
 

 

An Investigation into Social and Cultural Pressures of Vulnerable Women using 

Survival Analysis with Covariates 

 

Abstract 

In this study, we sought to model the time to the first birth interval from marriage for women in Nigeria, and 

identify the various factors affecting this timing. The study was also set to determine the average/median 

survival time for marriage to first birth interval among Nigerian women, to provide enlightenment in such 

areas and possibly reduce anxiety levels of women who have little or no knowledge of the median survival 

time to first birth who might be vulnerable to the exploitations of illicit religious and medical practitioners. 

Data obtained from the Nigerian Demographic Health Survey (NDHS) 2018 was used for the purpose of this 

research. Information on the following variables was obtained: Time to first birth from marriage, Age 

Women's education, Wealth index, Place of residence, Employment, Contraceptive, Religion, and Region. 

The Kaplan-Meier estimator was used to estimate the median survival time, while the log-rank test was used 

to test the significance of the categories of the covariates used. The Density, Quantile, Survival and 

Probability plots were used to study candidate distributions that appropriately describe the data, and the 

Akaike Information Criterion (AIC) was used to select the best distribution for the Accelerated Failure Time 

Model. 

The study found that the median Survival time of marriage to the first birth interval was 20 months. Level of 

education, religion, region, use of contraceptives and Wealth Index were found to significantly affect 

marriage to the first birth interval. A log-normal Accelerated Failure Time Model was fit to the data. 

Women with higher education were found to have a shorter time to first birth interval. Also, women from 

South-Wester Nigerian had shorter marriage to first birth interval than the other regions. 

Keywords: Survival Analysis, Marriage Birth Interval, NDHS 2018, Accelerated Failure Time Model, Kaplan-Meier 

Estimator 

 

Introduction 



 

 

The first visible outcome of the fertility process is the birth of the first child. The first birth marks a 

woman’s transition into motherhood. It plays a significant role in the future life of each individual woman 

and has a direct relationship with fertility (Tadesse, F., & Headey, D. 2010). The timing of the first birth 

influences the number of children a woman bears throughout her reproductive period in the absence of any 

active fertility control, and women who start giving the first birth very early in life tends to have a large 

number of children than those who starts late Gyimah, S. O. (2003). Age at the start of marriage is one of 

determinant factors. Early childbearing can interrupt a young women’s education and other activities which 

women need to accomplish. (Bongaarts, J. 2015).  Clinical outcomes come in a variety of statistical forms. 

Some are continuous, such as systolic blood pressure, and can be easily analyzed with linear regression. 

Others, such as mortality or myocardial infarction (MI), are distinct events and have forms that are slightly 

more complex to analyze statistically.  

The growing issue of childlessness and delayed births has made women vulnerable, especially to fake 

religious leaders and quack medical practitioners in search of answers/solutions. Social and cultural 

pressures for children against couples often lead to desperate measures. Poor or even total lack of knowledge 

of the average marriage to birth interval (AMBI) increases the level of anxiety amongst couples in the event 

there is delay in child birth especially the first one. Hence, this paper is to model marriage to first birth 

interval among women so as to provide some confidence to women and marriages experiencing delay since 

AMBI is a significant determinant of fertility. 

Fertility is one of the factors that influence the fluctuation of the number of populations. One of the 

indicators of fertility rate is the total fertility rate (TFR), which can be defined as the average number of 

children that would be born to a woman over her reproductive age. According to (Islam, 2009), TFR can be 

reduced by increasing the age at marriage. However, this strategy is difficult to apply in the developed 

countries such as Indonesia due to the influence of social and cultural factors. Another alternative strategy is 

by controlling the FBI, which is defined as the time interval of a married woman to give birth her first child 

since the time of first marriage. If the FBI can be controlled, the next birth time is also automatically 

controlled (Islam, 2009). 



 

 

 

 

 

Data Structures and Methodology 

The data used for this study was obtained from 2018 Nigeria Demographic Health Survey (NDHS). The 

response variable is time-to-first birth from marriage among women in Nigeria, which is measured in 

months. For women who did not give birth (censored) the time was measured till the date of the interview. 

The Independent variables are shown in the table below. The table shows the various covariates used to 

model the survival time, and the categories for each covariate. 

