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Abstract 

In this paper, a new distribution, named ‘the Inverted Power Ishita distribution’, was introduced.  

It is an extension of the Ishita distribution and its capable of modelling real life data with upside 

down bathtub shape and heavy tails was introduced. Mathematical and statistical characteristics 

such as the quantile function, mode, moments and moment generating function, entropy measure, 

stochastic ordering and distribution of order statistics have been derived. Furthermore, reliability 

measures like survival function, hazard function and odds function have been derived. The 

method of maximum likelihood was used for estimating the parameters of the distribution. To 

demonstrate the applicability of the distribution, a numerical example was given. Based on the 

results, the proposed distribution performed better than the competing distributions. 

Keyword: Ishita Distribution, Inverted Ishita distribution, Inverted power Ishita distribution, 

lifetime data, order statistics, 

 

1 Introduction   

Modelling life time data has been the interest of many statistical investigations, and this has led 

to the proposal of some statistical distributions. The behavior of the hazard rate is a strong 

determiner when modeling of lifetime data is considered. In real life, we can say we have some 

life time data with monotone (increasing and non-increasing) hazard rates while some have non-

monotone (bathtub and upside-down bathtub or unimodal) hazard rates. Several statistical 

distributions exist for modeling lifetime data for any of these categories of data. The Ishita 

distribution introduced by [1] is a statistical distribution used in the modeling of lifetime data in 

biomedical science and engineering. It is distinctively used for lifetime data with monotone 

hazard rates, and cannot be used to appropriately model data with non-monotone hazard rates. As 

at the time of the conduct of this study, many research works have been done with the aim of 

developing better extensions of the Ishita distribution with the aim of developing a more flexible 

model and also a transformation of the distribution. For instance, [2] developed a transmuted 

Ishita distribution which is more flexible for modeling life time data. Also, [3] developed a 

transformed version of the Ishita distribution, using the inverse transformation in order to obtain 

a distribution that could model non monotone hazard rate data. Further, the work by [4] proposed 

a two-parameter power Ishita distribution and applied to modeling lifetime data.   

Undoubtedly, the Ishita distribution and its extensions, asides the inverse Ishita distribution, 

reviewed in this paper do not provide a reasonable fit for lifetime data with non-monotone 



 

 

hazard rates, such as the upside-down bathtub hazard rates, which are common in many 

statistical investigations. For example, the lifetime models that present upside-down bathtub 

hazard rates curves can be observed when modeling a disease whose mortality reaches a peak 

after some finite period and then declines gradually. The Inverse Ishita Distribution proposed by 

[3] could model such life data, that is, the non-monotone hazard rates. The need for an extended 

form of the inverse Ishita distribution is to develop a more flexible model that can best capture 

lifetime data with non-monotone upside-down bathtub hazard rates in some applied areas.  Other 

forms of statistical distributions that have been used by researchers to model lifetime data 

exhibiting upside-down bathtub hazard rate are those of [5,6,7,8,9,10] and [11] among others.   

The aim of this article is to introduce an inverted power Ishita distribution that fits well lifetime 

data with upside-down bathtub hazard rate and, however, skewed data. The rest of the paper is 

organized as follows. In Section 2, some properties of the inverted power Ishita (IPI) distribution 

are derived. Section 3 deals with reliability analyses such as survival function, hazard rate 

function and odds function. Section 4 deals with the maximum likelihood estimation of the 

parameters of the IPI distribution, derivation of the Fisher Information matrix and construction of 

confidence intervals for the parameters of the distribution. The analysis of two real data sets is 

presented in Section 5. Finally, in Section 6, we conclude the paper.   

To derive the inverted power Ishita distribution, we recall that for a random variable Y, Rama S. 

