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Eliminate the nonlinear oscillations of the modified
duffing equation by using the nonlinear integrated
positive position feedback

Abstract

In this article, the nonlinear integrated positive position feedback (NIPPF)
control adds to a nonlinear dynamical system modeled as the well known Duff-
ing oscillators. This control is proposed to mitigate system nonlinear vibrations.
The whole system mathematical model is analyzed by applying the multiple time
scales perturbation method. The slow-flow modulation equations that govern the
oscillation amplitudes of both the main system and controller are derived.The
stability of the steady-state solution is presented and studied applying frequency
response equations near the simultaneous primary and internal resonance cases.
The obtained analytical and numerical results illustrated that the NIPPF con-
troller can eliminate the main system nonlinear vibrations once the controller
natural frequency is tuned to be the same value as the external excitation fre-
quency, otherwise, the controller adds excessive vibrational energy to the main
system rather than suppressing it. In addition, the NIPPF controller can desta-
bilize the main system motion when excited by strong excitation force.

Key Words: The nonlinear integrated positive position feedback control; Mod-
ified Duffing equation; Stability analysis

1 Introduction

Many types of controllers are used for suppressing the vibrations of different non-linear
dynamical systems such that, negative linear velocity feedback, negative cubic velocity
feedback, non-linear saturation controllers (NSC), non-linear Integral Positive Position
Feedback Controllers (NIPPF), the Integral resonant controllers (IRC) and time delay
control. The technique of multiple time scales used to investigate the micro-beams
non-linear vibrations for two different resonance cases (super- harmonic and harmonic
resonances). From this investigation, there is a clear effect of the boundary conditions
on the micro-beams vibrations [1]. Recently, the vibrations of many vibrating systems
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[2-8] has been suppressed using different types of control. Because of the time delayed
and active controls springiness [9-14] in controlling many vibrating system, many pa-
pers used time delay for suppressing the vibrations of non-linear systems. Abdelhafez
and Nassar [15], investigated the effectiveness of time delays when the positive posi-
tion controllers are used for suppressing the vibrations of a self-exited non-linear beam.
They notified that, the time margin depends on the overall delays of the system. The
authors in [16] investigated the influence of two different delays the first is displacement
delay and the second is velocity delay in a cantilever beam. They used the method
of multiple scales to determine all super-harmonic and sub-harmonic resonance cases.
Since the aim of most studies is to suppress the vibrations, one of the important types
of control to vibrating systems is the NIPPF, which, is used as a novel method that
merges the characteristics of IRC and PPF methods to manage the oscillatory nonlinear
systems. The NIPPF controller has an intelligent result since it decreases the vibration
at the correct resonant frequency [17]. Also, a new novel procedure is presented [18]
to overcome vibration of the nonlinear oscillatory active structures. For different reso-
nance cases the NIPPF control is applied to reduce the vibrations of duffing oscillator
system near primary and super-harmonic resonances [19], through primary and inter-
nal resonance [20]. Omidi et al [21,22] presented three kinds of control to suppress the
vibrations of vibrating systems such that, the Integral resonant controllers (IRC), PPF
controllers and the non-linear Integral Positive Position feedback (NIPPF). The emi-
nent type of decreasing the vibrations is NIPPF type .The NIPPF controller is used for
deceasing the vibrations of the model of micro-electro- mechanical system near primary
resonance and one-to-one internal resonance [23, 24].

2 System Modeling
Consider the model of micro-electro- mechanical system

i+ 2ep1t + wiu + e(au? + agu®) — ea(2u + 3u? + du®) —
£(2u + 3u® + 4u®) (frcos(U) + facos(2Qt)) —
ela+ frcos(Qt) + facos(202)) = f.,0 <e < 1, (1)

