
Domain Structure in Ferroelectric

Thin Films

Abstract

We investigate the critical conditions for stable domains in the absence and presence of an external field

in thin film ferroelectric crystals. Since the polarization switching involves a pre-existing spontaneous

polarization, it is of fundamental importance to address the question of conditions under which polarized

domains can develop in a ferroelectric thin film. In this work, we have considered the question from an

analytical point of view, focusing on an interesting model introduced in a recent attempt by Lü and Cao [1].

We propose an analytical counterpart of the numerical simulations done in this previous study.
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I. Introduction

F
erroelectric materials exhibit a sponta-
neous polarization (i.e. are ordered)
below a critical temperature T = Tc [2]

known as Curie Temperature [2, 3]. The
broken symmetry state involves an order
parameter and dielectric properties of the
materials which are strongly dominated by a
one-dimensional physics [4, 5]. Indeed, due to
their high dielectric constant, ferroelectrics are
attractive candidates in designs of Dynamic
Random Access Memory (DRAM) devices
while the possibility to switch the polarization
with an applied field can be utilized in cryp-
tography and other data-security softwares.
Very recently, renewed interest to ferroelec-
tric memory devices has been remarkable
with particular emphasis on miniaturized
devices[6, 7, 8, 9, 10, 11]. This new perspective
comes along with great challenges, one of
which is the critical size for stable domains in
thin ferroelectric crystals.

Above Tc, the crystal lattice structure is
macroscopically neutral or in its paraelectric
phase [12]. In general, the spontaneous
polarization in the ferroelectric phase can be
reversed by the application of an electric field.
Induced ferroelectricity is triggered either by
mechanical stress or heat. The first factor is
known as piezoelectric effect, and the second
as pyroelectric effect [2]. In crystals, elastic
interactions between atoms can be modified
by pressure or mechanical stress which af-
fect the cohesion of the crystal lattice thus
inducing a piezoelectric effect. For about two
decades, the physics of ferroelectric materials
has attracted a steady attention from both the
experimental [2, 13, 14] and theoretical points
of view. The earliest theory of ferroelectricity
is the so-called Mean-Field approach based on
the Ginzburg-Landau functional in which an
order parameter P was introduced to describe
the polarization [2, 13, 14, 15, 16]. Being a
quartic polynomial in the order parameter,
the Ginzburg-Landau functional involves
three extrema [17] of which a trivial solution
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P = 0 describing the zero polarization state
and two nonzero solutions P = P1,2 which
in the absence of an applied electric field or
mechanical stress become degenerate so that
P1 = −P2 or vice-versa. These two nonzero
values of the polarization P are the two equi-
librium positions between which the electric
polarization can switch via a polarization
reversal mechanism. The switching between
the two degenerate polarization states can
also be induced by an applied electric field
resulting in a hysteresis loop.

In real contexts, the coupling between
atoms carrying the polarizable charges creates
a dispersion and promotes a displacement
of the polarized electric charges. These
phenomena, which reflect the lattice struc-
ture of the crystal, are described within
the framework of the Ginzburg-Landau
theory by a distortion energy [17] and the
Ginzburg-Landau functional then turns to a
Hamiltonian. In connection with this Hamil-
tonian form, a theory for the polarization
dynamics in ferroelectric crystals has been
constructed and explored at length with the
help of the Hamiltonian formalism. Thus, it
is now well established that the domain wall
spanned by the polarization upon switching
between its two equilibrium positions can be
approximated by the so-called φ4 kink solitary
wave [17, 15, 16]. In the infinite-length limit,
that is when the size of the ferroelectric
device is very large compared to typical
lattice parameter, the kink domain wall is a
single smoothed-out function which is zero at
x = 0 but sharpens as x → ±∞, where the
polarization takes the values P = ±Po. Kinks
and topological solitons in general, are robust
against perturbations and various structural
defects, a feature that makes them promising
candidates in theoretical descriptions of the
high stability of polarized domain structures
observed in real ferroelectric devices.