[1] defines the probability density function (PDF) of the Ishita distribution as 
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Suppose X is related to Y by the inverse power function  
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one obtains the PDF of the inverted Power Rama distributed random variable X as 
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The corresponding cumulative density function (CDF) of the inverted Ishita distributed random 

variable X is   
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density function of Power Inverse Ishita distribution 
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Fig 1a:pdf plot of IPI
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Fig 1b:pdf plot of PII
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Figs. 1a, 1b, 1c and 1d. Show the pdf and cdf plots of the inverted power Ishita distribution 

for varying values of  and   

It may be noted that, when 1  , the proposed distribution reduces to the Inverted Ishita 

distribution, with PDF given by 
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2 Mathematical Characteristics  

2.1 Mode of the inverted power Ishita distribution   

The mode is useful in determining the shape of the distribution. So, for the proposed distribution, 

the first derivative of  xf  is obtained from (2) as follows  
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Let b=
x in (7), we have 
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Where; 
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If we let  b 0, and numerically solve the non linear equation, the positive root gives the mode 

of the IPID distribution. To observe the asymptotic behavior , the limit of  xf IPID

'  is evaluated at 

0x , and x respectively. 
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unimodal. To also further this claim it is also observed that   1,;lim 
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2.2 Quantile Function  

The quantile function is used for the generation of random numbers. It can also be used to derive 

percentiles of a distribution. The quantile function is defined by;           

 xFu                                                                                                                                          (9) 

Where U is distributed as uniform distribution, U  1,0~ ,and  xF  is the CDF. 

Proposition 2.1: Let X be a random variable having the PDF of IPID, then the quantile  pQ

function is 

Proof: To proof proposition 2.2, recall that the quantile function  pQ  satisfies the equation 

 pQ =  ,,xFIPID                                                                                                                     (10) 
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Eq. (11) completes the proof of the quantile of the inverted power Ishita distribution 

 2.3 Moments   

Several fascinating characteristics of a distribution can be studied via the moments. For instance, 

measure of central tendency, dispersion, coefficient of skewness and coefficient of kurtosis. 

Consequently, it is essential to derive the moments for any new distribution proposed.  

Proposition 2.2: Given a random variable X from a continuous distribution, the thr  non-central 

moment  rE X  is given by; 
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Proof: By the rth  moment about the origin is given by, 

   



0

,, dxxfxXE IPID

kk                                                                                                         (12) 

23

3




















0

131

1
dxe

xx
x xk 






 

23

3



  



 

0

131 dxexxx xk 



  

23

3


















0

13

3

3

0

1

2














 xkxk exxdxexx  

23

4


















0

13

3

3

0

1

2














xkxk exdxex  

Letting 

1

, yxxy  , and applying little algebra gives 
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Using the fact that 
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In a simplified form it can be written as 
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Eq. (14) completes the computation of the rth crude moment of the IPI distribution. 

The mean of the IPI distribution is obtained by setting r=1 in (14). Thus, 
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For r=2 in Eq. (14), the second crude moment  2XE   of the IPI distribution becomes,                              
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The variance of the IPI distribution is obtained as follows; 
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2.4 Moment generating function of the inverted power Ishita distribution   

Proposition 2.3 Given a random variable X that follows Inverted Power Ishita distribution, the 

moment generating function is given by; 
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Proof. Let X be a random variable which has the pdf defined in equation (3). Then, the moment 

generating function is obtained as follows                
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Substituting for  rXE , we obtain an expression for the moment generating function as 
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2.5 Entropy measure   

Entropy is a measure that can be very useful in determining the uncertainty of a distribution. It 

has applications in economics, probability and statistics, communication theory etc . Large value 

of entropy signifies large uncertainty in the data . In this section, we derive an expression for the 

Rényi entropy of the IPI distribution.   