This model represented the modified Duffing equation subjected to weakly non-linear
parametric and external excitations, and described the main motions at time scales
of the natural vibrations of the microstructure and fast dynamic at time scales of the
high-frequency voltage, w1 is the coefficient of viscous damping,e is a small parameter,
wy is linear natural frequency , Q2 is the frequency of the external excitation, « is the
coeflicient of linear term ,a1, o are the coefficients of the nonlinear terms , f1, fo are the
coefficient of linear and nonlinear parameters excitations, and f.(t) is the control input.
This NIPPF control module is designed in a feedback format for the controller so that
it absorbs some of the vibration energy by increasing System damping, compensates
for the resonance energy using the application of positive feedback. In order to achieve
this goal, The NIPPF controller is described as follows:
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&+ 2ep0wa® + wix = eyyu(t),
) 2)

with the control law of: f. = Ajx(t) + A2z(t). so the closed loop system equations are

i+ 2ept + wiu 4 e(au? + aou®) — ea(2u + 3u? + dud) —
£(2u + 3u? + 4u?)(ficos(Q) + facos(2Qt)) — e(a + ficos(Qt) + facos(20)) =
E)\ﬂl’i(f) + E)\Qz(t),
&+ 2epiowa® + Wiz = eyyu(t),
Z 40z = evyqul(t), (3)
where z(t) is the second-order section variable for the NIPPF controller and z(t)

is the integrating section variable for the NIPPF controller. ps , wo are the damping
factor and internal frequency for the controller, respectively.y; > 0 and 72 > 0 are the
gains of controller, A; is the positive scalar feedback gain of the second- order section,

Ao is the positive scalar feedback gain of integrating section, o is the lossy integrator’s
frequency.

3 Mathematical Analysis

The multiple scales method is applied to get the asymptotic first-order approximate
solutions for the system (3) which we use the multiscale perturbed method

u(To,Tl,e’:‘) = UQ(TQ,T1) + €U1(TQ,T1) + 0(62),
y(To, T, e) = yo(To, 1) + ey1 (To, Th) + O(e?), T, = e"t, (4)

where Ty = t and 17 = et are the fast and slow time scales, respectively. The time
derivatives became

d

T =Dyg+eDi+ ...,

d2

== D2 +2eDoD; + ... (5)

where D; = diTj,j = 0, 1. Substituting (4) and (5) into (3), and equating the coefficients
of equal power of ¢ lead to:

O(°) -

(D§ + wi)ug = 0,

(D§ +w3)yo =0,

(Do + 0)z0 = Y2uo, (6)
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20(To, Th) = Az(Th)e 7T + e

O(eh) -
(D2 4+ wiuy = —2DgDyug — 21 Doug — cui — coup + a(2uo + 3ud + 4ul) +
(2ug + 3ul + 4ud)(ficosQt + focos20t) + a + frcost + fo cos 20t +
Ao (t) + Aazo(t),
(D3 4+ w3)xy = —2DoDyx¢ — 2p9ws Doxo + Y1uo,
(Do + 0)z1 = v2up — D121, (7)

The solution of system of equations(6) are

uo(To, Ty) = Ai(Ty)e™ ™ + c.c.,
yo(To, T1) = Az(Th)e™2T0 + c.c.

Where A, Ay are unknown complex function in 77 and c.c. denotes the complex
conjugate of the previous terms, insert egs.(8) into eqs.(7) we get

D2 + w?uy = Ay €™t + Azdoe %t + a — [2iw1 D1 Ay + 2iAppwy —
0 1

A A oW w
204, — 12043 A, + 342024, — mMe 1To

(30A? — A2a)e?1To 4 (3042 — A20,)e 2170 4 (40 A3 — Aday)e®@rTo 4
(404/(? — agfi‘;’)efiﬁ“’lT“ +(0.5f + 3A1f1A1)emT° +

(0.5f2 + 3fo Ay Ay )0 41542 f1e"(HH200)To 4 9 AT fr ?(HH8)To 4
QfQA?ei@QfSwl)To + 1.5A%f26i(29+2w1)T0 + 2Aii)f26i(2ﬂ+3w)To + Agfyle“"?TO +
(f1A1 + 641 A2 f1)e" 7)o 4 (£ A1 + 6 fo Ay AF)e' PO To

1.5f1 A3/ (@200 1 15 f, A3e1207200)T0 1o fy ABel(@=5w)To 4

(Arfa+ 641 fAy)e!PHFTo 4 9 fy Afel(F3wTo

(AL fi + 64, A2 1)) To 1 51 A261=200T0 L 60 A Ay — 24, A1ay,  (9)