Table 1: Variables and categories for covariates used in the model 

Variables Description Categories 

Age Age of women at 

marriage 

Measured in years 

Women 

education 

Women’s level of 

education 

0 = No-education;1 = Primary 

2 = Secondary and 3 = higher 

Wealth index Household wealth 

index 

0 = Poor; 1 = Middle; 2 = Rich 

Place of 

residence 

Place of residence 1 = Urban; 2 = Rural 

Employment Employment status 0 = unemployed,1 = Employed 

Contraceptive Use of 

Contraceptive 

0 = Non-User, 1 = User 



 

 

Religion Religion of 

respondents 

0 = Christian, 1 = Muslim,2 = Other 

Region Region of 

residence 

1=North Central, 2=North East, 3=North West, 4= South East, 5= 

South-South, 6= South West 

 

Kaplan-Meier estimator 

Let           denote the actual times of the occurrence of the event of interest of n individuals. Let 

          denote the number of event occurrences at each of these times, and let            be the 

corresponding number of subjects yet to experience the event of interest. 

Note:                    

Then for any time          we have                                                          
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Similarly, for any time          we have 

         
  

  
    

  

  
         (1) 

Hence in general for any time            we have 
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This is the Kaplan - Meier estimator of the survivor function     . 

The Kaplan-Meier estimator      can be regarded as a point estimate of the survival function      at any 

time t. 

Cox Proportional Hazards Models 



 

 

Proportional hazards models are a class of survival models in statistics. Survival models relate the time that 

passes, before some event occurs, to one or more covariates that may be associated with that quantity of 

time. In a proportional hazards model, the unique effect of a unit increase in a covariate is multiplicative 

with respect to the hazard rate. For example, taking a drug may halve one's hazard rate for a stroke 

occurring, or, changing the material from which a manufactured component is constructed may double its 

hazard rate for failure. Other types of survival models such as accelerated failure time models do not exhibit 

proportional hazard 

The purpose of the model is to evaluate simultaneously the effect of several factors on survival. In other 

words, it allows us to examine how specified factors influence the rate of a particular event happening (e.g., 

infection, death) at a particular point in time. This rate is commonly referred as the hazard rate. Predictor 

variables (or factors) are usually termed covariates in the survival-analysis literature. 

The Cox model is expressed by the hazard function denoted by     . Briefly, the hazard function can be 

interpreted as the risk of dying at time t. It can be estimated as follow: 

                                       (3) 

Where, 

   represents the survival time 

     is the hazard function determined by a set of p covariates              

 The coefficients              measure the impact (i.e., the effect size) of covariates. 

 The term    is called the baseline hazard. It corresponds to the value of the hazard if all the    are 

equal to zero (the quantity exp (0) equals 1). The   in      reminds us that the hazard may vary over 

time. 

The Cox model can be written as a multiple linear regression of the logarithm of the hazard on the 

variables   , with the baseline hazard being an ‘intercept’ term that varies with time. The 

quantities          are called hazard ratios (HR). A value of    greater than zero, or equivalently a hazard 



 

 

ratio greater than one, indicates that as the value of the     covariate increases, the event hazard increases 

and thus the length of survival decreases. In other words, a hazard ratio above 1 indicates a covariate that is 

positively associated with the event probability, and thus negatively associated with the length of survival.  

 A key assumption of the Cox model is that the hazard curves for the groups of observations (or patients) 

should be proportional and cannot cross. 

The hazard ratio for two subjects, k and k’ with respective hazard functions  
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 is given as: 
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This hazard ratio is independent of time. The proportional hazard assumption however implies that the 

hazard of the event in any group is a constant multiple of the hazard in any other. In other words, if an 

individual has a risk of death at some initial time point that is twice as high as that of another individual, 

then at all later times the risk of death remains twice as high. It gives the effect size of covariates. 

Accelerated Failure Time (AFT) Model 

Let       and       be the survival functions of two populations. The AFT models says that there is a 

constant c > 0 such that  

                                              (7) 

This model implies that the survival time of population 1 is c times as much as that of population 2. 

Let    be the mean survival time for population   and let    be the population quantiles such that 

   (t)(   ) = µ for some        . Then 
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And 

                       (9) 

Assume that        is a strictly decreasing function. Then we have 

               (10) 

This shows that under the accelerated failure time model, the expected survival time, median survival time 

of population 2 all are c times as much as those of population 1.   is sometimes called the acceleration 

factor. 

Let    be the event time for individual  , and let                 
 
be a fixed covariate vector that allows 

a possibly non-null intercept. The AFT model can be represented by 

                              (11) 

where    are independent and identically distributed random errors with a distribution with support in the 

whole real line and that does not depend on   .  

The vector               
 
and σ are unknown parameters. 