Proposition 2.4 Suppose X is a random variable having the PDF of IPI distribution . The Rényi 

entropy is given by    
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Eq. (21) completes the computation of Renyi entropy 

2.6 Order statistics 

Suppose nxxx ,...,, 21  are a random sample of size n from a continuous distribution with PDF and 

CDF,  xf and  xF  respectively. If these random variables are arranged in ascending order, 

they are referred to as order statistics. That is, the order statistics is such that 

nxxxx  ...321 . The PDF of the 
th  ordered statistics is 
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Substituting (3) and (4) into (23), we have 
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Substituting the simplified  xF j 1  and  xf  in (23), we have 
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The corresponding CDF,  xFx  of the order statistics of the IPI distribution is obtained as 

follows; 
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2.7 Stochastic ordering   

Stochastic ordering is an essential tool for quantifying the behavior of random variables in terms 

of their sizes. Given that X and Y are distributed according to Eq. (2). Let    ,,,,,,  xfxf yx  

and     ,,,,, xFxF YX denote the probability density function and distribution function of X 

and Y, respectively. The random variable X is said to be smaller than the random variable Y, if 

the following holds; 

a) Stochastic order  𝑋 ≤𝑠𝑡 𝑌 if 𝐹𝑋 𝑥 ≥ 𝐹𝑌 𝑥 ; ∀𝑥 

b) Hazard rate order   𝑋 ≤ℎ𝑟 𝑌 if ℎ𝑋 𝑥 ≥ ℎ𝑌 𝑥 ; ∀𝑥 

c) Mean residual life order   𝑋 ≤𝑚𝑟𝑙 𝑌 if 𝑚𝑋 𝑥 ≥ 𝑚𝑌 𝑥 ; ∀𝑥 

d) Likelihood ratio order  𝑋 ≤𝑙𝑟 𝑌  if 
𝑓𝑋  𝑥 

𝑓𝑌 𝑦 
 decreases in 𝑥. 



 

 

These results were established by M. Shaked and J. G Shanthikumar (1994). The order of the 

distributions is as follows 

𝑋 ≤𝑙𝑟 𝑌 ⇒  𝑋 ≤ℎ𝑟 𝑌 ⇒  𝑋 ≤𝑚𝑟𝑙 𝑌 ⇒ 𝑋 ≤𝑠𝑡 𝑌 

Proof. The likelihood ratio is 
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Taking natural log of 27, we have 
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Thus, for 𝜃2 ≥ 𝜃1  𝑎𝑛𝑑 𝛼1 = 𝛼2(𝑜𝑟 𝑓𝑜𝑟 𝛼2 ≥ 𝛼1 𝑎𝑛𝑑 𝜃1 = 𝜃2, 
𝑑

𝑑𝑥
𝑙𝑛

𝑓𝑋  𝑥;𝜃1 

𝑓𝑌 𝑥;𝜃2 
≤ 0, This implies 

that 𝑋 ≤𝑙𝑟 𝑌and hence 𝑋 ≤ℎ𝑟 𝑌, 𝑋 ≤𝑚𝑟𝑙 𝑌 and 𝑋 ≤𝑠𝑡 𝑌. 

 



 

 

 

 

 

3 Reliability Analyses   

3.1 Survival function 

 Survival function,  xS  is the probability that the survival time is greater than or equal to x . In 

engineering, it is the probability that an item does not fail prior to some time, x .  We use 

survival functions in reliability analysis to determine the survival time of items. Let X be a 

continuous random   Variable with CDF,  xF , the survival function of X is 

   xFxS 1                                                                                                                             (28) 

Thus, inserting (4) in (28), the survival function of the inverted power Ishita distribution is 
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3.2 Hazard function 

 Hazard function, also known as failure rate is the probability that an individual dies at time x  

given that the individual survived to that time x . Hazard function is extensively used to express 

the risk of an event (example, death) occurring at some time t.   Given a random variable X from 

a continuous distribution, the hazard rate  xh is given by 
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Inserting (3) and (4) in (30), we have 
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3.3 Odds function   

