1)x for some x ∈ Z and thus which shows that y ∈ RλI−T ⊕ RV P ,
that is

RλI−T1 ⊆ RλI−T ⊕RV P

Conversely. let y ∈ Rλl−T ⊕RV P . Then

y = (λI − T )x′ + V Px′′ for x′, x′′ ∈ H
)
.

We can write x′ = x′
1 + x′

2, x
′′ = x′′

1 + x′′
2 where x′

1, x
′′
1 ∈ ηλI−T , x

′
2, x

′′
2 ∈ η⊥

λI−T . Clearly

(λI − T )x′ = (λI − T )
(
x′ + x′

2

)
= (λI − T )x′

2 and

V Px′′ = V P
(
x′′
1 + x′′

2

)
= V Px′′

1

Thus,
y = (λI − T )x′

2 + V Px′′
1 =(λI − T − V P )

(
x′
2 − x′′

1

)
= (λI − T1)

(
x′
2 − x′′

1

)
which shows that y ∈ RλI−T . Next it is easily seen that RV P = RV . Thus RλI−T = RλI−T ⊕RV .
Consequently,

{0} = ηλI−T = R⊥
λI−T1

= [RλI−T ⊕RV ]⊥.

which yields
RV = R1

λl−T

Since V is an isometry
dim ηλI−T = dimRV = dim ηλ̄I−T

The other case can he treated similarly.

Alternative proof:
Suppose ηT−λI (which is the same as ηλI−T ) has dimension p less that dim ηT · −λ⃗I = q. Let
{ej ; j = 1, · · · , p} be an orthonormal basis for ηT−λl and {fk; k = 1, · · · , q} be an orthonormal basis
for ηT∗−λ̄I . We define in H an operator T1 by

T1x = Tx+

p∑
j=1

⟨x, ej⟩ fj (17)

Clearly T1 is compact and λ is not an eigenvalue of T1. For suppose there was a vector y ̸= 0 such
that

T1y = λy (18)

Hence by (17),

(T − λy) +

p∑
j=1

⟨y, ej⟩ fj = 0
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Now, < (T − λI)y +
∑p

j=1 < y, ej >
∫
j
, fi >= 0, i = 1, · · · , p.

< y,
(
T 4 − λ̄I

)
fi > 1 < y, e1 >= 0

But since the first term on the left is 0 , we have

⟨y, e1⟩ = 0(i = 1, 2, · · · , p) (19)

Hence, it follows from (18) that T1y = Ty and from (18) that Ty = λy. Thus y is an eigenvector of
the operator T and by (19) it is not. a linear combination of the eigenvectors ej(j = 1, · · · , p). This
is impossible. Hence (18) is impossible, that is, λ is not an eigenvalue of the operator T1. Hence
there is a vector x such that.

(T1 − λI)x = fp+1

But since, by (16)

< T1x, fp+1 >=< Tx, fp+1 >=< x, T ∗fp+1 >=< x, λ̄fp+1 >= λ < x1fp+1 >

we have
1 =< fp, fp+1 >=< (T1 − λI)x, fp+1 >= 0

Thus the hypothesis that q > p leads to an absurdity. Since T = (T ∗)∗, we can reverse the roles of
the operators T and T ∗. Hence, by what has already been proved, it is also impossible that p > q.
Hence the Proposition.

Remark 5. The reader should note that occasionally we write λI − T in place of T − λI and
correspondingly λ̄I − T ∗ in place of T ∗ − λ̄I. He can adopt uniformly in this matter for the proofs
are the same for all the propositions (with minor alterations). We now summarize the assertions
of propositions 11 and 12 and the remark following the former into a single proposition called the
Fredholm alternative. This proposition is a generalization of the Fredholm alternative in the theory
of linear integral equations.

Proposition 13. (FREDHOLM ALTERNATIVE).
Let H be a Hilbert space and T ∈ B(H) be a compact operator and λ be a nonzero element of K.
Then we have the Frodholm alternative. Either the inhomogeneous equations

(T − λ/)x = y and
(
T ∗ − λ̄/

)
x̃ = ỹ

are uniquely solvable ∀y, ỹ ∈ H or the homogeneous

(T − λI) · x = 0 and
(
T ∗ − λ̄I

)
x̄ = 0

hate non-trivial solutions.
The spaces of the solutions of the two homogeneous equations have the same (finite) dimension and
(T − λl)x = y is solvable if and only if y is orthogonal to every solution x̄ of

(
T ∗ − λ̄I

)
x̂ = 0. that

is, if and only if ȳ ⊥ ηT∗−λ̄/. Similarly,
(
T ∗ − λ̄I

)
x̃ = ŷ is solvable if and only if ỹ ⊥ ηT−λI .

