
A New Generalization for Generalized Inverted
Exponential Distribution with Real Data Applications

Abstract
The generalization of standard and generalized distributions has become one of the concerns
that the statistical theory depends on to obtain more flexible distributions. In this article,
a new distribution that is considered a generalization of the generalized inverted exponential
distribution called the Type II Topp Leone Generalized Inverted Exponential (TIITLGIE) distribution
is introduced. Some statistical properties of this distribution are obtained. The quantile function,
median, moments, moment generating function, Reliability function, hazard function, mode,
harmonic mean, mean and median deviation are derived. Furthermore, important measures such
Rényi entropy and the Maximum Likelihood (ML) estimation are deduced for parameters. Conduct
a Monte Carlo simulation to study behavior of parameter estimates. Finally, applications on three
real data sets are discussed.

Keywords: Generalized Inverted Exponential Distribution. Type II Tope – Leone. Rényi entropy.
Maximum Likelihood estimation. Monte Carlo simulation.

1 Introduction
Some complex real phenomena need new lifetime distributions to modeled with. For this reason, the
researchers in the area of statistics and distribution theory have been attracted to generate different
lifetime models. The great importance of these models can be seen and found in many fields of study
such as finance, insurance, reliability engineering and survival analysis. In the last few years, the
authors have proposed new families of distribution by adding an additional parameter using generator
or combining existing distributions. Some of these families are: Exponentiated-G family (7), Lomax-G
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family (8),the type I Topp-Leone-G family (5),Topp Leone Exponentiated-G Family (13), Type II power
Topp-Leone generated family (6). Recently Elgarhy etal. (2018), introduced the type II Topp-Leone-
G family (for short TIITL-G) using the half logistic distribution as a generator instead of the gamma
generator in the cdf of Ristic-Balakrishnan-G (10).this family was characterized by more flexible, which
made it of interest to many researchers. Many lifetime models were generated using this family. For
example: type II topp-leone generalized inverse Rayleigh distribution (18) , type II topp-leone power
Lomax distribution (3) and type II topp-leone inverse exponential distribution (2). The CDF of TIITL
distribution is given by:

F (x) = 1− [1−G2(x)]α (1.1)

The corresponding PDF of (1.1) is given by :

f(x) = 2α g(x)G(x)[1−G2(x)]α−1 (1.2)

where α > 0 is a shape parameter, G(x) is a baseline CDF distribution and g(x) is the baseline PDF
distribution.

A two-parameter Generalized Inverted exponential (GIE) distribution was proposed by Abouammoh
and Alshingiti (1) as a generalization of the Inverted Exponential (IE) distribution which is better
than the Inverted Exponential when goodness of fit was assessed using the Likelihood Ratio and
Kolmogorov-Smirnov tests. Recently, there are many authors who studied the GIE distribution. For
example: Dey and Nassar (9).
The probability density function (PDF) of a tow parameter GIE distribution is given by Abouammoh
and Alshingiti as:

g(x) = (
θλ

x2
)exp(

−λ
x

)[1− exp(
−λ
x

)]θ−1, x > 0, λ, θ > 0, (1.3)

and the cumulative distribution function (CDF) is given by:

G(x) = 1− [1− exp(
−λ
x

)]θ, x > 0, λ, θ > 0, (1.4)

where θ is the shape parameter and λ is the scale parameter.

This article aims to combining the works of Abouammoh and Alshingiti and Elgarhy et al. in order
to define and provide the basic statistical properties of our new model called Type II Topp-Leone
Generalized Inverted Exponential Distribution (as short TIITLGIE). This new model show that it is
more flexible in real applications using three different real data sets.

In Section 2, we introduce the TIITLGIE distribution. Statistical properties of the model are
derived in Section 3. Rényi entropy derived in Section 4. In Section 5, Maximum Likelihood estimators
of parameters are derived. We will provide simulation study in Section 6. Finally, three real data sets
will be applied in Section 7. Various conclusions are addressed in Section 8.

