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ABSTRACT

In this paper, we demonstrate the performance of new line search methods with three-term hybrid
descent method for the solution of unconstrained optimization problems. The techniques advanced
the sustainable range of step-length to a broader level than the previous ones and give a suitable
initial step-length at each steps of iterations. The global convergence rate of the new line with three-
term hybrid descent method search is carried studied. Some numerical results through performance
profile shows that among the new search method modified Wolfe line search method in CPU time
and iterations is best in practical computation.
Keywords: Quasi-Newton method, search direction, step-length, global convergence, performance
profile.

1. Introduction

Considering an unconstrained optimization problem

min
x∈Rn

f(x). (1.1)

where Rn is an n-dimensional Euclidean space and f : Rn → R is continuously differentiable.
The solution of (1.1) require using an iterative methods with initial starting point x0 to generate
a sequence of points {xk}, k = 1, 2, 3...n, and show progressive approximations to the required
solution by applying the formula

xk+1 = xk + αkdk k = 0, 1, ...n. (1.2)

Where xk is the current iterate, dk the search direction, and αk the step-length. Let (x∗) be a
minimizer of (1.1) and thus be a stationary point that satisfies g(x∗) = 0. We denote f(xk) by
fk, fx∗ by f∗, and ∇f(xk) by gx respectively. The line search method required two step at each
iterations. First is to obtain a search direction dk and second is to select the step-length αk along
the search direction. On the other hand, thedk is typically needed to satisfy the descent condition
gTk dk < 0 which guarantees that dk is a descent direction of f(x) at xk. It has been proved
that search direction perform an essential role in line search techniques and that the step-length
methods mainly guarantee global convergence.
The following condition holds in order to obtain the global convergence of the line search methods.

− gTk dk
||gk||.||dk||

≥ c. (1.3)
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where c ∈ (0, 1] is a constant. The condition (1.3) is sometimes called angle property.
The different method of approaches to select dk and αk yield different convergence properties, and
also for the step-length ensure that the sequence of iterates xk defined by (1.2) globally converges
with some rate of convergence. There are two ways of determine the values of the step-length; By
using an exact line search and an inexact line search.
For exact line search, αk is obtained by using the formula

αk = arg min
α>0

(f(xx + αkdk)). (1.4)

However, it is complex and often problematic to find in practical computation. Therefore, the
inexact line search has been introduced by previous researchers: (Armijo, 1966), (Wolfe, 1969), and
(Goldstein, 1965) to overcome this challenge. Recently, (Yuan, Wei, & Yang, 2019) proposed the
global convergence of some conjugate gradient method with inexalt line search, (Berahas, Cao, &
Scheinberg, 2021) analyse the global convergence of some line search methods, (Hosseini Dehmiry,
2020) show the global convergence of quasi family under conjugate technique, (Yuan, Sheng, Wang,
Hu, & Li, 2018) the global convergence under quasi family, (Masmali, Salleh, & Alhawarat, 2021)
proposed the global convergence properties on a large scale problem, and (Wang, Yin, & Zeng,
2019) show the global convergence of non-convex optimization problem.
This work focused on new inexact line search rule called modified line search rules that advanced
the scope of appropriate step-length and give a good initial step-length at each iteration.
Modified Armijo Rule.

Set scalar lk > 0, β ∈ (1, 0), σ ∈ (0, 12 ), and set Sk = − gTk dk
lk||dk||2 . Let αk be the largest α in

{sk, βsk, β2sk....} such that

fk − f(xk + αdk) ≥ σα||dk||wk(α), (1.5)

Modified Goldstein Rule.
A fixed scalar σ = (0, 12 ) is selected and αk is chosen to satisfy

−(1− σ)αkg
T
k dk ≥ fk − f(xk + αkdk) ≥ σαk||dk||wk(αk), (1.6)