The above framework describes a general class of models: depending on the distribution we specify 

for  , we will obtain a different model, but all will have the same general structure. Accelerated failure time 

models allow a wide range of parametric forms for the density function. For each distribution of  , there is a 



 

 

corresponding distribution for T. The members of the AFT model class include the exponential AFT model, 

Weibull AFT model, log-logistic AFT model, log-normal AFT model, and gamma AFT model. The table 

below gives a brief summary of Parametric AFT models 

 

Table 2: Summary of Popular Parametric AFT Models 

Distribution of   Distribution of T 

Extreme value (1 parameters) Exponential 

Extreme value (2 parameters) Weibull 

Logistic Log-logistic 

Normal  Log-normal 

Log-Gamma Gamma 

 

Given the values of the covariates x, the density function has the following form  

              
            

 
       (12) 

Where   is the scale parameter, and      is some function of covariates; A popular choice for      

is                   (13) 

AFT models assume a survivor function of the following form, 
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where   
  is baseline survivor function. 

The Weibull, lognormal, and log-logistic distributions for lifetime correspond to extreme value, normal, and 

logistic distributions for log of the lifetime, and the survivor function is given by 
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Table 3: The       functions for some common distributions 

Distribution    Survivor Function       

Normal             

Extreme value               

Logistic               

 

Parameter Estimation using Maximum Likelihood estimation 

Survival times may be subject to right censoring. Here, the censoring times are represented by the 

independent random variables                  , which are assumed to be independent of            The 

censoring mechanism is assumed to be non-informative, that is, the distribution of the     does not depend 

on unknown parameters. Let     , if the observation for individual i is a failure time, and    , if it is a 

censoring time. The observations can be represented by the pairs of random variables       , where   

                 , and the covariate vectors   ,                  

The likelihood function for the unknown parameters is given by 
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where    is the observed value of   ,             denote the density and survival functions of   , 

respectively, and           is the vector of unknown parameters 

Using   
       

 
  the log likelihood assumes the form 
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The components of the score vector is given by 
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where        
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In matrix form, the score vector can be written as 
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where            
                 matrix of covariates, and            

  , 

                     
                 

  are n dimensional column vectors. 

Table 4 gives the expression for    in equ(21) for AFT models frequently used in survival data applications. 

The expression for   for the exponential distribution equals the corresponding    for the Weibull 

distribution with   . Maximum likelihood estimates (MLEs) for β and  are obtained by solving the 

system of equations       , which requires a numerical nonlinear optimization algorithm (such as 

Newton-Raphson and Fisher’s scoring) 

Table 4: Expression for    in equation 21 for some common models 

Model Error Distribution    

Weibull Standard extreme value            

Log-Normal Standard Normal 
      

    

       
 
      

   
 



 

 

Logistic Standard Logistic         

          
          

Note:     is the standard normal cumulative distribution function. 

 

The observed information matrix is 
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Other methods used in this study include; Newton Raphson Iteration while hypotheses were tested based on 

standard criteria such as the Likelihood Ratio and Wald tests. The Goodness of fit of the model were 

assessed using Akaike Information Criterion (AIC), R
2
, Cox-Snell Residual. Cox-Snell residuals are 

calculated by using cumulative hazard          function and standardized residual as:  

    
                 

  
        (24) 

Where                are maximum likelihood estimates of                           

 

 

 

 

 

Result And Discussion 

The data obtained for the study were analyzed and interpreted in this section. The general median survival 

time was ascertained as well as those of the subcategories of various covariates. An appropriate survival 

model was built to model the first birth interval. 



 

 

 

Figure 1: Kaplan-Meier Plot of First Birth Interval 

The Kaplan Meier Plot above shows the probability of survival as the survival time increased. That is the 

probability of not having a first child (i.e., not experiencing the event of interest) as the survival time 

increases. 

Table 5: General Median Survival 

Time 

 

 

Calculations from the Kaplan-Meier and its plot shows that the median survival time for the marriage to first 

birth interval for Nigerian women stood at 20 months using the NDHS 2018 datasets. 

 

Table 6: Median survival Time by Level of Education 

          n events median 0.95LCL 0.95UCL 

edu=0 10780  10171     23      23      23 

edu=1  3790   3651     18      18      19 

edu=2  6291   5922     17      17      18 

edu=3  1937   1770     16      16      17 

n     events   median 0.95LCL  0.95UCL 

22798   21514      20      20       20 



 

 

 

The result shows that median survival times for Nigerian women with no education (edu=0) is 23 months, 

18 months for those with primary education (edu=1), 17 months for those with secondary education (edu=2)  

and 16 months for respondents with higher educational qualification (edu=3). It is observed that the median  

survival time dropped with increasing educational qualification. 

