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Review Article 
 
A NONPARAMETRIC APPROACH TO VARIANCE FUNCTION ETIMATION: 
AN APPLICATION TO NAIROBI’S STOCK EXCHANGE MARKET 
 
 
 
 
Abstract 
We consider the analysis of a method for fitting regression models to data in the field 
which exhibit nonconstant variances. We focus on various approaches and methods of 
estimating the nonconstant variances. We discuss the nonparametric approach which 
includes the smoothing methods and the selection of the optimal bandwidth. Generally, 
the principal problems of interest are the choice of the smoothing method and the 
selection of the bandwidth (R Dennis Cook and Sanford Weisberg 2009). We compare 
the two mostly used smoothing techniques; the Kernel and the Spline. We illustrate the 
three smoothing techniques from the data obtained from Nairobi stock exchange market 
and found that the Kernel smoother produces the best estimate since its variance is less 
than that of the Spline smoother. 
 
Key words: Kernel smoother, Spline, smoothing, Bandwidth. 
 
1. Introduction 
The breakdown of fixed exchange rate system has sharply increased financial risks in 
financial institutions. Recent finance disasters in trade portfolios like the national bank of 
Kenya for example, have underlined the need for accurate financial risk measures in 
institutions such as banks and investment firms. The nature of financial risks has changed 
with time and therefore the method to measure them must adapt to recent experience. It is 
in this context that quantitative measures have become vital in the management for both 
internal and external requirements parallel with others models of returns. 
Due to globalization, which has resulted to a fast financial world, there is motivation to 
develop efficient and effective risk measures which will respond to news just like the 
other forecasts and must be easy to understand even when the situation is complex. 
Despite the simplicity of the risk, its management has remained a challenging statistical 
problem partly because it depends on the joint distribution of the portifolio returns which 
typically changes overtime. It is for this reason that we estimate the variance function of 
shares volume of Nairobi stock exchange market. The purpose of the paper is to provide 
financial managers and shareholders with a non technical and flexible model for market-
to-market reporting.   
The study has a variance model that will help financial managers and shareholders in the 
following ways:-Information reporting, Resource allocation and Performance evaluation.  
Variance function can be used to adjust performance for risk. This is essential in a trading 
environment where traders have a natural tendency to take on extra risk. Risk capital 
charges based on variance function provide correct incentives to traders. 
In many applications, it is a priori unclear how the variance function should be specified. 
However efficient inference for the regression parameters relies on correct variance 
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functions. When the model is mispecified the resulting model fit can be biased, and the 
possibility for making wrong inferences exist. Even in the most common form of 
nonparametric regression where the mean is left unspecified, it is common to assume that 
the observations are uncorrelated, which can be viewed as a “parametric” assumption on 
the distribution of the errors. Violation of that assumption has a serious effect on the 
bandwidth for estimating that mean function (Hardle, W (1993). 
 
 
 
THE MODEL 
Lets consider the data points    i

n
iii XwhereYX 1,   is from uniform distribution and 

  iiii XmY  , ~  2,0 N . The X-variate is uniformly stochastically distributed over 
the unit interval and the observation errors i  have the standard normal distribution. The 
errors and the design points are assumed to be mutually uncorrelated that is 
  iiiXE  0  

Model 1 (Parametric regression model) 
  iii xfY   , , where  .f  is a known function,   is the unknown parameter to be 

estimated, and the errors i  are independent and identically distributed, such that 

  0iE  and   iiE  022   for constant variance. 
Model 2 (Non-parametric regression model) 

  ,iii XmY     .m  is unknown function to be estimated and the errors i  are 

independent, satisfying    0iE  and   022  iiE  (non-constant variance). 

We therefore consider the regression curve  
2
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1






 


x

exxm  and the structures 
of the variance function (variance of the observations is a function of the mean). 
Case 1 
            5varvar 22  iiiiii XmorxmxmYE   