Proof. Either λ ∈ ρ(T ) and so λ̄ ∈ ρ (T ∗) or λ ∈ Pσ(T ) and hence λ̄ ∈ Pσ (T ∗) (propositions 2, 9).
In the first case we have

x = (T − λI)−1y, x̃ =
(
T ∗ − λ̄I

)
ỹ

where (T − λI)−1,
(
T ∗ − λ̄I

)−1 ∈ B(H). In the second case, we have

η
1
T
T−λI = RT∗−λ̄I (for RT∗−λ̄I is a closed linear subspace).

The equation
(
T ∗ − λ̄I

)
x̄ = ȳ has a solution x̃ if and only if ỹ ∈ RT∗−λ̄I , that is, if and only if ỹ

is orthogonal to ηT−λI , which in turn consists of all solutions of (T − λI)x = 0. Similarly from

RT−λI = η⊥
T∗−λ̄I

the remaining statements of the Proposition follow.
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The following example shows that a non-zero compact linear operator on ?) may not have any
eigenvalues at all (the spectrum then reduces to its absolute minimum, consisting of one single point
only. At the same time it illustrates that the conclusion of Proposition 9 breaks down for λ = 0 ).

Example 2. Let T be the linear operator on ℓ2( N) defined by

T (nk)
∞
k=1 =

(
1

k
αk−1

)∞

k=1

α0 = 0

that is, T (α1, α2, · · · ) =
(
0, 1

2
α1,

1
3
α2

)
∀ (αn)

∞
n=1 ∈ ℓ2(N). Show that.

(a) T is compact.

(b) Pσ(T ) = 0.

(c) The only eigenvalue of T ∗ is 0 , i.e, Pσ (T ∗) = {0}.
(d) T is not normal.

Solution
(a) Now ⟨Ten, en⟩ =

〈
1

n+1
en+1, en

〉
= 0∀n ∈ N. Hencc limn→∞ < Ten, en >= 0. (This does not

imply T is compact.) Define Tn on ℓ2(N) by

Tn (αk)
∞
k=1 =

(
0,

1

2
α1,

1

3
α2, · · · ,

1

n+ 1
, 0, 0, · · ·

)
∀n ∈ N

Then if x = (αk)
∞
k=1, we have

∥Tnx− Tx∥2 =

∥∥∥∥(0, 12α1,
1

3
α2, · · · ,

1

n+ 1
, 0, 0, · · ·

)
−
(
0,

1

2
α1,

1

3
α2, · · ·

)∥∥∥∥2
=

∥∥∥∥(0, · · · , 1

n+ 2
αn+1,

1

n+ 3
αn+2, · · ·

)∥∥∥∥2
=

1

(n+ 2)

2

|αn+1|2 +
1

(n+ 3)
|αn+2|2 + · · ·

=
1

(n+ 2)

2
[
|αn+1|2 +

n+ 22

n+ 3
+ |αn+2|2 +

n+ 22

n+ 4
+ |αn+3|2 + · · ·

]
≤ 1

(n+ 2)

2 [
|α1|2 + |α2|2 + · · ·

]
=

1

(n+ 2)
∥x∥2, ∀x ∈ ℓ2(N)

Hence ∥Tn − T∥ ≤ 1
n+2

∀n ∈ N. Now each Tn being of finite rank (n + 1), is compact and
limn→∞ ∥Tn − T∥ = 0. Hence T is compact (by proposition 11).

(b) Let x = (αn)
∞
n=1. So Tx =

(
0, α1

2
, α2

3
, · · ·

)
. Now if λ ∈ K, then Tx = λx implies

(
0, α1

2
, α2

3
, · · ·

)
=

(λα1, λα2, λα3, · · · ) . So 0 = λα1,
α1
2

= λα2,
α2
3

= λα3,
αn−1

n
= λαn, · · · . If λ = 0, then α1 = a2 =

· · · = 0, i.e x = 0, and hence λ = 0 is not an eigenvalue of ’T. If λ ̸= 0 then again α1 = α2 = · · · = 0
and again since x = 0 necessarily, it follows that λ is not in Pσ(T ). Thus Pσ(T ) = 0.