 

Table 7: Median survival Time by Place of Residence 

 

 

The result on type of place of residence shows that respondents who lived in urban areas (por=1) had a  

median survival time of 18 months while their rural counterparts had a median survival time of 21 months 

Table 8: Median survival Time by Working Status 

           n events median 0.95LCL 0.95UCL 

work=0  7061   6457     21      21      22 

work=1 15737  15057     19      19      20 

 

The result on working status of the respondents shows that those who were not working had a median 

survival time of 21 months while those that worked had a 19 months median survival time. 

Table 9: Median survival Time by Religion 

               n events median 0.95LCL 0.95UCL 

religion=0  8927   8462     17      17      17 

religion=1  13711 12899     22      22      22 

          n events median 0.95LCL 0.95UCL 

por=1  7958   7564     18      18      18 

por=2 14840  13950     21      21      21 



 

 

religion=2   160    153     21      19      25 

 

The results further reveal that the median survival time for Christians (religion=0) were 17 months, while 

the Muslims (religion=1) had a median survival time of 22 months and those of other religions (religion=2) 

had a median survival time of 21 months.  

Table 10: Median survival Time by Use of Contraceptive 

            n events median 0.95LCL 0.95UCL 

contr=0 19600  18345     21      20      21 

contr=1  3198   3169     16      16      17 

 

Respondents who did not use contraceptives (contr=0) had a median survival time of 21 months while those 

who used contraceptives (contr=1) had a median survival time of 16 months. 

Table 11: Median survival Time by Wealth Index 

       n    events median 0.95LCL 0.95UCL 

WI=1 10593   9968     22      22      22 

WI=2 4540    4342     19      19      20 

WI=3 7665    7204     17      17      18 

 

The results on wealth index showed that respondents who were poor (WI=1) had a median survival time of  

22 months, those of the middle class (WI=1) had a median survival time of 19 months whereas the rich had 

a median survival time of 17 months. 

 

KM Plots for Covariates 

The following plots are the Kaplan Meier plots for all covariates 



 

 

 

Figure 2: KM plot for level of education 

According to the plots in Figure 2 above, there is an observed difference between survival times for the 

different levels of education. The curve for no education was consistently above those of the other levels of 

education, which implies that Nigerian women with no education had a higher probability of not having 

their first baby relative to those with some form of education. On the other hand, Women with higher 

educational qualification had a lower probability of not having their first baby compared to the other 

women; in other words, women with higher education had a greater probability of having their first baby 

than the other women with lower educational qualifications.  

 

Figure 3: KM plot for Place of Residence 

The Kaplan-Meier plot of the Place of residence above suggests there is difference in the survival of those 

who lived in urban residents and rural residents. The women who resided in rural areas as indicated by the 



 

 

red curve have a higher probability of not having their first baby compared to their counterparts who lived in 

urban areas. This can be put alternately as, women who lived in urban areas have a higher probability of 

having their first babies than those who resided in rural areas. 

 

Figure 4: KM plot for Work Status 

The Kaplan Meier plot of the work status suggests a difference in the survival time of respondents who 

worked and those who didn’t work, albeit very slight as the curves are quite close to each other. This implies 

that women who did not work have a slightly higher probability of not having their first babies than those 

who worked. Simply put women who worked have a higher probability of having their first baby.

 



 

 

Figure 5: KM plot for Religion 

The Kaplan-Meier plot for religion shows some differences in the survival time for the various religions. 

The survival times for Christians were consistently below those of Muslim and other religions. This means 

that Christian women have a lower probability of not having their first than the Muslim women and women 

of other religions. The survival curve for Muslim didn’t differ significantly from each other as they were 

very close to each other with some intersections. 

 

Figure 6: KM Plot for Use of Contraceptive 

The plot on use of contraceptives suggests a difference in the survival times of Users and Non-Users of 

contraceptives, with the non-user curve above that of users. This implies that women who did not use 

contraceptives have a higher probability of not having their first babies than those who used contraceptives. 

That is to say, that women who did not use contraceptives have a lower probability of having their first 

babies. 



 

 

 

Figure 7: KM plot for Wealth Index 

The Kaplan-Meier plot in figure  7 above suggests a difference in the survival of time across different 

economic class. The curve for the poor women was higher than those of the rich most of the time. This 

means that the poor women had a higher probability of not having their first baby than the richer women. In 

other, they poor women had a lower probability of having their first babies than the richer ones. On the other 

hand, the curve for the rich women was consistently lower, implying that the rich women have lower 

probability of not having their first babies, that is they have a higher probability of having their first babies 

than the poorer women. 