In reliability analysis, the odd rate is an important tool used for modeling real life data set that 

shows non-monotone hazard rate. Let X be a random variable from a continuous distribution 

with distribution function  xF  and reliability function  xF1 , the odd function is 
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Thus, the odds function of the inverted power Ishita distribution is given by 
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Fig 3A:Survival rate function plot of IPI distribution
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Fig 3B:Survival rate function plot of IPI distribution
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Fig 4a:Hazard rate plot of IPI
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Fig 4a:Hazard rate plot of IPI
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4 Maximum Likelihood Estimation 

Let nxxx ,...,, 21  be a random sample of size n from an inverted power Ishita distribution. Then, 

the log-likelihood (LL) function is 
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The partial derivatives in terms of the parameter  , , are given as follows 
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The simultaneous solutions of the nonlinear Equation (35) and (36), at 
d

dLL
0 and 

d

dLL
0, 

yields the maximum likelihood of the parameter  , . 

To derive the confidence intervals for the parameters using maximum likelihood estimators
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, , the fisher information matrix will be used, which for a vector parameters  , and n =1 

is given by the expression. 
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As a result of the complexity involved in evaluating the information matrix given in (37), the 

inverse Hessian matrix is used in the maximum likelihood estimates. Consequently, the second-

order derivatives of the loglikelihood function are given as follows 
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In order to determine the Fisher information matrix for the IPI distribution, the expectations of 

(38), (39), (40) and (41) are taken, assuming n =1. Thus 
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The asymptotic distribution of the maximum likelihood estimator ̂ for   under consistency 

state is given by: 

    1ˆ 0,n N       

where  1    is the inverse Fisher information matrix, defined as; 
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Having obtained the expression in (42), we can now define the asymptotic  100 1 %

confidence intervals for  and  as given below; 

 
2

ˆ ˆVar   and  
2

ˆ ˆVar                        (43) 

where  ˆVar   and  ˆVar   denote the elements of the main diagonal of the variance covariance 

matrix defined in (42).  

5 Numerical Applications   

In this section, we present two real life data sets to exhibit the practicality of the proposed model. The 

first data set is the monthly actual taxes revenue in Egypt from January 2006 to November 2010 used in 

[14], [15] and [16]. The data (in 1000 million Egyptian pounds) is provided below;   

5.9, 20.4, 14.9,  16.2,  17.2,  7.8,  6.1,  9.2,  10.2,  9.6,  13.3,  8.5,  21.6,  18.5,  5.1,  6.7,  17.0,  8.6,  9.7,  

39.2,  35.7,  15.7,  9.7,  10,   4.1,  36.0,  8.5,  8.0,  9.2, 26.2, 21.9, 16.7,  21.3,  35.4,  14.3,  8.5,   10.6, 



 

 

19.1,  20.5,  7.1,    7.7, 18.1,16.5,  11.9, 7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8,   8.9,   

7.1,  10.8.   

The second dataset represents the relief times of twenty patients receiving an analgesic. It was used by 

[17], reported by [18]   

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0   

Tables 1 and 2 below show the estimates of the Inverted power Ishita (IPI) distribution and the competing 

distributions, namely; Inverse Power Rama (IPR) distribution, Ishita distribution (ID), Inverse Ishita 

distribution (IID) and the Sujatha distribution (SD), respectively obtained using the first and second 

datasets. Comparisons of the estimates, computed using maximum likelihood estimation method was 

made. To select the best distribution, three criteria were used. The criteria include:   

 Akaike information criterion developed by [19] is defined by   

KnLAIC 221   

 Bayesian Information Criiterion proposed by [20] is defined by 
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 Corrected Akaike Information Criterion stated by [21] is defined by 
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^

L  denotes the log-likelihood at Maximum Likelihood Estimates (MLEs), k  is the number of 

parameters in the distribution, and n  is the sample size. The distribution with least AIC, BIC, AICc and 

log-likelihood is considered as best. Table 1 and 2 show that the Inverse Power Ishita distribution 

compared to Inverse Ishita distribution, Ishita distribution, sujatha distribution has the least values of AIC, 

BIC, and AICc. While compared to the Inverse Power Rama distribution, we observe that both 

distribution have their AIC, BIC, AICc, and log-likelihood approximately equal. Thus, the Inverse Power 

Ishita distribution is considered to provide best fit than the Inverse Ishita, Ishita and Sujatha distributions.  