2 The Type II Topp-Leone Generalized Inverted Exponential
Distribution

In this section, we derived three parameter TIITLGIE Distribution. The CDF and PDF of TIITLGIE
distribution with three parameters(α,λ,θ) is obtained by inserting (1.3) and (1.4) in (1.1) and (1.2):

F (x) = 1− [1− [1− [1− exp(
−λ
x

)]θ]2]α, x > 0, λ, θ, α > 0, (2.1)
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and

f(x) =
2αθλ

x2
exp(

−λ
x

)[1− exp(
−λ
x

)]θ−1[1− [1− exp(
−λ
x

)]θ]

× [1− [1− [1− exp(
−λ
x

)]θ]2]α−1, x > 0, λ, θ, α > 0,

(2.2)

where, λ is scale parameter and θ, α are shape parameters.

We can rewrite the CDF & PDF of TIITLGIE distribution using following infinite power series as follows:

F (x) = 1−
∞∑
s=0

νs exp(
−λ
x
s), (2.3)

where

νs =
∞∑
j=0

∞∑
k=0

(−1)j+k+s

(α+ 1)(2j + 1)(θk + 1)β(j + 1, α− j + 1)β(k + 1, 2j − k + 1)β(s+ 1, θk − s+ 1)
. (2.4)

and

f(x) =
λ

x2

∞∑
s=0

(s+ 1) ψs exp(
−λ
x

(s+ 1)), (2.5)

where

ψs =

∞∑
j=0

∞∑
k=0

(−1)j+k+s

(j + 1)(k + 1)(s+ 1)β(j + 1, α− j)β(k + 1, 2(j + 1)− k)β(s+ 1, (k + 1)θ − s)
. (2.6)

The PDF of TIITLGIED can be rewrite as

f(x) =
∞∑
s=0

(s+ 1) ψs gλ(s+1)(x), (2.7)

where gλ(s+1)(x) is the PDF of inverted exponential distribution with scale parameter λ(s+ 1) .

Some Ideal Sub Models as Special Cases from Our Proposed Distribution:

• For θ = 1, the proposed distribution in (2.1) converts to Type II Topp Leone Inverse Exponential
(TIITLIE) distribution.

• For θ = 1 and λ = 1, the proposed distribution reduces to Type II Topp Leone Standard Inverse
Exponential (TIITLSIE) distribution.

• For λ = 1, the proposed distribution reduces to Type II Topp Leone Generalized Standard
Inverse Exponential (TIITLGSIE) distribution.

Figure (1) shows that shape of the probability density function is positively skewed and unimodal for
different values of the parameters.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Plots of PDF of TIITLGIE distribution for different values of the parameters
when (a,b) α increases, (c,d) θ increases, (e,f) λ increases.
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3 Properties of TIITLGIE Distribution

3.1 Quantile and Median
The Quantile function of random variable X of TIITLGIE distribution is given by:

x = Q(u) =
−λ

log[1− [1− [1− [1− u]
1
α ]

1
2 ]

1
θ ]

(3.1)

where U ∼ uniform (0,1), we can derive the median of TIITLGIE distribution by setting u = 0.5 in
(3.1). The median (M) is given by:

M =
−λ

log[1− [1− [1− [0.5]
1
α ]

1
2 ]

1
θ ]

(3.2)

3.2 Moments and Moment Generating Function
The rth moment of TIITLGIE distribution random variable X is given by:

µ′
r = λ

∞∑
s=0

(s+ 1)ψs

∫ ∞

0

xr−2exp(
−λ
x

(s+ 1))dx, (3.3)

where ψs is defined in Equation (2.6).
By setting u = λ

x
(s+ 1)

We obtain the rth moment of TIITLGIE distribution:

µ′
r = λr

∞∑
s=0

(s+ 1)rψs[Er(1) +

∞∑
n=0

(−1)n

(n− r + 1)n!
], (3.4)

where Er(1) is the integration exponential function, and ψs was known in Equation (2.6).
Substituting r = 1 in (3.4 ), we obtain the mean of TIITLGIE Distribution as follows :

µ = λ

∞∑
s=0

(s+ 1)ψs[E1(1) +

∞∑
n=0

(−1)n

nn!
]. (3.5)

The moment generating function (MGF) of TIITLGIE distribution is given by:

Mx(t) =
∞∑
r=0

tr

r!
E(Xr)

=

∞∑
r=0

∞∑
s=0

tr

r!
λr(s+ 1)rψs[Er(1) +

∞∑
n=0

(−1)n

(n− r + 1)n!
].

3.3 Skewness and Kurtosis
By using quantiles, the skewness and kurtosis of TIITLGIE distribution can be defined.
Bowley’s skewness is based on quantiles (15) it was calculated as follows:

B =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
. (3.6)

Moors’ kurtosis (14) is based on octileis, and could be written as :

M =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
, (3.7)

where Q(·) is the quantile function defined in Equation(3.1).
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3.4 Mode
The mode of TIITLGIE distribution can be found by solving the following equation :

df(x)

dx
= 0. (3.8)

By using equation (2.2), we get :

f(x)[
−2

x
+

λ

x2
− [

λ

x2
(θ − 1)(1− exp(

−λ
x

))−1exp(
−λ
x

)] +
θλ

x2
exp(

−λ
x

)(1− exp(
−λ
x

))θ−1

× [1− (1− exp(
−λ
x

))θ]−1 − [(α− 1)[1− [1− (1− exp(
−λ
x

))θ]2]−1 2θλ

x2
exp(

−λ
x

)(1− (1− exp(
−λ
x

))θ)

× (1− exp(
−λ
x

))θ−1] = 0. (3.9)

Since f(x) > 0, the mode is the solution of the following equation :

−2

x
+

λ

x2
− [

λ

x2
(θ − 1)(1− exp(

−λ
x

))−1exp(
−λ
x

)] +
θλ

x2
exp(

−λ
x

)(1− exp(
−λ
x

))θ−1

× [1− (1− exp(
−λ
x

))θ]−1 − [(α− 1)[1− [1− (1− exp(
−λ
x

))θ]2]−1 2θλ

x2
exp(

−λ
x

)(1− (1− exp(
−λ
x

))θ)

× (1− exp(
−λ
x

))θ−1] = 0. (3.10)

Equation (3.10) is a nonlinear equation and it can not be found analytically. Further, the mode of
TIITLGIE distribution can be found numerically by solving (3.10) using Newton- Raphson method.

3.5 Reliability Function and Hazard function
The reliability function and hazard function are very important properties of lifetime distribution.
The reliability function is the probability of the non-failure occurring before time t. While the hazard
function is the instantaneous rate of failure at a given time t. The reliability function of TIITLGIE
distribution is denoted by R(x), also known as survival function obtained as follows :

R(x) = 1− F (x), (3.11)

The survival function of TIITLGIE distribution is obtained by substituting (2.1) in (3.11) to deduce :

R(x) = [1− [1− (1− exp(
−λ
x

))θ]2]α. (3.12)

and the corresponding hazard function of TIITLGIE distribution is defined as follows:

h(x) =
f(x)

1− F (x)
, (3.13)

then the hazard function can be written as :

h(x) =
2αλθ

x2
exp(

−λ
x

)[1− exp(
−λ
x

)]θ−1[1− [1− exp(
−λ
x

)]θ]

×[1− [1− (1− exp(
−λ
x

))θ]2]−1.