Case 2 
522  ii X  

In case 1, the variance function is mean dependent, whereas it depends on the design 
points in case 2. 
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Image 1: DATA SIMULATION USING CASE 1 AND 2 AND SCATTER PLOTS 
OF RESIDUALS AGANIST X-VARIATE AND RESIDUALS AGANIST  xm̂  
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2. Basic idea of smoothing 
If m(.) is believed to be smooth, then the observation at ix , near x should contain 
information about the value of m(.) at x. Thus, it should be possible to use something like 
local average of data near x to construct an estimator of m(x). Smoothing of a data set 
 ii yx , , i = 1, 2, 3………n    involves the approximation of the mean response curve m(.) 
in the regression relationship. The function of interest could be the regression curve itself.  
In the trivial case in which m(.) is a constant, estimation of m(.) reduces to the point of 
location, since an average over the response variables y yields an estimate of m(.). In 
practical studies though it is unlikely that the regression curve is constant. Rather the 
assumed curve is modeled as a smooth continuous function of a particular structure 
which is nearly constant in small neighborhoods around x (Jobson. J.D and Fuller, W.A 
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1980). It is not easy to judge from looking even at a two-dimensional scatter plot whether 
a regression curve is locally constant.  A reasonable approximation to the regression 
curve m(.) will therefore be any representative point close to the centre of this band of 
response variables (Carrlo, R.J and Ruppert, D 1987). A quite natural choice is the mean 
of the response variables, near a point x. The local average should be constructed in such 
a way that it is defined only from observations in a small neighborhood around x, since y 
– observations from points far away from x will have, in general very different mean 
values. 
The local averaging procedure can be viewed as the basic idea of smoothing. More 
formally this procedure is defined as 

                                                      



n

i
ini yxwnxm

1

1 ,ˆ                                   

 Where   )(xwni ,  i = 1,2…………………n donates a subsequences of weights which 
may depend on the whole vector ix   ,i= 1 , 2,……..n. Every smoothing method to be 

described in this work is, at least asymptotic, of the form    



n

i
ini yxwnxm

1

1ˆ .Quite 

often the regression estimator  xm̂  is just referred to as a smoother and the outcome of 
smoothing procedure is simply called the smooth. 
Special attention has to be paid to the fact that smoothers, by definition average over 
observations with different mean values. The amount of averaging is controlled by the 
weight sequence )(xwni , i = 1, 2,… ,n, which is tuned by a smoothing parameter. This 
smoothing parameter regulates the size of the neighborhood around x meaning a local 
average over too large a neighborhood would cast away the good with the bad (A Ian 
McLeod 1998). In this situation an extremely oversmoothed curve would be produced, 
resulting in a biased estimate  xm̂ . Defining the smoothing parameter so that it 
corresponds to a very small neighborhood would not shift the chaff from the wheat. Only 
a small number of observations would contribute nonnegligible to the estimate )(ˆ xm at x 
making it very rough and wiggly. In this case the variability of )(ˆ xm  would be inflated. 
Finding the choice of smoothing parameter that balances the trade-off between over 
smoothing and under smoothing is called the smoothing parameter selection problem 
(Sanford Weisberg 2005). 
3. A comparison of Kernel and Spline smoothers 
Kernel function K (.) 
One of the most active research areas in statistics in the last 20 years has been the search 
for a method to find the "optimal" bandwidth for a smoother. There are now a great 
number of methods to do this although none of them is fully satisfactory. Here we present 
the comparative of two commonly used and easy to implement smoothers. The Kernel 
and the cubic spline. 

1-dimensional kernel function takes the form    uK
h
Xx

K
h

XxK i
ih 






 


1 . 

It is a type of local smoother which assigns weights to the observations iX . The weights 
decreases with the distance between the point of estimation x and iX , i=1, 2, 3…n. 
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Various forms of kernel form of kernel exist including uniform, triangle, Epenechnikov, 
Bisquare and Gaussian among others. Among these kernel function, Gaussian has infinite 
support while all the others are bounded in [-1,1] (Carrlo, R.J and Ruppert, D 1987). In 

this study we use the Gaussian kernel which takes the form K(u) 



 2

2
1exp

2
1 u


     

where     
h
Xxu i

 . The parameter h is called the bandwidth which determine how 

large neighbourhood of the target point x, is used in estimation. A large bandwidth 
generates a smooth curve but with a high possibility of obscuring the interesting 
structures. A very small bandwidth generates a wigglier curve. 
However, both practical and theoretical considerations limit the choice of the kernels. 
Given the bivariate data  n

iii yx 1,  , the smoothed value  .m̂  produced by a kernel function 
K(.) can be given as 

 











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




 
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




 


N

i

i

N

I

i

h
xx

n

Y
h

xx
Kn

m

1

1

1

1

.        ,    0<x, ix <1, i=1,...,N 

(Elizbar A Nadaraya 1964) 

Cubic spline 

A common measure of “fidelity to the data” for a curve g is the residuals sum of squares 