 

 

 

Figure 8: KM plot for Region 

The plot above suggests a difference in the survival time for the different regions. The survival curve for 

North West is observed to above all other curves, which means that women from the North West region of 

the country have a higher probability of not having their first babies than those from the other region; their 

probability of having their first baby is thus lower than those from the other region. while that of South West 

was consistently below those of the other regions, which means that women from the South West region 

(pink curve) of the country have lower probability of not having their first baby than women from the other 

regions. It can be put simply as women from the South West region have a higher probability of having their 

first babies than the women from the other region. In the same vein, albeit slightly, women from South 

(indicated by the blue curve) have a higher probability of experiencing their first babies than women from 

the North Central (black curve), and the women from the North Central than those from the North East (Red 

curve), and those of the North East than those of the South-South (blue curve), and lastly those of the South-

South than those of the North west (green curve). 

Accelerated Failure Time (AFT) Results 

 In this section we investigated possible/suitable distributions that describe the event of interest, which in 

this study is the time to first birth for married couples. Several distributions were already considered for 



 

 

describing the First birth interval (too many to be included is single plot), but upon a prior visualization the 

ones shown below were the closest to describing the event of interest. 

 

Figure 9: Density Plot of First Birth Interval 

Probability density curves of all the distributions under investigation plotted with the histogram plot of the 

data on ‘First Birth Interval’ are displayed in figure 9. This is visualizing how well each of the distributions 

describes the data. With the distributions distinguishable with the different colors as shown in the plot 

above, we observe that the Weibull distribution does not appropriately describe the First Birth Interval, as it 

does poorly in covering the peak as well as the tail. This is an indication that the Weibull distribution may 

not very well describe our data. On the other hand, the other two distributions Log-logistic and Log-Normal 

distributions do better, with Log-Logistic describing the peak better while the Log-Normal describes the tail 

better. 

 



 

 

 

Figure 10: Quantile Plot of First Birth Interval 

Quantile plot is another graphical method for determining whether sample data conform to a distribution. 

The plot shows a wider deviation of the Weibull distribution at the beginning with intersections at the 

middle and towards the end. The Log-Normal and Log-Logistic lay more consistently to the curve for the 

First Birth Interval with slight deviations toward the end. 

 



 

 

Figure 11 Survivor Plot of First Birth Interval 

Figure 11 displays the survival curves of all the distributions overlaid on the First Birth Interval curve. The 

plot measures how appropriately the distribution describe our data by how close the curve for each 

distribution is to the curve of the actual data.  For the most part the curve for the Weibull distribution was 

further apart from the curve for the first birth interval. Whereas the log-normal and log-logistic curves were 

closer to the curve for the first birth interval. This is an indication that these two might describe the first 

birth interval better than the Weibull distribution. 

 

Figure 12: Probability Plot of First Birth Interval 

The probability plot once again shows how the Weibull distribution did not adequately mimic the path 

described by the data. The curve for the Log Normal and Log Logistics shows how closely the respective 

distributions follow the path shown by the data, with slight deviations towards the end. After the 

visualizations, further test was carried out using the AIC to determine the best distribution from amongst the 

three initially considered based on their strengths in describing the data via the plots. 

Table 12: Akaike Information Criterion (AIC) from the distributions 

Distribution AIC 

Log-Normal 170731.5 

Log-logistic 170949.0 



 

 

Weibull 177957.0 

 

The above result shows the Log-Normal Distribution as a better fit to describing the event as it has the 

smallest AIC, and hence was used to obtain the following results. This means that for the most part and as 

the survival time increases, the Log-Normal distribution would still model the first birth interval better than 

the Log-Logistic and Weibull distribution. The table below contains the estimates of the Accelerated Failure 

time  

model 

Table 13: Estimates of the Accelerated Failure Time Model (Log-Normal Distribution) 