Starting with a Ginzburg-Landau-Devonshire
free energy widely used [18] in structural
changes of imperfect crystals, Lü and Cao [1]

investigated surface effects on profile, dynam-
ics and stability of domain walls in embedded
thin films. In their work, an approximation
was made, namely, that the domain-wall
shape does not change qualitatively and
thus remains the same as the one known
for infinite-length material, except that the
amplitude and width of domains must now
be determined by appropriate boundary
conditions. In other words, they solve the
equation governing the polarization dynamics
in the infinite-length limit and next, apply
finite-boundary conditions to extract the do-
main size and amplitude. From the viewpoint
of fundamental physics and in view of recent
progress in mathematical techniques for non-
linear equations, the above assumption of Lü
and Cao [1] is rather questionable as it is now
possible to directly solve nonlinear equations
admitting soliton solutions, including the φ4

equation which is also known as the classical
Ginzburg-Landau equation, by quadrature.

The main goal of this paper is to exploit
these recent mathematical approaches to im-
prove numerical results of Lü and Cao [1] as
concerns physical parameters of the domain
wall in finite-size ferroelectrics.

The domain-wall solution will be derived
in the form of the well-known φ4 single-
solitary-wave solution and following the
classic paper of Krumhansl and Schrieffer [17].
We will first look at the Landau free energy
next we look at model of Lü and Cao [1]
model using a more physical considerations
which allows the obtaining of exact results
by a direct quadrature method. The last
section will be devoted to conclusion and
perspectives.

II. DOMAIN WALLS IN
FERROELECTRIC THIN FILMS

Considering the model for domain-wall struc-
tures in ferroelectric thin films proposed by
Lü and Cao [1], in which they used numeri-
cal simulations to provide physical parameters
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are given particular values. This has a draw-
back since it does not permit consistent quan-
titative and qualitative comparisons of theoret-
ical results with experimental findings. After
discussing their numerical results, we will con-
sider an integration method which leads to an
exact analytical kink solution for the φ4 equa-
tion and which reflects the finite size of the
thin film.
Their model [1] consist of a thin ferroelectric
film of finite thickness i.e. −L1s < x < L2s,
embedded in two thin surface layers each sur-
rounded by an electrode. The easy polar axis
of the film is assumed to be normal to the
film surface and the film is in a single domain
state. Starting with the Ginzburg-Landau-
Devonshire energy for the system 1:

GL = Go +
∫ L

−L
dx{1

2
A [T − Tbψ(x)] P2

+
1

4
C P4 +

1

6
D P6 +

1

2
K

(

dP

dx

)2

− 1

2
EdP − ĒieP − EP}. (1)

with A, C, D and K are independent of temper-
ature T and position x. For a first-order phase
transition A, D and K must be positive and C
negative. For a second-order phase transition,
A, C and K must be positive and D = 0. Tb is
the transition temperature of bulk material, E
is an applied external field which is uniform
along the x direction. The direction of aver-
age effective internal bias field Ēie is parallel
to the direction of the easy polarization of an
asymmetric ferroelectric film, Ēie = 0 if there
is inversion symmetry. Lastly, Ed is the depo-
larization field defined as:

Ed = − 1

ǫo
(P − P̄) (2)

where ǫo is the vacuum dielectric permittivity.
We define the average polarization P̄ as:

P̄ =
1

2L

∫ L

−L
P(x) dx. (3)

In general, the depolarization field is irrele-
vant if the system is perfect up to the surface

and the surfaces are coated with metal elec-
trodes. It is also irrelevant if there are injected
charges that neutralize completely the bound
surface charges as well established [19]. The
function ψ(x) in formula (1) represents the in-
homogeneous nature of the surface layer. To
ensure the continuity of the polarization P(x)
and its derivative in the whole region of inter-
est, their require that:

ψ(−L1s) = ψ(L2s) = 1, and

dψ

dx
|x=−L1s

=
dψ

dx
|x=L2s

= 0, (4)

The Hamilton-Jacobi equation obtained from
the Ginzburg-Landau-Devonshire energy (1)
is:

K
d2P

dx2
= A [T − Tbψ(x)] P+

C P3 + D P5 − Ed − Ēie − E. (5)

Lü and Cao solved equation (5) numerically
in the structural regime, i.e. for ferroelectric
instabilities of the second order. In this regime,
the crystal potential is of a double-well shape
and the parameter D = 0. The key point in Lü-
Cao’s numerical analysis is the assumption of
the boundary condition:

dψ

dx
|x=±L= 0. (6)