Modified Wolfe Rule.
The step αk is chosen to satisfy

fk − f(xk + αkdk) ≥ σαk||dk||wk(αk)

and
g(xk + αkdk)T dk ≥ ygTk dk. (1.7)

where σ and y are some scalars with σ ∈ (0, 12 ) and y ∈ (0, 1) for k = 0, 1, 2, . . . n. Then, the
sequence of {xk}∞k=0 converges to the optimal point x∗ which minimizes f(x). Hence, modified
Armijo, Goldsten, and Wolfe line search methods are used in this research associated with three-
term hybrid descent search direction.
This paper is organized as follows; In section (2), I illustrate and discussed extensively the im-
portance of search direction in iterative method. The new three-term hybrid method and its
convergence analysis are discussed in section (3). Numerical results and discussion are given in
section (4). The paper ends with a short conclusion in section (5).

2. The Search Direction

In an iterative method of solving an unconstrained optimization problem, search direction is most
important and essential which includes: conjugate gradient method, Newton method, and quasi-
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Newton method. Several of the techniques used in solving unconstrained optimization problem
relies solely on the results of search direction dk. The conjugate gradient (CG) approach contain a
class of unconstrained optimization algorithms with a properties of low memory, easy computation
and global strong convergence, making them efficient for solving large-scale problems in the form
of minx∈Rnf(x) with the differentiable non-linear function f : Rn → R. The CG method is also
essential in finding the minimum value of functions of an unconstrained optimization problems.
(Stiefel, 1952) starts a CG method of solving a linear system of equations with a symmetric posi-
tive definite coefficient matrix for minimizing a strictly convex quadratic function. After, (Fletcher
& Reeves, 1964) used the CG method to solve unconstrained optimization problems. Recently,
CG methods is becoming more popular iterative methods to solve large-scale unconstrained op-
timization problems, since they do not required the storage of matrices (Hanke, 2017; Meurant,
2020; Alhawarat, Alhamzi, Masmali, & Salleh, 2021; Livieris, Tampakas, & Pintelas, 2018; Waziri,
Ahmed, & Sabi’u, 2020; Yuan, Wang, & Sheng, 2020; Hassan, Abdullah, & Jabbar, 2019). The
search direction of conjugate gradient methods is defined by the following:

dk =

{
−gk k = 0,

−gk + βkdk−1 k ≥ 1.
(2.1)

where gk = ∇f(xk) and βk is known as the CG coefficient. There are many ways to calculate βk
and some well-known formulae are.

βFRk =
gTk gk
||gk−1||2

,

βPRk =
gTk (gk − gk−1)

||gk−1||2
,

βHSk =
gTk (gk − gk−1)

(gk − gk−1)T dk−1
,

βBANk =
−gTk (gk − gk−1)

gTk−1(gk − gk−1)
,

βHZk =

(
yk −

(2dk(‖yk‖)2)

(dkyk)

)T (
gk+1

(dTk yk)

)
.

where gk and gk−1 are gradients of f(x) at the points xk and xk−1 and yk = gk−gk−1 respectively.
While ||.|| is a norm of vectors and dk−1 is a direction for the previous iteration. The above
corresponding coefficients are known as (Fletcher and Reeves, 1964), (Polak and Ribiere, 1969)
and (Hestenes and Stiefel, 1952) and (Zhang, Zhou, & Li, 2007; Narushima, Yabe, & Ford, 2011;
Andrei, 2013; Liu & Li, 2014; Dong, Liu, & He, 2015; Moyi & Leong, 2016). Recently, (Kobayashi,
Narushima, & Yabe, 2017; Gao & He, 2018; Bojari & Eslahchi, 2020; Baluch, Salleh, & Alhawarat,
2018; ABDULLAH & JAMEEL, 2019) proposed three-term conjugate gradient methods which
always satisfy the sufficient descent condition.