(3.14)

Figure (2) shows that the reliability curves are decreasing for different values of parameters for the
TIITLGIE distribution, while Figure (3) shows that the hazard function of the TIITLGIE distribution is
increasing at first for different values of parameters, then decreasing in shape. These kind of models
are useful in survival analysis. The TIITLGIE distribution shows good statistical behavior based on
these two functions.
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(a) (b)

(c) (d)

Figure 2: Plots of Reliability function of TIITLGIE distribution for different values of
the parameters when (a,d) α increases, (b) λ increases, (c) θ increases.
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(a) (b)

(c) (d)

Figure 3: Plots of Hazard function of TIITLGIE distribution for different values of the
parameters when(a,b) α increases, (c) λ increases, (d) θ increases.

3.6 Harmonic Mean
The Harmonic Mean defined as reciprocal of the arithmetic mean of the reciprocal of the values
x1, x2, ....., xN and could be written as :

Hm(x) =
1

E( 1
x
)
= [

∫ ∞

0

x−1f(x)dx]−1. (3.15)

Using equation (2.5), the harmonic mean of TIITLGIE distribution can be derived as follows:

Let:
I =

∫ ∞

0

x−1f(x)dx

= λ
∞∑
s=0

(s+ 1)ψs

∫ ∞

0

x−3exp(
−λ
x

(s+ 1))dx

By setting u = λ
x
(s+ 1)

We obtain the harmonic mean of TIITLGIE distribution :

Hm(x) = [
∞∑
s=0

1

λ(s+ 1)
ψs]

−1. (3.16)
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Table 1: The mode, median, mean, Harmonic Mean, skewness and kurtosis for
different values of the parameters.

α θ λ mode median mean Harmonic Mean skewness kurtosis
1.5 1.5 2 1.56289 2.60944 3.97169 0.875 0.302401 0.91689
2 1.5 2 1.47466 2.21353 2.94902 0.622135 0.259407 0.761012
2.5 1.5 2 1.40742 1.97581 2.46282 0.437337 0.230537 0.663612
1.5 2 2 1.38028 2.03437 2.68548 0.6875 0.256803 0.753663
2 2 2 1.30144 1.76805 2.15337 0.625595 0.220002 0.630509
2.5 2 2 1.24234 1.60362 1.87148 0.600074 0.195195 0.551819
1.5 2.5 2 1.25663 1.72018 2.11884 0.63125 0.226895 0.653764
2 2.5 2 1.18516 1.51786 1.7653 0.664596 0.19408 0.548956
2.5 2.5 2 1.1321 1.39066 1.56731 0.720075 0.171876 0.481
1 2 1.5 1.12039 1.92522 3.13949 0.611111 0.320047 0.988074
1.5 2 1.5 1.03521 1.52578 2.01411 0.916667 0.256803 0.753663
2.5 2 1.5 0.931755 1.20271 1.40361 0.800099 0.195195 0.551819
1 2 2 1.49385 2.56696 4.18599 0.458333 0.320047 0.988074
1.5 2 2 1.38028 2.03437 2.68548 0.6875 0.256803 0.753663
2.5 2 2 1.24234 1.60362 1.87148 0.600074 0.195195 0.551819
1 2 2.5 1.86732 3.2087 5.23248 0.366667 0.320047 0.988074
1.5 2 2.5 1.72535 2.54296 3.35684 0.55 0.256803 0.753663
2.5 2 2.5 1.55292 2.00452 2.33935 0.48006 0.195195 0.551819

In Table 1 the behavior of the TIITLGIE distribution can be studied, when α and θ are increasing
the mode, median, mean and harmonic mean are decreasing, else the skewness and kurtosis are
decreasing. By increasing the scale parameter λ the mode, median and mean are increasing but the
harmonic mean is decreasing and the skewness and kurtosis remain constant.

3.7 Probability Weighted Moments
The PWMs can be calculated from the following :

τr,β = E[xrF (x)β ] =

∫ ∞

−∞
xrf(x)(F (x))βdx. (3.17)

By using (2.1) and (2.2) we get:

τr,β =

∫ ∞

0

2αλθxr−2exp(
−λ
x

)(1− exp(
−λ
x

))θ−1[1− (1− exp(
−λ
x

))θ]

×[1− [1− (1− exp(
−λ
x

))θ]2]α−1[1− [1− [1− (1− exp(
−λ
x

))θ]2]α]βdx.