This boundary condition means that the po-
larization field within a domain extends in the
space up to the surface layers and has a vanish-
ing shape in the electrodes. From a physical
point of view, we can understand this bound-
ary condition as follows: because of the pres-
ence of the electrodes, bound charges are com-
pletely neutralized by free charges on the elec-
trode surfaces. Consequently no charge com-
ing from the thin film is lost, but is compen-
sated for by the electrodes which is a useful
constraint to guarantee loss or non volatility
of the ferroelectric memory.
With the above boundary conditions, the au-
thors solved equation (5) in the continuum
regime with D = 0 and considering the fol-
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lowing forms for the quantity ψ(x):

ψ(x) =



















1 −
(

x+L1s
λ1

)2
, −L ≤ x ≤ −L1s

1, −L1s ≤ x ≤ −L2s,

1 −
(

x−L2s
λ2

)2
, −L2s ≤ x ≤ −L.

(7)
Since their model combines different materi-
als, it can readily be treated as a perfect ma-
terial in which each layer, which represents a
distinct material, is identified by a proper pa-
rameter. In equation(7) it is the degree of im-
perfection λi that characterizes the materials.
Lü-Cao’s numerical simulations were carried
out assuming two distinct cases, first they kept
the thickness of each of the three layers fixed
and vary their degrees of imperfection, and
next vary the layers but fix the degrees of im-
perfection.
Comparing their results with some experi-
mental results [20], we observe full shape
of domain-wall patterns which, that form a
periodic structure implying a dominant peri-
odic ordering of domain walls in polarized
domains of the thin film. We also observed
the shape of a single domain wall in the pe-
riodic domain; it suggests that "kink" profile
displayed by the single domain wall of the
infinite-length system is also present. How-
ever, because of the periodic ordering, domain
walls are nucleated and hence loose their full
kink shape. On the otherhand, Lü and Cao
numerical simulations show a twinned kink
or kink-antikink patterns which are consistent
with the full shape of domain-wall patterns.

III. The governing equation

In this section we have developed an analyt-
ical method for solving the equation govern-
ing the shape and dynamics of domain walls
in thin ferroelectric films taking into consider-
ation the model proposed by Lü and Cao [1].
The motivation of an analytical solution to the
problem is the need for a general solution that
permits more effective comparison of theoreti-
cal predictions with experimental results over
a broad range of parameter values, contrary to

numerical simulations where all physical pa-
rameters are given arbitrary numerical values.
In the displacive regime, the parameter D = 0
and equation (5) which governs the spatial
shape profile of domain walls in the presence
of the external field reduces to:

K
d2P

dx2
= A [T − Tbψ(x)] P+

C P3 − Ed − Ēie − E. (8)

To also take into account the dynamics of do-
main wall, it is useful to rewrite equation (8)
as a nonlinear partial differential equation:

MPtt − KPxx − A [T − Tbψ(x)] P − C P3 + Ed+

Ēie + E = 0.
(9)

where M is the effective mass of the polarized
atom. Defining new parameters as:

f =
P

Po
, Po = P1, , eie =

ǫ0Eie

P0
, e =

ǫ0E

P0
, f̄ = P̄/Po,

a = τ − ψ(x), τ = T/Tb, σ =
1

ǫo ATb
,

F =
(

eie + e + f̄
)

ǫo/Po.
(10)

and introducing a new variable z = x − ϑ t
where ϑ is the domain-wall velocity, equa-
tion (10) reduces to:

fzz −
1

ℓ2

[

a f − f 3 − σ ( f − F)
]

= 0, (11)

with

ℓ
2 =

Mc2
o

ATbγ2
, γ2 = 1 − ϑ2/c2

o ,

(12)
where γ is the Galilean contraction factor. A
further simplification of equation (11) yields:

fζζ − a f − f 3 − σ ( f − F) = 0, ζ = z/ℓ.
(13)

This last equation is the dimensionless φ4

equation with an additional term accounting
for an applied constant external field, of effec-
tive magnitude σ F. It is interesting to note
that, the actual shape of the domain wall de-
scribing the spontaneous polarization as the
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temperature is lowered below the Curie tem-
perature Tb of the embedded ferroelectric film,
is determined by the homogeneous φ4 equa-
tion since this is the exact equation provided
by the double-well potential of the crystal lat-
tice in this temperature regime. Thus, the
external field is applied only after the high-
temperature crystal symmetry has been bro-
ken towards the ferroelectric phase charac-
terized by the polarization order parameter.
Therefore, the shape of the domain wall in the
absence of applied field is more relevant and
will be discussed separately.