                     Value Std. Error       z       p 

(Intercept)        3.050391   0.024601  123.99 < 2e-16 

age               -0.000300   0.000490   -0.61 0.54066 

factor(edu)1      -0.094177   0.012550   -7.50 6.2e-14 

factor(edu)2      -0.119160   0.013003   -9.16 < 2e-16 

factor(edu)3      -0.130319   0.018285   -7.13 1.0e-12 

factor(por)2      -0.000884   0.010145   -0.09 0.93056 

factor(work)1      0.018905   0.009258    2.04 0.04115 

factor(religion)1  0.071204   0.012598    5.65 1.6e-08 

factor(religion)2  0.048772   0.047754    1.02 0.30710 

factor(region)2   -0.006056   0.013678   -0.44 0.65792 

factor(region)3    0.140730   0.013374   10.52 < 2e-16 

factor(region)4    0.070983   0.017020    4.17 3.0e-05 

factor(region)5    0.196680   0.017047   11.54 < 2e-16 

factor(region)6    0.010055   0.016321    0.62 0.53783 

factor(contr)1    -0.107340   0.011882   -9.03 < 2e-16 



 

 

factor(WI)2       -0.036616   0.011492   -3.19 0.00144 

factor(WI)3       -0.044212   0.012833   -3.45 0.00057 

Log(scale)        -0.527278   0.004846 -108.81 < 2e-16 

 

Scale= 0.59  

 

Log Normal distribution 

Loglik(model)= -85347.7   Loglik(intercept only)= -85916.1 

 Chisq= 1136.8 on 16 degrees of freedom, p= 5.4e-232  

Number of Newton-Raphson Iterations: 3  

n= 22798  

The coefficients (Value)in the table above are logarithms of ratios of survival time, so a positive coefficient 

means longer survival. However, to get a more intuitive interpretation of the time ratio, the time ratios are  

transformed using the exponential function as shown in the table below.   

 

Table 14: Time Ratio from the AFT model 

Variables Coefficient Time Ratio (TR) 

(Intercept) 3.05039122  21.12360687 

age -0.0002999  0.999700175 

factor(edu)1 -0.0941773  0.910121395 

factor(edu)2 -0.1191601  0.887665655 

factor(edu)3 -0.1303191  0.877815273 

factor(por)2 -0.0008841  0.999116327 

factor(work)1 0.01890452  1.019084338 

factor(religion)1 0.07120418  1.073800448 



 

 

factor(religion)2 0.04877201  1.049980941 

factor(region)2 -0.0060564  0.993961907 

factor(region)3 0.14072973  1.15111349 

factor(region)4 0.07098298  1.073562948 

factor(region)5 0.19668029  1.217354775 

factor(region)6 0.0100551  1.01010582 

factor(contr)1 -0.1073402  0.898220072 

factor(WI)2 -0.0366158  0.964046442 

factor(WI)3 -0.0442118 0.956751336 

 

The coefficients for the various factors from the table above are interpreted thus; 

Education: A time ratio of .91 shows that the survival time of respondents with a primary education is 

about 91% of the survival time of respondents with no education. In other words, the survival time of 

respondents with primary education is 9% shorter than the survival time of respondents with no education. 

Similarly, the survival time for respondents with a secondary education is about 88% of the survival time of 

respondents with no education. And finally, the survival time of respondents with higher educational 

qualification is about 87% of the survival time of respondents with no education. 

Religion:  The time ration of 1.019 shows that the survival time of Muslim respondents is about a 102% of 

the survival time of Christian respondents. In other words, the survival time of Muslim respondents is about 

2% longer than the survival time of Christian respondents. Also, the survival time of respondents who 

practiced other religions is about 5% longer than the survival time of the Christian respondents. 

Region: The time ratio of 1.15 shows that the survival time of North-Western respondents is 115% of the 

survival time of North-Central respondents. In other words, the survival time of North-Western respondents 



 

 

is about 15% longer than the survival time of North-Central respondents. The survival time of the South-

Eastern respondents were about 7% longer than the survival time of the North-Central respondents. The 

survival time of South-Southern respondents is about 22% longer than the survival time of the respondents 

from the North-Central region. There were however no significant differences in the survival times of the 

North-East and South-Western respondents. 

Contraceptive Use: the result shows that the survival time of respondents using a contraceptive is about 

90% of the survival time of respondents not using contraceptives. In other words, the survival time of 

respondents who use contraceptives is about 10% shorter than the survival time of respondents who do not 

use contraceptives. 

Wealth Index: the survival time of the middle class and rich respondents are both about 96% of the 

respondents that are poor, that is to say that the survival times of the middle class and rich respondents are 

about 5% shorter than the survival time of respondents that are poor.  

The place of Residence and working status of the respondents were however not very significant 

 

Log Rank Test 

A further analysis is carried out to provide backup to the observations from the Kaplan Meier plots above. 