(c) Let x = (α1, α2, · · · ) , y = (β1, β2, β3, · · · ) ∈ ℓ2(N). Then ⟨Tx, y⟩ =
〈(
0, α1

2
, α2

3
, · · ·

)
, (β1, β2, · · · )

〉
=

ω1

2
β2 +

ω2

3
β3 + · · · =

〈
(α1, α2, · · · ) ,

(
β2

2
,
β1

3
, · · ·

)〉
= ⟨x, T ∗y

and this shows that

T ∗ (β1, β2, β3, · · · ) =
(
β2

2
,
β1

3
,
β4

4
, · · ·

)
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Now λ ̸= 0 cannot be in Pσ (T ∗) for then λ̄ would be in Pσ(T ) (see Proposition 9). But Pσ(T ) = σ.
So λ ̸= 0 cannot be in Pσ (T ∗). Consider λ = 0. Then T ∗y = λy implies T ∗y = 0, i.e all n ≥ 2. Thus
for any β1 ̸= 0, the vector (β1, 0, 0, · · · ) = β1e1 is an eigenvector corresponding to the eigenvalue 0
. It follows that Pσ (T ∗) = {0}.

(d) If T was normal, then Pσ(T ) = Pσ (T ∗) and so λ = 0 must also be an eigenvalue of T. But
Pσ(T ) = ∅. Hence T is not normal.

Definition 1. An operator T ∈ B(H), where H is a complex Hilbert space is said to be quasi-
nilpotent if its spectral radius is 0 .
It is clear that T ∈ B(H) ) is quasi-nilpotent if and only if σ(T ) consists of the single point 0 (Note:
σ(T ) is nonvoid).

Proposition 14. Let H be a Hilbert space and T ∈ B(H)) be quasi-nilpotent. If ImT : T =
A + iB where A = 1

2
(T + T ∗) , B = 1

2i
(T − T ∗) , i =

√
−1 and A,B are bounded self-adjoint; so

ImT = 1
2i

(T − T ∗)
)
is compact, then T is compact.

Proof. Let A = ReT
(
= 1

2
(T + T ∗)

)
, B = ImT , so that A and B are self-adjoint. Now B is

compact. We have to show that A is compact. Suppose the contrary. Then, there is an orthonormal
system {ear : α ∈ Λ} such that ⟨Aer, er >↛ 0 as n → ∞
For some δ > 0, the set

Λ0 = {α ∈ Λ : |< Aeα, eα >| ≥ δ}

is infinite. If {fn : n ∈ N} is a countable infinite subset of {en : α ∈ Λ}, then (fn) is an orthonormal
sequence and

|< Afn, fn >| ≥ δ(n ∈ N) (20)

Since |⟨Amfn, fn⟩|2 ≤ ∥Amfn∥2 = ⟨Amfn, A
mfn⟩ =

〈
A2fn, fn

〉
for all positive integers m and n, it

follows from (20) that

|< Amfn, fn > 1 ≥ δm(n ∈ N)

whenever m = 2q for some q = 0, 1, 2, · · · . (Indeed,
〈
A2fn, fn

〉
≥ |< Afn, fn >|2,

〈
A4fn, fn

〉
≥∣∣< A2fn, fn >

∣∣2 ≥ |< Afn, fn >|4 ≥ δ4, e.t.c). For sufficiently large m of the form 2q

∥Tm∥
1
m < δ

(For T is quasi-nilpotent. Note r(T ) = limn→∞ ∥Tn∥
1
n = 0 ) and hence..... Now (A + iB)m =

Am +m
(
Am−1

)
(iB) + · · ·+ (iB)m (Binomial expansion)

= Am +
(
imAm−1 + · · · 1imBm−1)B

Since
(
imAm−1 + · · ·+ imBm−1

)
∈ B(H) and B is compact, it follows that

(
imAm−1+ · · ·+ imBm−1

)
B =

C (say) is compact. Thus δm > ∥Tm∥ = ∥Am − C∥, for a compact linear operator C. We have〈
C
∫
n
,
∫
n

〉
→ 0 ns n → ∞. Hence:

|< Amfn, fn >| ≤ 1 < (Am
C ) fn,

∫
n

> |+ | < C

∫
n

,

∫
n

> 1

≤ ∥Am − C∥+
∣∣∣∣< C

∫
n

, fn >

∣∣∣∣ < δm

for sufficiently large n. This contradicts (20) and completes the proof of the proposition.