i. Domain-wall solutions in the ab-
sence of an external field

In the absence of the external field, (13) turns
to the φ4 equation which we will solve in this
section. Multiplying (13) (in which we have set
F = 0) by fζ and integrating once with respect
to ζ, we find:

f 2
ζ =

a

2

(

α2 − f 2
) (

β2 − f 2
)

, (14)

where α and β are arbitrary parameter con-
nected to the constant of integration. We
group terms which are functions of the vari-
ables ζ and f separately and arrive at the fol-
lowing integral equation:

∫

d f
√

(α2 − f 2) (β2 − f 2)
=

√

a

2

∫

dζ. (15)

Equation (15) is a member of the elliptic inte-
gral equations [21, 22] whose solutions are in
general given in terms of Jacobi Elliptic func-
tions. In our specific case, we wish to solve
this equation for a finite-length system that is,
with the boundary conditions:

f → f1,2 when ζ → ±L, (16)

where the total size of the system is assumed
to be 2L and f1,2 are defined with respect to
the two equilibrium values of the polarization
already defined. In addition, we also require

d f

dζ
|z=±L= 0, (17)

which expresses the jump of the polarization
field on crossing the interface between the thin
film and the surface layer.
From a general standpoint, equation (15) can
be solved irrespective of the boundary condi-
tions (16) and (17). However, once the gen-
eral solutions are obtained we must use the
defined boundary conditions as specific con-
straints to evaluate arbitrary parameters such
as the amplitude, periods and width under-
standing that we expect nonlinear periodic
kink structures.
In terms of Jacobi Elliptic functions [15, 16, 22]
the integral equation (15) leads to the solution:

f (ζ) = f1,2 sn

√

2a

1 + κ2

ζ − ζ0√
2

,

f1,2 = ±
√

−2aκ2

1 + κ2
, (18)

where sn is more precisely the Jacobi snoidal
function and κ = α/β is its modulus. As fig-
ure 1 indicates, the last solution describes a pe-
riodic structure made of ordered kink-antikink
solitary waves of the φ4 type. Associated with
this periodic feature is the period Lκ , which is
a characteristic parameter of the snoidal func-
tion sn determined by the condition:

f (ζ + Lκ) = f (ζ), (19)

and which reads:

Lκ = κ K(κ), (20)

where K(κ) is the Elliptic integral of the first
order. Interstingly enough, in connection with
the inherent periodicity of the domain-wall so-
lution obtained in (18) and which emerges in
figure 1, we can postulate that the constraint
of a finite size favours periodic structures. In
fact our postulate is well conforted by the ex-
periment [20]as discussed early. Before clos-
ing this section, it is also useful to mention
the relevant fact that the periodic arrangement
of kink domain walls has to accommodate the
size L of the system to guarantee their stability.
Accordingly, the size of the thin film should be
proportional to the period Lκ . This last remark
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Figure 1: Periodic domain wall solution of the φ4 equa-
tion.

clearly shows that Jacobi Elliptic functions of-
fer a great advantage in their use for describ-
ing nonlinear excitations in finite-size systems,
as done in many other physical contexts.

ii. Domain-wall solutions in the pres-
ence of an external field

Let us return to equation (13), for which we
will see a solution describing the effect of an
applied field on the domain wall structure in
the finite-size system. Once again, we multi-
ply (13) by fζ and integrate once with respect
to ζ. We obtain:

fζ
2 = 2

(

f 4

4
+ ao

f 2

2
− b f + k

)

(21)

with k the constant of integration, ao = a + σ

and b = σ F. The right hand side of (21) is a
quartic polynomial in f , in general it can also
be rewritten in factorized form as:

F( f ) = ( f − α)( f − β)( f − γ)( f − ξ) (22)

where α, β, γ and ξ are the four roots of the
quartic polynomial. With this factorized ex-
pression, (21) can now be transformed into the
integral equation:

∫ u

0

d f
√

( f − α)( f − β)( f − γ)( f − ξ)
=

√

1

2

∫

dζ. (23)