By setting u = λ
x

τr,β = 2αθλr

∫ ∞

0

u−rexp(−u)(1− exp(−u))θ−1[1− (1− exp(−u))θ]

×[1− [1− (1− exp(−u))θ]2]α−1[1− [1− [1− (1− exp(−u))θ]2]α]βdu.
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Now by applying the binomial expansion, we get

τr,β = 2αθλr
∞∑
i=0

(−1)i
(
β
i

)∫ ∞

0

u−rexp(−u)(1− exp(−u))θ−1[1− (1− exp(−u))θ]

×[1− [1− (1− exp(−u))θ]2](α−1)+αidu.

Using the binomial expansion again we have

τr,β = 2αθλr
∞∑
i=0

∞∑
k=0

∞∑
t=0

∞∑
s=0

(
β
i

)(
α(1 + i)− 1

k

)(
2k + 1
t

)(
θ(t+ 1)− 1

s

)
(−1)i+k+t+s

∫ ∞

0

u−rexp(−(1 + s)u)du.

By setting z = (1 + s)u

τr,β = 2αθλr
∞∑
i=0

∞∑
k=0

∞∑
t=0

∞∑
s=0

(
β
i

)(
α(1 + i)− 1

k

)(
2k + 1
t

)(
θ(t+ 1)− 1

s

)
(−1)i+k+t+s

(1 + s)1−r

∫ ∞

0

z−rexp(−z)dz.

After integrating we get

τr,β = 2αθλrψikts
1

(1 + s)1−r
[Er(1) +

∞∑
n=0

(−1)n

(n− r + 1)n!
]. (3.18)

ψikts =
∞∑
i=0

∞∑
k=0

∞∑
t=0

∞∑
s=0

(
β
i

)(
α(1 + i)− 1

k

)(
2k + 1
t

)(
θ(t+ 1)− 1

s

)
(−1)i+k+t+s.

3.8 The Mean Deviation and the Median Deviation
The mean deviation and the median deviation are measures of dispersion derived by computing the
mean of the absolute values of the differences between the observed values of a variable and the
mean or the median of the variable. The mean deviation about the mean and the median are derived.

3.8.1 The mean deviation about the mean

The mean deviation about the mean can be defined as

D(µ) = E|x− µ| =
∫ ∞

0

|x− µ|f(x)dx

=

∫ µ

0

(µ− x)f(x)dx+

∫ ∞

µ

(x− µ)f(x)dx

= 2µF (µ)− 2

∫ µ

0

xF (x)dx

= 2

∫ µ

0

F (x)dx.

By using the CDF from Equation (2.3), the mean deviation of TIITLGIE distribution can be derived as:

D(µ) = 2

∫ µ

0

[1−
∞∑
s=0

νsexp(
−λ
x
s)]dx,
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where νs is defined in Equation (2.4).

= 2[

∫ µ

0

dx−
∞∑
s=0

νs

∫ µ

0

exp(
−λ
x
s)dx].

Then, the mean deviation about the mean is given by:

= 2µ− 2

∞∑
s=0

νs × [µ exp(
−λ
µ
s)− λsΓ(0,

−λ
µ
s)], (3.19)

where Γ(0, −λ
µ
s) is the incomplete gamma function.

3.8.2 The mean deviation about the median

The mean deviation from the median can be defined as

D(m) = E|x−m| =
∫ ∞

0

|x−m|f(x)dx

= 2

∫ m

0

(m− x)f(x)dx−
∫ m

0

(m− x)f(x)dx+

∫ ∞

m

(x−m)f(x)dx

= 2

∫ m

0

(m− x)f(x)dx+

∫ ∞

0

(x−m)f(x)dx

= µ− 2[mF (m)−
∫ m

0

F (x)dx]

= µ−m+ 2

∫ m

0

F (x)dx.