(D2 4wy = Ayy1e™T0 — (20 Agpigws + 20Dy Agws)e™2 10 1 c.c., (10)

the solutions of equations (9),(10) after eliminating the secular terms

up = o+ By enTo 4 BogiG0tenTo 4 peinTo 4 [, 200 4 prei(@2e)To 4
Ege!(@43w1)To o B ot (2904200)T0 4 (61 A] —2A 00 A1) + FEget(20-2w)To 4.
Egei(Q—Bu)l)To + Eloei(ﬂ-s-:awl)To + E1163z’w1To + E12ei(29+3w1)To +

Eyset @)l 4 o o=2To | B o=3iTo | g oiC0-on)To | g oiQTo 4

Eyge’ (203w To, (11)
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AV T
@ oent e (12)
2 = _MeimToDAl 4 (uy) (13)
(02 4+ w?)? Do+o ’
. N2
2 = 71’72&-)1(0- *22601) eiwngDAl +a+ Nlei(Q+w1)To 4 N26i(29+wl)T() +
(02 +wi)?
N362iw1TQ + N4€27;QTO + N5ei(ﬂ+2w1)To 4 NGei(Q+3w1)To + N76i(29+2w1)T0 +
(60414114_1 — 2A10[114_1) + Ngei(zg_le)To —|— Ngei(g_gwl)To —|—
Nyel Q4390 o Ny @BiwnTo | N, i (2243w)To
ngei(ﬂfwl)To + N14672’L‘UJ1T0 + N15€73iwlT() +
N16€i(2527w1)T0 4 N17e’iSZTg + ngei(Qﬂf&dl)Tg. (14)
where
El _ (A1f1 + 6A%f1/[1) E2 _ (Alfg =+ GA%fgfil) E3 _ (30&14% — A%Oél)
(Wi = (Q+w)?)’ (Wi = (22 +w1)?)’ —3w? ’
B, = (0.5f2 + 341 f241) By = 1.5A7 f1 By = 243 1
W42 T W @202 0T (W @+ 3wn)?)
B — 1.5A3% f5 B — 1.5f, A2 By — 2f1A3
(w? — (29 + 2w1)?)’ (w? — (2Q — 2w1)?)’ (w? — (Q —3w1)?)’
QfIA% (40514‘;’ - A‘?ag) 2A?f2
Eyp= b= ———o5— L= v
(wi — (2 + 3w1)?) —8w; (wi — (29 + 3w1)?)
E13 _ (flfil + 6A1f1A%) = —(S(XA% — A%oq) 5 = —(40414:1)) — QQA:%)
W= (@—w)?) A s
FyA; + 64, f>A? . A f1A 2f, A3
E16:( 22 1+ 641 fo 21),E17:(05f1—;3 12f1 1)7E18: ; fa Ay —(15)
(wi — (22 — w1)?) (wi —29) (wi — (202 — 3w1)?)
Yoy Yo Eo Yo kE3
N = = - N = —_—
YT w) o 29+ w) o 2w+ o
N, — Yol _ Y2 Es _ Y2 Es
T2 40 T Q4 2w) +0 0T i(Q+3w) + o
Yo lo7 Yo Es Y2 Eq
TR 2w +o T iR - 2w1) Y (= 3wy) o
Nio — Yo E1o Ny — Y2 E1 _ Yo E12
QA 3w) T T Biw o P (20 + 3wy) o
Noa — Y2 E13 __mBu __mEis
13 i(Q—w)+o’ W i v T B+ o
E E E
Nig Y2416 _ Telar Y2 L£as (16)

- i2Q—w)+o T i+ 18:i(20—3w1)—|—0
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4 Stability Analysis

In this paper, the case of the simultaneous primary and internal resonance (2 =
wi,w1 = ws) which is the worst resonance case, is considered to study the stability
of the system of equations (3) . Introducing the detuning parameters o1 and oo ac-
cording to:

QO =wi +e01,ws =wy + €02, (17)
and write
(Q — 2&)1)T0 = (wl +e01 — 2W1>T0 = (80'1 — wl)TO = —(wlTO — 0‘1T1)7

(2Q - wl)To = (2&)1 + 260’1 - oJl)To = OJ1T0 + 20’11-717
(2Q - 3W1)T0 = ((2&)1 + 26&)1 - 3(.L)1)T0 = 7(&J1TO — 20’1T1). (18)