  



n

i
ii xgy

1

2 if g is allowed to be any curve unrestricted in functional form. Then this 

distant measure can be reduced to zero by any g that interpolates the data. Such a curve 
would not be acceptable on the ground that it is unique and that it is too wiggly for a 
structure oriented interpolation. The spline smoothing approach avoids this implausible 
interpolation of the data by quantifying the competition between the aims to produce a 
curve without too much rapid local variation (Carrlo, R.J and Ruppert, D 1987). There 
are several ways to quantify local variation. One could define measure of roughness 
based, for instance, on the first, second and so forth derivatives. In order to explicate the 
main ideas the integrated squared deviation is most convenient that is the roughness 
penalty   

   dxxg 2"  
 is used here to quantify local variation. Using these measures we define the weighted 
sum  

      dxxgxgygs
n

i
ii

2
2

1
")(  



  

 where denotes a smoothing parameter. The smoothing parameter   represents the rate 
of exchange between residuals errors and roughness of the curve g. The problem of 
minimizing  .s  over the class of all twice differentiable functions on the interval 
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   )()1( ,, nxxba   has a unique solution )(ˆ xm which is defined as the cubic spline.  
The observations considered are in a small neighborhood of x since y observations far 
away from x will have, in general very different mean values. In obtaining the smooth 
curve the selection of the kernel function is not enough but rather the consideration of the 
bandwidth h is equally very important (Silverman, Bernard W 1984). 

The comparison is preformed on a simulated data set. When we look at the kernel 
smoothing, a variety of kernel functions have been studied. Kernel smoothing technique 
is one of the simplest estimation which is straight forward to implement without further 
mathematical knowledge and it is understandable on an intuitive level. The decision 
about the right amount of smoothing is crucial. The challenge in smoothing is to choose 
the best bandwidth that balances the desire to reduce the variance of the estimator (which 
needs lots of data points) yet capture significant small-scale features in the underlying 
distribution (which needs a narrow bandwidth).  
Every smoothing method has to be tuned by some smoothing parameter which balances 
the degree of fidelity to the data against the smoothness of the estimated curve. A choice 
of the smoothing parameter has to be made in practice and controls the performance of 
the estimators. One thing that has to be noted here is that the user of a nonparametric 
smoothing technique should be aware that the final decision about an estimated 
regression curve is partly subjective since even asymptotically optimal smoothers contain 
a considerable amount of noise that leaves space for subjective judgment. It is therefore 
of great importance to make such a decision in interaction with the data, which means 
that ideally one should have a computer resource with some sort of interactive graphical 
display. Our main interest here is to show the best of these functions more specifically 
when we are considering kernel to be normal –the Gaussian density given by  

K(x) 



 2

2
1exp

2
1 x


                        x <1 

Several procedures of obtaining the bandwidth have been studied and our choice for the 
best bandwidth is to come up with several plots and select the bandwidth which 
outperforms the rest. The selection criterion here has been made fast and easy by using 
computer software S-plus where we have come up with a program which will perform 
this task. In our investigation here we compare the techniques of smoothing by using  
data obtained from Nairobi stock exchange. The best smooth parameter is therefore found 
by looking at the curves plotted using this program and hence choosing the one that 
adequately fits the data (that is the one which is optimal). In this data set, we vary 
smoothing parameters until we get the best. The best smoothing parameter that we get 
here, can be used straight forward to smooth any given data of any size instead of using 
trial and error method to get the best smoothing parameter.  
 
6.Choosing the smoothing parameter 
The problem of deciding how much to smooth is of great importance in non parametric 
regression. Hence in this section we will be focusing on finding a good way of choosing 
the smoothing parameter of various smoothing methods. The conditions required for a 
bandwidth selection rule to be “good” are, first of all it should have theoretical desirable 
properties secondly it has to be applicable in practice. Regarding the first condition there 
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have been a member of criteria proposed that measure in one way or another how the 
estimate is to the true curve. 
Before embarking on technical solutions of the problem it is worth noting that a selection 
of the smoothing parameter is always related to a certain interpretation of the smooth 
(Norman R Draper and Harry Smith 1998).. If the purpose of smoothing is to increase the 
“signal to noise ratio” for presentation or to suggest a simple (parametric) model, then a 
slightly “over smoothed” curve with a subjectively chosen smoothing parameter might be 
desirable. On the other hand, when the interest is purely in estimating the regression 
curve itself with an emphasis on local structures then a slightly ”under smoothed” curve 
may be appropriate. However, a good automatically selected parameter is always a useful 
starting (view) point. An advantage of automatic selection of the bandwidth for kernel 
smoothers is that comparison between laboratories can be made on the basis of a 
standardized method. Another advantage of the same lies in the application of additive 
models for investigation of high-dimensional regression data. 
 