gTk dk ≤ −c̄||gk||2 for all k = 0, 1, 2...n. (2.2)

and a positive constant c̄, independently of line searches. They proposed the modified FR method
defined by

dk = −θ̄kgk + βFRdk−1

Where θ̄k =
dTk−1yk−1

||gk−1||2 . Since this search direction satisfies gTk dk < −||gk||2 for all k, it can be

written by the three-term form:

dk = −gk + βFRdk−1 − θ1kgk, (2.3)
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where θ1k =
gTk dk−1

||gk−1||2 . They also proposed the modified PR methods and the modified HS method,

which are respectively given by

dk = −gk + βPRdk−1 − θ(2)k yk−1, (2.4)

dk = −gk + βHSdk−1 − θ(3)k yk−1, (2.5)

Where θ
(2)
k =

gTk dk−1

||gk−1||2 and θ
(3)
k =

gTk dk−1

dTk−1yk−1
. Cheng gave another modification of PR method:

dk = −gk + βPRk (I − gkg
T
k

gTk gk
)dk−1 = −gk + βPRk dk−1 − βPRk

gTk dk−1
gTk gk

gk. (2.6)

They obtained their global convergence properties under appropriate line searches. The recent
modification can be seen (Masmali et al., 2021; Liu, Feng, & Zou, 2018; Liu & Du, 2019; Abubakar,
Kumam, Ibrahim, Chaipunya, & Rano, 2021; Bojari & Eslahchi, 2020). We observe that these ap-
proach always satisfy gTk dk = −||gk||2 < 0 for all k, which indicate the sufficient descent condition
with c̄ = 1.
In quasi-Newton family, the search direction is the solution of linear system

dk = −Hkgk. (2.7)

where Hk is an approximation of Hessian. Initial matrix H0 is selected by the identity matrix,
which thereafter updates by an update formula. There are a few update formulae that are widely
used like Davidon-Fletcher-Powell(DFP), BFGS, and Broyden family formula. This study employs
a BFGS formula in a classical algorithm and the new hybrid method. The update formula for
BFGS is

Hk+1 = Hk −
Hksks

T
kHk

sTkHksk
+
yky

T
k

sTk yk
, (2.8)

with sk = xk − xk+1 and yk = gk − gk−1. The approximation that the Hessian must fulfil is

Hk+1sk = yk, (2.9)

This condition is essential to hold for the updated matrix Hk+1. Note that it is only feasible to
fulfil the equations if

sTk yk > 0. (2.10)

which is called the curvature condition.

3. The Proposed Three-Term Method

The modification on three-term approach have been proposed by many researchers; One of the
research is by Ludwig (Ludwig, 2007) which is a hybrid between quasi-Newton methods with Gauss-
siedel method to solve the system of linear equation. Then, Luo et.al (Luo, Tang, & Zhou, 2008)
suggested the new hybrid method which can solve the system of non-linear equations by combining
quasi-Newton method with chaos optimization. Besides, Han and Newman (Han & Neumann,
2003) combine the Quasi-Newton methods and Cauchy descent method to solve unconstrained
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optimization problems and recognized as quasi-Newton-SD method. Also Ibrahim et.al(Ibrahim,
Mamat, & Leong, 2014) proposed BFGS-CG method which is between quasi-Newton and conjugate
gradient method and come out with this search direction.

dk =

{
−Hkgk k = 0,
−Hkgk + η(−gk + βkdk−1) k ≥ 1.

where η > 0 βk =
gTk gk−1
gTk dk−1

Hence, the modification on Quasi-Newton by previous researchers spawned the new idea on hybrid;
the classical method to yield the new hybrid method. Hence, a new hybrid search direction which
combines the concept of search direction of quasi-Newton and conjugate gradient method is created.
It yields a new search direction of hybrid method which is known as Three-term BFGS-CG method.
Search direction for Three-term BFGS-CG method

dk =

{
−Hkgk k = 0,

−Hkgk + η(−gk + βkdk−1 − βk g
T
k dk−1

gTk gk
gk) k ≥ 1.