Substituting equations (17) and (18) into equations (9) and (10) and eliminating the
secular terms, leads to the solvability conditions for the first order approximation,
hence the following differential equations are obtained:

2iUJ1D1A1 = —2iA1M1Ld1 + 20&141 + 12@A%A1 + (O5f1 + 3A1f1A1)6i01T1 +

. _ _ . 3 A2 —i01Th _
Aohiei®?Th 4 fo(A; + 6A; A2)e2n T 4 ﬁ% — 342004, +
9 Ao(o —iwy)
) AS 2i01T 272 A 19
f2Aze + (w? + 02) 1 (19)
QiLUQDlAg = Al’}/le_iUQTl - QiAz/.LQWQ, (20)
The solution of equations (19) and (20) can be analyzed by putting A;(7T1), A2(71) in
polar form,
1) Ty) .
ay(my) = 2 o gy () = 20 oy (21)
DAy = §(a1 +ia1¢1)e" ™7, D1 Ay = 5((12 +iagpg)e’ 7, (22)

where aq,as are the amplitudes of steady state, ¢1, ¢ are the motions phases. By
substituting equations (21),(22) into equations (19) ,(20), we get

. S N J0 05 Jiaal  3iaga? 11 3 5 (o1 Ti—é1)
(a1 +ia1¢1) = pay 901 S0 o1 (2f1 + 4a1f1)e
W21 i(oaTy—¢1462) _ L(fZal 73,)“2&?)6%(01:57@) —
2w1 2(,«)1 2 4
3i 2 —i(o1T1—¢1) if?a:{) —2i(01Th1—¢1) ‘72)\2(0— _ iwl)
_ o _ _Je7 1 (o _ e S , 23
Swy haie 4wy € ! wi (wW? + 02) “ (23)
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’}/L'fliefi(zmT1*d>1+¢2)7 (24)

(a2 +iaggpe) = —agpz — s

compare the imaginary part and the real terms

. A2Y2a1 1 R a1
_ _ o refem L - — 260 0
1= 0 g2 t o (a1fa + 2a1f2)51ﬂ 1+ 2, 002 +
1 3 3a? 3
ﬂ(‘f 1+ 5@% f1)sinf; — g;{l sinf; — fiil sin26;,
. —aaq AoYyo0ay 3aa? 3a2ai)’ 1 3 3
= — - — — 201 —
@1 w1 * 2w1 (02 + w?) 21 + 8wy 2w (arfo+ 2a1f2)cos !
a2>\1

2 3
Sai /i cost — ELH cos20y,  (25)
1

1 3
0y — — Za? 0, —
2w1 cosvz 2w1 (fr+ 2a1f1)cos ! 8w w1

Y1a
g = —gag — sin 65,
ng
: Y1a1
- 0 2
62 =~ 322 cos s, (26)
where
01 = 1Ty — ¢1,02 = 0211 — b1 + ¢, 01 = 01 — 1,00 = 72 — b1 + o (27)

5 Stability Investigation

The steady-state solution of our dynamical system corresponding to the fixed point of
equations (25) , (26) is obtained when a;,, =0, ¢, =0,m = 1,2,

Aoya2a 1 3 ) agA1 .
piay = 772(0227_52- :}2) + QTJl(alfQ + §ai‘f2)s1n201 + 22wll sinfy +
1
1 3 3a? 3
ﬂ(fl + §aff1)sin01 _ 3ah sinf; — J;lel sin26, (28)
Aoyaoay aaq 3@@? 3a2ai’ 1 3 5
— _2zrpft TR e S 2 20, —
o1 2w1 (0’2 + w%) w1 2w1 8w1 2(,01 (a1f2 + 2a1f2)cos !
A 1 3 3a? 3
Q;W ! costy — ﬂ(fl + iaffl)cos 01 — g:}fl cosfy — fiill cos20+, (29)
1 1 1 1
Y101 .
Holy = — 5% sinfs,
(30)
a
(o1 —o2)as = —’;1121 cosbs. (31)
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From equations (25) to (27) the amplitude and phase modulating equations take