This is done using the log rank test as shown below: 

Table 15: Log rank test for Level of Education 

          N Observed Expected (O-E)^2/E (O-E)^2/V 

edu=0 10780    10171    11534       161     369.5 

edu=1  3790     3651     3384        21      26.5 

edu=2  6291     5922     5109       129     180.2 

edu=3  1937     1770     1487        54      61.5 

Chisq= 389 on 3 degrees of freedom, p= <2e-16  



 

 

 

The result of the log-rank test shows that there is a significant difference in the survival time of respondents 

with different levels of education with the p-value less than 0.05. In other words, the time to first birth 

differed significantly for at least two levels of education. 

Table 16: Log rank test for Place of Residence 

          N Observed Expected (O-E)^2/E (O-E)^2/V 

por=1  7958     7564     6975      49.8      78.1 

por=2 14840    13950    14539      23.9      78.1 

Chisq= 78.1 on 1 degrees of freedom, p= <2e-16  

 

With a p-value less than 0.05 the result shows that there is a significant difference in survival time between 

the urban and rural residents. That is to say that, the time it took women who lived in urban areas to have 

their first babies was indeed different from the time it took the women who lived in rural areas to have 

theirs. 

Table 17: Log rank test for Work Status 

           N Observed Expected (O-E)^2/E (O-E)^2/V 

work=0  7061     6457     6814     18.71        29 

work=1 15737    15057    14700      8.67        29 

Chisq= 29 on 1 degrees of freedom, p= 7e-08  

 

A p-value less than 0.05 shows that there is significant difference in the survival time of working and non-

working respondents. This shows that the survival time or the time to first birth from marriage of working 

women differed significantly from those of non-working women. 

 



 

 

Table 18: Log rank test for Religion 

               N Observed Expected (O-E)^2/E (O-E)^2/V 

religion=0  8927     8462     7354    167.03    269.93 

religion=1 13711    12899    13983     84.10    255.53 

religion=2   160      153      177      3.21      3.43 

Chisq= 270 on 2 degrees of freedom, p= <2e-16  

There is a significant difference in the survival time of respondents for the different religions practiced. It 

can be alternately put as, the survival time or the time to first birth from marriage differed significantly for at 

least two religions. This is however the case, as we observed a significant gap between the survival times of 

the Christian and Muslim Women, although no much difference was observed for Muslim women and those 

of other religions. 

Table 19: Log rank test for Contraceptive Use 

            N Observed Expected (O-E)^2/E (O-E)^2/V 

contr=0 19600    18345    19139        33       318 

contr=1  3198     3169     2375       266       318 

Chisq= 318 on 1 degrees of freedom, p= <2e-16  

 

The result also reveals that the survival time of respondents using contraceptive is statistically different from 

those who do not contraceptives. This implies that the duration from marriage to first birth for women who 

used contraceptives was indeed different from those who did not use contraceptives. 

Table 20: Log rank test for Wealth Index 

         N Observed Expected (O-E)^2/E (O-E)^2/V 

WI=1 10593     9968    10944     86.96     188.0 

WI=2  4540     4342     4160      8.01      10.5 



 

 

WI=3  7665     7204     6411     98.11     148.4 

Chisq= 205 on 2 degrees of freedom, p= <2e-16  

A p-value less than 0.05 shows that there is a significant difference in the survival time of respondents 

across the various wealth categories. This means that the duration from marriage to first birth of at least two 

categories of the wealth index classes were indeed different. 

Cox Proportional Hazard Results 

In this section the Cox proportional hazard (a semi-parametric approach) was used to study the effect of the 

various covariates on the marriage to first birth interval. 

Table 21: Estimates of Cox Proportional Hazard model 

                        coef  exp(coef)   se(coef)       z Pr(>|z|)     

age                0.0004445  1.0004446  0.0008570   0.519   0.6039     

factor(edu)1       0.1347100  1.1442049  0.0216178   6.231 4.62e-10 *** 

factor(edu)2       0.1776957  1.1944618  0.0226240   7.854 4.02e-15 *** 

factor(edu)3       0.1739136  1.1899528  0.0319060   5.451 5.01e-08 *** 

factor(por)2       0.0067438  1.0067666  0.0175573   0.384   0.7009     

factor(work)1     -0.0153650  0.9847524  0.0160807  -0.955   0.3393     

factor(religion)1 -0.1146443  0.8916833  0.0220516  -5.199 2.00e-07 *** 

factor(religion)2 -0.0738940  0.9287701  0.0823788  -0.897   0.3697     

factor(region)2    0.0156494  1.0157725  0.0238230   0.657   0.5112     

factor(region)3   -0.1819309  0.8336590  0.0232398  -7.828 4.94e-15 *** 

factor(region)4   -0.1327357  0.8756965  0.0294150  -4.513 6.41e-06 *** 

factor(region)5   -0.3259824  0.7218179  0.0296735 -10.986  < 2e-16 *** 

factor(region)6   -0.0242312  0.9760601  0.0282422  -0.858   0.3909     

factor(contr)1     0.2250395  1.2523722  0.0202109  11.135  < 2e-16 *** 



 