According to the table of integrals [21], the
last integral equation involves several distinct
kinds of solutions in relation to all the possible
combinations between the four roots. How-
ever, to reduce the number of possible com-
binations we take the case without the exter-
nal field treated previously as a reference, and
choose the roots in such a way that the prob-
lem reduces to this reference when F = 0.
With this assumption, we obtain the combina-
tion u > α > β > γ > ξ as more appropri-
ate for our context. The table of integrals then
yields:

2
√

(α − γ)(β − ξ)
F(φ, qo) =

√

1

2
ζ (24)

where F(φ, qo) is the Jacobi Elliptic integral of
the first kind,

φ = arcsin

√

(β − ξ)(u − α)

(α − ξ)(u − β)
,

qo =

√

(β − γ)(α − ξ)

(α − γ)(β − ξ)
. (25)

To extract the variable u hidden in the argu-
ment of the Elliptic integral F(φ, qo) , we use
a trick which consists of introducing Jacobi El-
liptic functions via the twelve Jacobi identities,
which in our particular case allows us setting:

sin ν = sn u. (26)

Otherwise, remarking that

sin φ =

√

(β − ξ)(u − α)

(α − ξ)(u − β)
(27)

which follows from (25), we find:

(β − ξ)

(α − ξ)

(u − α)

(u − β)
= sn2 Bζ,

B =

√

(α − γ)(β − γ)

2
(28)

and from the last relation we derive f ≡ u;

f (ζ) =
α(1 − β

αλ sn2Bζ)

(1 − 1
λ sn2 Bζ)

, λ =
β − ξ

α − ξ
. (29)
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Figure 2: Periodic domain wall in the presence of an
external field.

As it stands, the last solution is rather cum-
bersome and does not allow at all a simple
interpretation. In addition, although we im-
posed α > β > γ > ξ among the four roots
of the quartic polynomial F( f ), these roots
can be explicitly determined with the help of
quartic factorization tools in Mathematica soft-
ware. For this last purpose, we expand the
factorized form of F( f ), compare coefficients
and solve the resulting 4 × 4 matrix equation.
Nevertheless, it is quite easy to check that
when F = 0, the quartic polynomial F( f ) in-
volves only even powers in f . Therefore the
four roots become doubly degenerate and fall
into two sets of two mutually conjugate roots
which is exactly what we had in (14). The fig-
ure (2) shows that the domain walls are still
periodic. The kink solution of the φ4 equation
with an external bias has already been found
in the infinite-length limit [16, 23, 24, 25, 26].
The work [25] suggest that for a relatively
weak applied field the kink shape is not af-
fected but instead, is accelerated if its motion
is shifted from its zero-field position by a finite
spatial amount, equivalent to the effect of a
"Goldstone translation". However, if the mag-
nitude of the field is large enough the field can
result into a deformation of the kink shape as
shown in figure (2), thus leading to an asym-
metric kink. In fact, the formation of asymmet-
ric kink is not dramatic to the stability of the
system, instead it reflects the capability of the
domain wall to adapt itself to conditions of its

medium imposed by external factors. Basing
on these remarks, we can readily expect the
nonlinear solution obtained in (29) to stand
as a periodic counterpart of the asymmetric
single-kink solution obtained for the φ4 equa-
tion with an external bias [23, 24, 25, 26].

IV. CONCLUSION

We have investigated the structure of domains
and domain walls in the ferroelectric phase of
perovskite crystals with finite sizes and show
that, these systems are promising candidates
for the design of non-volatile thin ferroelec-
tric Random Access Memory devices. We
considered a specific model introduced Lü
and Cao whose numerical results are in good
agreement with experimental predictions for
single domain, and have proposed an analytic
theory in support of these numerical results.
In the particular case when the external field
is switched off, we found an analytical soliton
solution whose periodic feature is also in
good agreement with both experiments and
simulations of Lü and Cao. In the case when
the applied field is not zero, even though
the analytical solution is rather cumbersome
and does not permit simple interpretation
with respect to available experimental and nu-
merical results, nevertheless, we have shown
that this complicated general solution has the
homogeneous solution which is still periodic
and reduces to the well known asymmetric
kink solution of the infinite-length φ4 model
with external field. Thus, despite an apparent
complex form the general solution proposed
for the first time in this work is relevant.
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