By using the CDF from Equation (2.3),we obtain

D(m) = µ−m+ 2

∫ m

0

[1−
∞∑
s=0

νsexp(
−λ
x
s)]dx.

The mean deviation about the median of TIITLGIE distribution can be obtained as the following:

D(m) = µ+m− 2

∞∑
s=0

νs[m exp(
−λ
m
s)− λsΓ(0,

−λ
m
s)], (3.20)

where Γ(0, −λ
µ
s) was known in (3.19).

3.9 Order Statistics
If X(1) ≤ X(2) ≤ ... ≤ X(n) denotes the order statistics of a random sample X1, X2, ..., Xn from the
TIITLGIE distribution with CDF F(j) and PDF f(j),then the pdf of X(j) is given by:

f(x(j)) =
n!

(j − 1)!(n− j)!
f(x)F (x)j−1[1− F (x)]n−j . (3.21)

The PDF of the jth order statistic of TIITLGIE distribution is given by :

f(x(j)) =
n!

(j − 1)!(n− j)!

2αλθ

x2(j)
exp(

−λ
x(j)

)[1− exp(
−λ
x(j)

)]θ−1[1− [1− exp(
−λ
x(j)

)]θ]

×[1− [1− [1− (1− exp(
−λ
x(j)

))θ]2]α]j−1[1− [1− (1− exp(
−λ
x(j)

))θ]2]α(1+n−j)−1,

x(j) > 0.

UNDER PEER REVIEW



Journal of Advances in Mathematics and Computer Science

xx(x): ....., 20yy; Article no.JAMCS.xxxxx
ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

Therefore, the PDF of the largest order statistic X(n) is given by:

f(x(n)) =
2nαλθ

x2(n)

exp(
−λ
x(n)

)[1− exp(
−λ
x(n)

)]θ−1[1− [1− exp(
−λ
x(n)

)]θ]

×[1− [1− (1− exp(
−λ
x(n)

))θ]2]α−1[1− [1− [1− (1− exp(
−λ
x(n)

))θ]2]α]n−1,

x(n) > 0.

And the PDF of the smallest order statistic X(1) is:

f(x(1)) =
2nαλθ

x2(1)
exp(

−λ
x(1)

)[1− exp(
−λ
x(1)

)]θ−1[1− [1− exp(
−λ
x(1)

)]θ]

×[1− [1− (1− exp(
−λ
x(1)

))θ]2]αn−1,

x(1) > 0.

4 Rényi Entropy of TIITLGIE

The Rényi entropy was introduced by (16), and is one of the several generalizations of Shannon’s
entropy (17), They are measures of variation of uncertainty. The theory of entropy has been successfully
used in a wide diversity of applications and has also been used for characterization of numerous
standard probability distributions. For the density function f(x) the Rényi entropy is defined by:

Rδ(X) =
1

1− δ
(log[J(δ)]), (4.1)

where

J(δ) =

∫ ∞

0

fδ(x)dx; δ > 0 and δ ̸= 1,

J(δ) = (
2αθλ

x2
)δ

∫ ∞

0

exp(
−λ
x
δ)(1− exp(

−λ
x

))(θ−1)δ[1− (1− exp(
−λ
x

))θ]δ

×[1− [1− (1− exp(
−λ
x

))θ]2](α−1)δdx.

Let u = λ
x

J(δ) = λ(
2αθu2

λ
)δ

∫ ∞

0

exp(−uδ)(1− exp(−u))(θ−1)δ[1− (1− exp(−u))θ]δ

×[1− [1− (1− exp(−u))θ]2](α−1)δ 1

u2
du.