the form
. A2y2a1 1 3 a3, asAi
= — - — 20 0
ay Hiay 2007 + ) + o (a1 fo + 2a1f2)sm 1+ 20 sinfy +
1 3 . 3a2f1 . f2a3 .
Z—M(fl + §a%fl)sm€1 - 801.)1 sinf — ﬁsm%l, (32)
. Aoy « 304(1% 3a2a1
0, = —_— 4+ — - 20
1=t 2wy (02 + w%) + w1 + 2wy 8wy 2w1 3y P2 T alfQ)COS 1
02)\1 J1 alfl foa?
050y + —— 0 osf) 20 33
a1w1 2+ 55 1( + alfl)COS 1+ 8w1 vt 1COS 1 (33)
g = —owiag — N sin 65, (34)
2&)1
. Aoy o « 3aa% 3a2a1
0y = —_— s+ — - 20
2 o2t 2(,«)1 (0’2 + w%) + w1 + 2w1 8w1 20J1 (f2 + alfQ)COS 1+
A
4221 0s 0o + —(‘f1 + alfl)cosel + SaLfy cosf; — N cosfy +
2@1&)1 2&)1 aq 8(4)1 2(12W2
f2 cos291, (35)
w1
To determine the stability of the nonlinear solution, one lets
a1 = aio + ai1,az = ag + az1, 01 = 019 + 011,02 = 020 + a1, (36)

where a,,0, 0mo are the solutions of equations (32) (35) and a1, 0,1 are perturbations
which are assumed to be small compared to a0, 0m0 - Substituting equation (36) into
equations (32)-(35) and keeping only the linear terms in a,1,6,1 , we obtain that

. a1 f1sinf1o n (fo +3afofo)sin2010 Ao

o = [-m 4wy 2w1 209 + wf]au +
costio(4f1 +3a3,f1) . (4dfaa10 + 3a3yf2)cos2010
[ + 1011 +
Swy 4wy
SinHQO)\l G,Qo)qCOSHQO
—_— —=16 37
[ S, Jaz1 + | 20, 1021, (37)
. o « 3aipac 3aijga 9 f1cosd 2fsa
01 = | 1 I n 1000 3a1002 n fi 10 I fa 10cos2910 n
aio [¢5T01%%]) w1 4&)1 8&)1 w1
A2y20 fi 9fia10, . (4f2 + 9a3yf2) .
_ — 010 — ————""25in26019|0
2&10(,01 (0'2 + w%)]all * [ (2w1a10 * 8w1 )SIH 10 4&11 St 10} 1t
A 0 A in6
1COsU20 . [ 10208111 20]921, (38)
2a19w1 2a10w1
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. sin(6 a
a1 = [*w]au + 0011 — poag — [’Yl 10 cosblag)bar, (39)
2(*)2 20.)2
. o o 3aipac  3ajpw 9 ficosl
O21 = [~ n cosflag + —— + 4 22107 20T Jrcosbio T
2a90w2 alg  Glowi w1 4wy 8w
2 faaygcos261g A2y20 fi 9fia10, .
+ — G0 —
w1 2a10w1(0? + cuf)}a11 * (Zwlalo + 8w Jsinbio

092 — 01 >\1C08020

(4f2 + 904%0]02) .
— - "/gin264¢)|0
dun sin2010)}61 + [ a2 2a10w1

A A
1910 1920 )Sinego]egl, (40)

)ag1 +

2az0w2  2a1pwi

The following linear system is topologically equivalent to the nonlinear system given
by Equations from(37) to (40) as long as the eigenvalues are hyperbolic

ai rirori2 T3 T4 aii
011 _ T21 T22 T23 T24 011 (41)
a1 rz1 0 733 T3y as1
091 T4l T4z T43 Tad f21

The eigenvalues of the Jacobian matrix can be obtained by resolving the following

determinant
A—Ti 12 T13 T14
T21 A =T 23 T24 -0 (42)
r31 0 A —1T33 T34
T41 T42 43 A =Ty

the values of eigenvalues are the roots of the following polynomial
A+ R1)\3 + R2>\2 + RsA+ Ry =0, (43)

According to Routh-Hurwitz criterion, the necessary and sufficient conditions for the
system stability are: Ry > 0, Ri Ry — R3 > 0, R3(R1R2 — Rg) — R%R4 > 0,R4 > 0.