Next we discuss a generalization of Example 2 by describing a class of compact linear operators.
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Example 3. Suppose that (X,S, µ) is a σ-finite measure space, (X×X,S×S, µ×µ) is the product
of this measure space with itself and K ∈ L2(X ×X,S × S, µ× µ). By Fubini’s theorem

∥k∥2 =

∫
x

[∫
x

|k(s, t)|2dµ(t)
]
dµ(s) (21)

(here, and subsequently, the norm of any function refers to the usual norm in the appropriate L2

space). For almost all s ∈ X,K(s, t) is of class L2(X,S, µ) as a function of t. Let Z denote the
exceptional set of measure 0 . If f ∈ L2(X,S, µ), it follows from the C-B-S-inequality that

(Tf)(s) =

∫
x

K(s, t)f(t)dµ(t)

exists whenever s ∈ X − Z and

|(Tf)(s)| ≤ ∥f∥2
∫
x

|K(s, t)f(t)|2dµ(t) (22)

It is easily verified that the function Tf (defined arbitrarily on Z) is measurable. From (21) and (22)∣∣∣∣∫
x

(Tf)(s)

∣∣∣∣2 dµ(s) ≤ ∥f∥2
∫
x

[∫
x

|K(s, t)f(t)|2dµ(t)
]
dµ(s)

= ∥f∥2∥K∥2

Hence Tf ∈ L2(X,S, µ) and ∥Tf∥ ≤ ∥K∥∥f∥, i.e, T is a boumded lincar operator on the Hilbert
space L2(X,S, µ) with ∥T∥ ≤ ∥K′∥. We shall refer to K as an L2 kernel and to ’T as its associated....
if f, g ∈ L2(X,S, µ), then

⟨Tf, g⟩ =
∫∫

X×X

K(s, l)g(s)f(t)dµ(s)dµ(t) (23)

From this, it is easily verified that the adjoint T ∗ is the integral operator associated with the L2

kernel K∗(s, t), where K∗(s, t) = K(t, s).

We assert that {eα : α ∈ Λ} is an orthonormal base in L2(X,S, µ). The functions Ψα on X × X
defined by

Ψα(s, t) = eα(s)eux(t)

form an orthonormal system in L2(X ×X,S × S, µ× µ). With f = g = ea, it follows that

⟨Teα, cα⟩ = ⟨K,Ψα⟩

and Bessel’s inequality asserts that∑
α∈Λ

|< Teα, eα >|2 =
∑
α∈Λ

|< K,Ψα >|2 ≤ ∥K∥2.

Thus ⟨TΨα,Ψα⟩ → 0 as α → ∞ (Note the interpretation of this in the Remark following Proposition
1). Thus it follows that T is a compact linear operator. Finally, we assert that T = 0 if and only
if K(s, t) = 0 a.e. on X × X. The ’if ’ part of the statement is an immediate consequence of the
inequality ∥T∥ ≤ ∥K∥. Now suppose that ∥T∥ = 0. To show that K(s, t) = 0 i.e. on X × X, it
is sufficient to show that K(s, t) = 0 i.e. on X0 × X0 where X0 is a measurable subset of X with
µ (X0) < ∞. Let S denote the class of all measurable subsets s of X0 ×X0 which satisfy∫∫

s

K(s, t)dµ(s)dµ(t) = 0 (24)

As a function on X0 × X0, K is of class L2. and therefore (sines X0 × X0 has finite: measure)
of class L1. If s1, s2, s3, · · · ∈ S and the sequence (Sn) is either increasing or decreasing, it follows
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easily from the dominated convergence theorem that lim sn ∈ S(S is monotone class). If A and B
are measurable subsets of X0, we can take f and g in (24) to be the characteristic functions of S
contains the algebra consisting of all finite disjoint unions of such sets A×B. Since S is monotone,
it contains the σ-algebra generated by this last algebra; that, is, S contains of all measurable subsets
s of X0 ×X0 and (24) is satisfied for all such s. By taking for s, in turn, the four sets on which the
real and imaginary parts of K(s, t) both have constant sign, it follows from (24) that K(s, t) = 0
i.e. on X0 ×X0.

4 Conclusion

Spectral properties provides a powerful way to understand linear operators by decomposing the
space on which they act into invariant subspaces. In this paper, we have investigated the spectral
properties of compact operators where we observe that on finite dimensional vector space, the
spectrum of an operator consists of all its eigenvalues while on infinite dimensional vector space,
the spectrum consists of the continuous, residual and the point spectrum. We have seen that the
spectral theory of bounded linear operators on infinite-dimensional spaces is more involving.
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