(3.1)

where η > 0 βk =
gTk gk−1
gTk dk−1

Hence, the complete algorithms for BFGS, (CG-HS, CG-PR, CG-FR), and Three-Term BFGS-CG
method will be arranged in Algorithm(16), Algorithm(17) and (18) respectively.

Algorithm(1) Modified Armijo line search for Three-term BFGS-CG.
Step 1. Given a starting point x0 and Ho = In, choose values for s, β, and σ. Set k = 1
Step 2. Terminate if ||g(xk+1)|| < 10−6 or k ≤ 1000
Step 3. Calculate the search direction by (3.1).
Step 4. Calculate the step length αk by (1.5).
Step 5. Compute the difference between sk = xk − xk−1 and yk = gk − gk−1
Step 6. Update Hk+1 by (12) to obtain Hk

Step 7. Set k = k + 1 and go to step 2.

Algorithm(2) Modified Goldstein line search for Three-term BFGS-CG method .
Step 1. Giving a starting initial point x0 and choose values for s, β, and σ. Set k = 1
Step 2. Terminate if ||g(xk+1)|| < 10−6 or k ≤ 1000.
Step 3. Calculate the search direction by (3.1)
Step 4. Calculate the step size αk by (1.6)
Step 5 Compute the difference sk = xk − xk−1 and yk = gk − gk−1
Step 6. Update Hk+1 by (2.8) to obtain Hk.
Step 7.Set k = k + 1 and go to step 2.

Algorithm(3) Modified Wolfe line search for Three-term BFGS-CG method.
Step 1. Given a starting point x0 and Ho = In, choose values for s,β, and σ. Set k = 1.
Step 2. Terminate if ||g(xk+1)|| < 10−6 or k ≤ 1000.
Step 3. Calculate the search direction by(3.1)
Step 4. Calculate the step length αk by (1.7).
Step 5. Compute the difference between sk = xk − xk−1 and yk = gk − gk−1.
Step 6. Update Hk+1 by (2.8) to obtain Hk.
Step 7. Set k = k + 1 and go to step 2.
Based on Algorithm (1), (2), and (3), we assume that every search direction dk satisfied the descent
condition gTk dk < 0.
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Hence, we need to make a few assumption based on the objective function
Assumption 3.1
H1: The objective function f is twice continuously differentiable.
H2: The level set L is convex. Moreover, positive constants c1 and c2 exist, satisfying

c1||z||2 ≤ zTF (x)z ≤ c2||z||2. (3.2)

for all z ∈ Rn and x ∈ L where f(x) is the Hessian matrix of f.
H3: The Hessian matrix is Lipschitz continuous at the point x∗ that is, there exist the positive
constant c3 satisfying

||g(x)− g(x∗)|| ≤ c3||x− x∗||. (3.3)

for all x in a neighbourhood of x∗

Theorem 3.2 (see[6])
Let {Bk} be generated by BFGS formal (2.8), where Bk is symmetric and positive definite, and
yTk sk > 0 for k. Furthermore, assume that {sk} and {yk} are such that

||(yk −G∗)sk||
||sk||

≤ εk. (3.4)

for some symmetric and definite matrix G(x∗) and for some sequence εk with the property.∑∞
k=1 εk <∞. Then

limk→∞
||(Bk −G∗dk)||

||dk||
= 0. (3.5)

and the sequence ||{Bk}||, ||{B−1k }|| are bounded.
Theorem(3.3). Global convergence.
Suppose that Assumption (3.1) and Theorem(3.2) hold. Then

lim
k→∞

||gk||2 = 0. (3.6)

Proof.
from the condition gTk dk < 0, we see that

gTk dk = −gTk B−1k gk + ηgTk (−gk + βkdk−1 − βk
gTk dk−1
gTk gk

gk), (3.7)