Now by applying the binomial expansion, we get

J(δ) = λ(
2αθu2

λ
)δ

∞∑
i=0

(
(α− 1)δ

i

)∫ ∞

0

exp(−uδ)(1− exp(−u))(θ−1)δ[1− (1− exp(−u))θ]δ

×[1− (1− exp(−u))θ]2i 1

u2
du.

UNDER PEER REVIEW



Journal of Advances in Mathematics and Computer Science

xx(x): ....., 20yy; Article no.JAMCS.xxxxx
ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

Using the binomial expansion again we have

J(δ) = λ(
2αθ

λ
)δ

∞∑
i=0

∞∑
k=0

∞∑
t=0

(
(α− 1)δ

i

)(
2i+ δ
k

)(
θ(δ + k)− δ

t

)
(−1)i+k+t

∫ ∞

0

u2(δ−1)exp(−(δ + t)u)du.

By setting y = (δ + t)u

J(δ) = λ(
2αθ

λ
)δ

∞∑
i=0

∞∑
k=0

∞∑
t=0

(
(α− 1)δ

i

)(
2i+ δ
k

)(
θ(δ + k)− δ

t

)
(−1)i+k+t

(δ + t)2δ−1∫ ∞

0

y2(δ−1)exp(−y)dy.

After integrating we get

J(δ) = λ(
2αθ

λ
)δ

∞∑
i=0

∞∑
k=0

∞∑
t=0

(
(α− 1)δ

i

)(
2i+ δ
k

)(
θ(δ + k)− δ

t

)
(−1)i+k+t

(δ + t)2δ−1
Γ(2δ − 1).

Then, by taking the logarithm, we have

log[J(δ)] = log[λ(
2αθ

λ
)δ

∞∑
i=0

∞∑
k=0

∞∑
t=0

(
(α− 1)δ

i

)(
2i+ δ
k

)(
θ(δ + k)− δ

t

)
(−1)i+k+t

(δ + t)2δ−1
Γ(2δ − 1)].

(4.2)

Substituting Equation (4.2) into (4.1), we get the Rényi entropy for TIITLGIE as

Rδ(X) =
1

1− δ
log[λ(

2αθ

λ
)δ

∞∑
i=0

∞∑
k=0

∞∑
t=0

(
(α− 1)δ

i

)(
2i+ δ
k

)(
θ(δ + k)− δ

t

)
(−1)i+k+t

(δ + t)2δ−1
Γ(2δ − 1)].

(4.3)

5 Maximum Likelihood Estimation Method
The maximum likelihood estimators of the unknown parameters for the
TIITLGIE distribution are discussed. Let x1, x2, ..., xnbe a realization of a random sample of size n
from TIITLGIE distribution then the likelihood function is written as follows:

L =
n∏

i=0

f(yi) ,

and the log-likelihood function is given as follows

ℓ = log(L) = nlog(2) + nlog(α) + nlog(θ) + nlog(λ)− 2

n∑
i=1

log(xi)−
n∑

i=1

λ

xi

+(θ − 1)

n∑
i=1

log(1− exp(
−λ
x

)) +

n∑
i=1

log(1− (1− exp(
−λ
x

))θ) + (α− 1)

n∑
i=1

log(1− (1− (1− exp(
−λ
x

))θ)2).
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Differentiating(ℓ) with respect to each of the parameters;α, θ and λ gives:

∂ℓ

∂α
=
n

α
+

n∑
i=1

log(1− (1− (1− exp(
−λ
x

))θ)2) = 0, (5.1)

∂ℓ

∂θ
=
n

θ
+

n∑
i=1

log(1− exp(
−λ
x

))−
n∑

i=1

(1− exp(−λ
x
))θlog(1− exp(−λ

x
))

1− (1− exp(−λ
x
))θ

+ 2(α− 1)

n∑
i=1

(1− (1− exp(−λ
x
))θ)(1− exp(−λ

x
))θlog(1− exp(−λ

x
))