6 Time history

we simulated numerically equation (1) which introduced the nonlinear dynamical model
without and with involved NIPPF control to show the reduce of vibration after adding
this control. After inserting the values of parameters

asp = 0.01,a = 0.01,a7 = 1.5,a3 = 0.02,71 =72 = 1.5,w; =ws = Q =35, =
0.003, f1 = 0.05, fo =0.5,0 = 3, A\ = A\; = 1.5 the time history can be illustrated as
in image.(1) a and b which represents the uncontrolled amplitude time history at
primary resonance of the main model and the time histories of both controlled
amplitude of themain model with NIPPF.
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Image 1: Time History
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0.06 |

0.04
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-0.04

—— -0.06 —
0 50 100 150 200 0 50 100 150 200

Time Time

The vibration amplitudes of main system a without control and b with NIPPF control

We study the effects of different parameters by solving the frequency response equa-
tions (28) - (31). The results are illustrated graphically in Figs. (2 to 14). From the
obtained figures, the steady state amplitudes a; and ay are presented against detuning
parameters o1, oo for the selected practical case (a1 # 0,as # 0). The following curves
represent the frequency response of the system with NIPPF control, where Fig. (a)
shows the frequency response curves for the system) and Fig. (b) shows the frequency-
response curves for NIPPF controller. At o7 = 0 the minimum steady-state amplitude
ay is zero. Fig. (2), (3) shows that the steady state amplitudes for both the main
system and the NIPPF controller are increased according to the increasing values of
the excitation forces amplitudes fi, fo. The controlled main system amplitudes are
inversely proportional to the gains of the control A1, A2 as shown in Figs. 4, 5 and Fig.
6 shown that for increasing -; the controlled main system amplitudes is decreasing
and wider. , for increase 72 the values of amplitude ay, as increase. Figure (8) shows
that for increasing values of the damping coefficients p; both the main system and the
controller are decreasing. Fig.(9) represent the affect of the damping coefficient of the
(NIPPF) controller for increasing po the amplitude of the main system and control are
decreasing.

Fig (10). show that the increase of linear natural frequency w; makes a decrease
in the amplitude of the main system and the vibration reduction frequency band-
width of the control for the amplitude of the main system a; is wider. The controlled
main system amplitudes are inversely proportional to the lossy integrator’s frequency
, the coefficient linear and nonlinear term «a, ag as shown in Figs.11, 12, 13. The fig-

10
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ure(14)shows that when taking different values of the internal detuning parameter oo
the shape of the frequency response curves for both the main system and the controller
are affected by different values, for example when o9 = 0.5 the minimum steady state
amplitude for the main system occurs when o7 = 0.5, for o5 = 0 the minimum steady
state amplitude for the main system occurs when o1 = 0, and for o5 = 0.5 The steady-
state widening of the main system of the small candle occurs when o7 = 0.5 So, at
01 = oy the lower main system steady-state amplitude occurs.

0.4
0.3
al0.2

0.1

=

]
-

-0.5 0 0.5

ol

—

Figure 1: Effect of the linear external excitation force f; on: a the main system (a1),
and b the controller (ag)

0.2
b
0.15
e 04
0.05
0
-1 0.5 1] 0.5 1

ol

Figure 2: Effect of the nonlinear external excitation force fo on: a the main system
(a1), and b the controller (as)

11
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0.15 0.1
b
0.1
o o 0.05
0.05
0 0
. -1 0.5 0 0.5 1
gl ol

Figure 3: The feedback gain A; effectiveness on : a main system and b on the NIPPF
controller

7 Comparison between analytical and numerical so-
lutions

Figure (15) represents the comparison between the numerical solution of equations (3)
and the analytical solution The solution given by equations (28-31) for the modified
Duffing equation with the NIPPF controller for chosen values of system parameters.
The dashed lines show the analytical solution and represent the continuous lines nu-
merical solution.

8 Conclusion

In this paper, the modified duffing equation is studied with NIPPF controller to reduce
the vibration. We use the simultaneous primary and internal resonance case by the
method of multiple scales. The stability of the system under the simultaneous reso-
nances is studied to drive the frequency response equations. The effects of the different
parameters of the system and the controller are studied numerically. The numerical
results are focused on both the effects of different parameters and the response of the
system.
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