 

 
We compare the two smoothing techniques using simulated data sets. 
Some of the smoothing techniques are; 

(i) Kernel smoothing technique 
(ii) Spline smoothing technique 

 
 
 
Figure 1: shows a simulated data of size n =1000 data points with a kernel smoothing 
technique with smoothing parameters:  h = 0.004, 0.175, 0.3 and 0.7. The blue curve 
whose smoothing parameter h=0.175 has the optimal bandwidth. It outperforms the rest 
as the best smoothing parameter. Smoothing parameters less than 0.175 would under 
smooth the data and smoothing parameters greater than 0.175 would over smooth the 
data. 
 
 
 
 
 
 
 
 
Kernel smoothing technique 
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Figure 3.5:A scatter plot and Kernel smoothers

 
 
 

 

Figure 2: shows a simulated data of 100 data points with a kernel smoothing technique 
with smoothing parameters:  h = 0.004, 0.175, 0.3 and 0.7. The blue curve whose 
smoothing parameter h=0.175, outperforms the rest as the best smoothing parameter in 
this data. Smoothing parameters less than 0.175 would under smooth the data and 
smoothing parameters greater than 0.175 would over smooth the data. In the case of an 
extremely over smooth, the curve produced would result in the bias estimate m̂ . 
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Figure 3: shows a simulated data of size n =1000 data points with a spline smoothing 
technique with smoothing parameters:   = 5, 20, 35, 70. The blue curve whose 
smoothing parameter (bandwidth)  = 35 has the optimal bandwidth. It looks fairly 
smooth and hence it outperforms the rest as the best smoothing parameter. 
6. Empirical study (real data) 
Here, we assume that the variance function is completely unspecified. The non-
parametric approach in estimating a regression curve has its main purposes which 
includes:- 

- Providing a versatile method of exploring the general relationship between two 
variables. 

- Giving predictions of observations yet to be made without reference to a fixed 
parametric model. 

- Providing a foot for finding spurious observations by studying the influence of 
isolated points. 

- Constitutes a flexible method of substituting for missing values or interpolation 
between adjacent x-values. 

- By the nature of flexibility the nonparametric method is helpful in preliminary 
and exploratory statistical analysis of a data set (J Brian Gray2000). 
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We specifically explore the possibility of situations where nothing is known about the 
variance function in heteroscedastic regression problems except that it is a smooth 
function of the design or mean response. 
We denote the variance function by  ̂,ixV  or V ic . In estimating the variance function 

we use residuals. The residuals are defined as  ̂,ii xfy  . 
Then the expectation of the squared residuals gives the estimate of the variance function 
given by  

     ,,)( 22
iiii xVxfyErE   (A Ian McLeod 1998) 

We can also have the model in the design alone which is defined as  
   
                                               iii cVyVar )(                                    

where V(.) is unknown 
and  ic  is a set of identically and independent distributed random variables independent 
of  ie .In practical studies, to achieve the smooth conditions we use large data sets with 
the help of graphical enhancements and smoothing techniques. 
We will use the kernel and cubic spline smoothers to portray the approach. A variety of 
kernel functions have been studied. However, both practical and theoretical 
considerations limit the choice of these kernels. 
7.Example 
We illustrate the two smoothing techniques from data obtained from the Nairobi stock 
exchange. We want to study the share volume in successive months over a period of 5 
years 4 months of Kenya commercial bank. We will construct a regression model that 
relates to time ( ix ) and ( iy ) the share volume. The list of the variables are time, share 
volume in Kenyan shilling, residuals and residuals squared. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 
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Figure 4: a) shows a scatter plot of share volume against time. b) Shows residuals squared 
against time. c) Shows residuals squared against time.  
d) Shows both kernel and spline smooth of squared residuals against time. 
 
8.Conclusion 
Recommendation here is that the Kernel smoother produces the best estimate since its 
variance is less than that of the Spline smoother. From figure 3(d), we see that the spline 
has more variability around the middle and this shows that its variance is higher. 
There is a great difference along the boundaries (that is the beginning and the end) and 
we recommend that more research be conducted to find out why there is such 
discrepancy. 
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