= −gTk B−1
k gk + η(−gTk gk +

gTk gk−1

gTk dk−1
gTk dk−1 −

gTk gk−1

gTk dk−1

gTk dk−1

gTk gk
gTk gk), (3.8)

= −gTk B−1k gk + η(−gTk gk + gTk gk−1 − gTk gk−1), (3.9)

then
gTk dk = −gTk B−1k gk + η(−||gk||2), (3.10)

≤ −λk||gk||2 + η(−||gk||2), (3.11)

gTk dk ≤ c1||gk||2, (3.12)

where c1 = −(λk + η) which is bounded away from zero. Hence, from the Armijo line search
condition, we have that .

fk − fk+1 ≤ σαkgTk dk, (3.13)

≤ σαkc1||gk||2, (3.14)
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holds for all k. Since fk is decreasing and the sequence {fk} is bounded below by H2, we have that

lim
k→∞

(fk − fk+1) = 0, (3.15)

Hence, this (3.14) and (3.15) imply

lim
k→∞

||gk||2 = 0. (3.16)

Test Problems n-dimension Sources
Powell badly scaled 2 More et al.

Beale 2 More et al.
Biggs Exp 6 6 More et al.
Chebyquad 4 6 More et al.

Colville polynomial 4 Michalewicz
Variably dimensioned 4, 8 More et al.

Freudenstein and Roth 2 More et al.
Goldstein price polynomial 2 Michalewicz

Himmelblau 2 Andrei
Penalty 1 2 4 More et al.

Extended Powell singular 4, 8 More et al.
Extended Rosenbrock 2, 10, 100, 200, 500, 1000 Andrei

Arwhead 10,50,100,500,1000 Andrei
PSC 1 2 More et al.

Six-hump camel back polynomial 2 Michalewicz
Extended Cliff 2, 4, 10, 100, 200, 500, 1000 Andrei

Extended Hiebert 2, 4, 10, 100, 200, 500, 1000 Andrei
Extended EP1 2,4,10 Michalewicz

Raydan 1 2, 4 Andrei
Raydan 2 2, 4 Andrei
Diagonal 3 2 Andrei

Cube 2, 10, 100, 200 More et al.
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Figure 1: Performance Profile in a log10 scale based on iteration
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Figure 2: Performance Profile in a log10 scale based on CPU time

4. Numerical Results and Discussion

In this section, we used a set of some selected unconstrained optimization problems from the
CUTEr suite to analyse the performance of several new line search methods used with three-term
hybrid descent method. Each of the test problems is tested with dimensions varying from 2 to
1000. For each of the test problems, the initial point x0 will take further away from the minimum
point. In doing so, leads us to test the global convergence properties and the robustness of the
method. For the Modified Armijo line search, Modified Goldstein line search and Modified Wolfe
line search we use σ = (o, 12 ), the stopping criteria used are ||gk|| ≤ 10−6 and the number of itera-
tions exceeds a limit of 10,000. Performance profile were drawn for the above methods. In general
p(τ) is the fraction of problems with performance ratio τ ; thus, a solver with high values of p(τ)
is preferable. The implementation, numerical tests was performed on Matlab 2021a languages.
Performance profiles of methods are illustrated in Figures 1 and 2. The performance profile seeks
to find how well the solvers perform relative to the other solvers on a set of problems. From Figures
1 and 2, three-term hybrid modified wolfe line search approach has the best performance since it
can solve (97%) of the test problems compared with the three-term hybrid modified Armijo line
search(77%) and three-term hybrid modified Goldstein line search(62%).

5. Conclusion

In summary, we have presented performance of several line search methods used with three-term
BFGS-CG Method descent search for solving unconstrained optimization problems which guar-
anteed sufficient descent condition, and was able to deduce that modified wolfe perform best on
performace profile. Forming an hybrid method out of the existing methods is more efficient espe-
cially when the strength of the component are the target of the hybridization.
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