Table 1. MLEs, S.E, LL, AIC, BIC, and AICc (Data 1) 

Model  MLE S.E LL AIC BIC AICc 

IPID  2.24664  0.22245   188.9396  381.8792  386.0343  382.3156  



 

 

  144.62744  67.49581      

IID  10.59798  1.36746  212.2291 426.4581 428.5356  426.8945  

ID  0.21869  0.01635   194.1055  390.211 392.2885  390.6474  

SD  0.21248  0.01591  195.0663  392.1326  394.2101 392.5689  

IPRD  2.24665  0.22245  188.9396  381.8792  386.0342  382.3155  

  144.62895  67.49593      

 

Table 2. MLEs, S.E, LL, AIC, BIC, and AICc (Data 2) 

Model  MLE S.E LL AIC BIC AICc 

IPID  4.03629  0.68884  15.4073  34.8146  36.80608  36.3146  

  6.16314  1.90240      

IID  2.25893  0.33081  33.7432  69.4864  70.48213  70.9864  

ID  1.09485  0.12169  30.0824  62.1647  63.16043  63.6647  

SD  1.13675  0.14984  28.7488  59.4975  60.49327  60.9975  

IPRD  4.11806  0.66709  15.4089  34.8178  36.80929  36.3178  

  6.61108  1.83603      

 

Tables 3 and 4 show the 95% confidence interval constructed for the parameters of the IPR distribution, 

using the first and second datasets respectively. 

Table 3. MLEs of the Parameters of IPI distribution and their C.I (Data 1) 

Model  MLE S.E 95% Confidence Interval 

    Lower limit Upper limit 

IPID  2.24664  0.22245  81064.1  68264.2  

  144.62744  67.49581  33565.12  91923.276  

IID  10.59798  1.36746  91776.7  27820.13  

ID  0.21869  0.01635  18664.0  25074.0  

SD  0.21248  0.01591  18130.0  24366.0  

IPRD  2.24665  0.22245  81065.1  68265.2  

  144.62895  67.49593  33693.12  92097.276  

 



 

 

Table 4. MLEs of the Parameters of IPI distribution and their C.I (Data 2) 

Model  MLE S.E 95% Confidence Interval 

    Lower limit Upper limit 

IPID  4.03629  0.68884  68616.2  38642.5  

  6.16314  1.90240  39947.2  92681.9  

IID  2.25893  0.33081  61054.1  90732.2  

ID  1.09485  0.12169  85634.0  33336.1  

SD  1.13675  0.14984  84306.0  43044.1  

IPRD  4.11806  0.66709  81056.2  42556.5  

  6.61108  1.83603  01246.3  20970.10  

 

6 Conclusions   

Generalization in distribution theory is often made to improve the distribution under consideration and to 

make it more flexible so as to extend its application to other areas. The capability of the data to fit more 

appropriately into a given distribution shows the superiority of such distribution over others. In this paper, 

we have proposed a new distribution named the Inverted Power Ishita distribution. The mathematical 

characteristics and reliability measures such as survival function, hazard rate and odds function are 

derived. The method of maximum likelihood was used to estimate the parameters of the distribution and 

besides, the distribution was subjected to real life data to illustrate its application. Based on the empirical 

results obtained, the IPI distribution, asides the IPR whose MLE, S.E, LL, AIC, BIC, and AICc are 

approximately equal, outperforms the other competing models considered in the article. Hence, we 

recommend the use of the proposed model when modeling lifetime data that are heavy tailed and have 

upside down bathtub shape. 
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