 

factor(WI)2        0.0476039  1.0487552  0.0199194   2.390   0.0169 *   

factor(WI)3        0.0477812  1.0489411  0.0222617   2.146   0.0318 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Concordance= 0.583  (se = 0.002 ) 

Likelihood ratio test= 833.1  on 16 df,   p=<2e-16 

Wald test            = 855.1  on 16 df,   p=<2e-16 

Score (logrank) test = 864.7  on 16 df,   p=<2e-16 

 

The above result shows the significance level of the different tiers for each covariate on the survival time of  

respondents. The first category of each covariate is used as the reference group for the purpose of  

interpretation and comparison.  The table further shows the hazard ratios for subcategories of each covariate. 

The result hence shows that the respondent’s level of education has a significant impact on the marriage to  

first birth interval. Respondents with primary education have 14 percent higher risk of becoming a mother 

relative to those with no education, similarly respondents with secondary education about 19 percent greater 

chances of becoming mothers compared to those with no education while those of higher education are at 18  

percent greater risk of becoming mothers. The result however shows that the place of residence and working 

status did not significantly affect the marriage to first birth interval. 

The religion practiced had a significant effect in the marriage to first birth interval, respondents who 

practiced the Islamic religion were found to have 11% fewer chances of becoming mothers relative to their 

Christian counterpart, the sub-category “others” were however not significant. 

The geographic regions of the respondents were also found to significantly impart the marriage to first birth 

interval. Respondents from the North-West region of the country have 18 percent lower chances of having 

their first birth after marriage compared to their colleagues from the North-Central, the respondents from the 

South-East have 13% fewer chances of becoming mothers relative to those from the North-Central region, 

similarly respondents from the South-South have 32% lower chances of having their first child after 

marriage relative to those from the North-Central part, whereas the sub category North-East and South-West 

were not significant. The use of contraceptive was found to have significant impact on the marriage to first 



 

 

birth interval, as respondents who used contraceptives had 25% greater chances of having their first baby 

relative to the  

respondents who did not. The economic status of the respondents was equally significant in determining the 

marriage to first birth interval, as those of the middle class and the rich have about 5% chances higher of 

becoming mothers relative to the poor class.  

 

Table 22: Result of the Schoenfeuld residual 

                 chisq df       p 

age               49.2  1 2.4e-12 

factor(edu)      404.5  3 < 2e-16 

factor(por)      116.3  1 < 2e-16 

factor(work)      23.7  1 1.1e-06 

factor(religion) 261.3  2 < 2e-16 

factor(region)   465.1  5 < 2e-16 

factor(contr)     30.0  1 4.3e-08 

factor(WI)       250.3  2 < 2e-16 

GLOBAL           626.4 16 < 2e-16 

 

The result from the Schoenfeuld residual shows that on more general basis, the covariates listed above have 

a significant effect on the marriage to first birth interval. Specifically, with all the p-values less than 0.05, 

this implies that all the covariates (which includes education, place of residence, work status, religion, 

region, use of contraceptive and Wealth Index) all had a significant effect on the survival time. 

Conclusions 

The study found that the median survival time of First Birth Interval for Nigerian women is 20 months. 

Furthermore, there was a significant difference in the survival time of the covariates, and the covariates 



 

 

generally had a significant effect on the survival time of First Birth Interval. The factors that significantly 

impacted the survival time of First Birth Intervals includes Level of education, religion, region, use of 

contraceptive and Wealth Index. A Log-Normal Accelerated Failure Model was fit to the data. Women with 

higher education have a shorter time to first birth interval than women with lower educational attainment. 

The Christian women have the shortest time to first birth interval, followed by the Muslim women and then 

women who practiced other religions. Women from the South-West have shortest time to becoming mothers 

while North-West women have the longest time to becoming mothers. Finally, awareness should be made to 

the entire public on the median survival time to first birth interval in order to reduce anxiety among couples 

who may think they have waited too long a time for their first baby. Women should be exposed to better 

education, as those with a higher education showed a higher risk to first birth. 
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