1− (1− (1− exp(−λ
x
))θ)2

= 0, (5.2)

∂ℓ

∂λ
=
n

λ
−

n∑
i=1

1

xi
+ (θ − 1)

n∑
i=1

exp(−λ
x
)

xi(1− exp(−λ
x
))

− θ
n∑

i=1

exp(−λ
x
)(1− exp(−λ

x
))θ−1

xi(1− (1− exp(−λ
x
))θ)

+ 2θ(α− 1)

n∑
i=1

exp(−λ
x
)(1− exp(−λ

x
))θ−1(1− (1− exp(−λ

x
))θ)

xi(1− (1− (1− exp(−λ
x
))θ)2)

= 0, (5.3)

The MLE of parameters α̂, θ̂ and λ̂ can be found numerically by equating the derivatives equations in
(5.1), (5.2) and (5.3) to zero and solve them using Mathematica (V.10.2).

α̂ = [− 1

n

n∑
i=1

log(1− (1− (1− exp(
−λ̂
x

))θ̂)2)]−1 (5.4)

6 Simulation Study
In this section, we will conduct simulation to study behavior of unknown parameters (α,θ,λ) for
TIITLGIE using Mathematica (V.10.2). We generate samples of size n = 10; 30; 50; 100; 200; 500
and 1000 from TIITLGIE distribution for some selected combination of parameters. This process will
be repeated N = 1000 times. In each process, estimates of the parameters that will be obtained by
mean estimate, mean squared error and bias. Then, the estimates of R(x0) and h(x0) from (3.12)
and (3.14) at point x0 = 0.5 were also evaluated using the estimated parameters.
We can observe from Table (2,3) that, if the sample size increases, the bias (BIAS) and mean squared
error (MSE) decreases in all cases.
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Table 2: The MLE, BIAS and MSE of TIITLGIE distribution for true values (α = 1, θ
= 1, λ = 1, x0 = 0.5 )

n Parameters MLE BIAS MSE

10

α 2.46842 1.46842 8.38966
θ 2.06023 1.06023 5.9919
λ 1.47638 0.476379 1.00841

R(x) 0.979781 - 0.00190381 0.000773155
h(x) 0.129346 - 0.0199127 0.0197592

30

α 2.00886 1.00886 5.1536
θ 1.73775 0.737747 3.09241
λ 1.15384 0.153842 0.173499

R(x) 0.98223 0.000545434 0.000188478
h(x) 0.13552 - 0.0137385 0.00650461

50

α 1.80555 0.80555 4.03229
θ 1.74504 0.745041 2.84547
λ 1.11085 0.110846 0.114978

R(x) 0.981839 0.000154577 0.000119655
h(x) 0.142212 - 0.00704724 0.00431343

100

α 1.74469 0.74469 3.3529
θ 1.4406 0.440605 1.61672
λ 1.05897 0.0589683 0.0612171

R(x) 0.982026 0.00034169 0.0000707223
h(x) 0.14276 - 0.0064984 0.00230038
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Table 3: The MLE, BIAS and MSE of TIITLGIE distribution for true values (α = 1, θ
= 1, λ = 1, x0 = 0.5 )

n Parameters MLE BIAS MSE

200

α 1.45024 0.450238 2.04912
θ 1.41734 0.417339 1.32852
λ 1.04602 0.0460214 0.042614

R(x) 0.981799 0.000114878 0.0000405748
h(x) 0.146533 - 0.00272554 0.00120306

500

α 1.20161 0.201606 0.68862
θ 1.21196 0.211957 0.599059
λ 1.02016 0.0201573 0.0220294

R(x) 0.981555 - 0.000129064 0.0000209308
h(x) 0.14883 - 0.000429294 0.000553292

1000

α 1.10397 0.103975 0.305711
θ 1.09735 0.0973547 0.222811
λ 1.00855 0.0085523 0.0109286

R(x) 0.981538 - 0.000146694 0.0000109141
h(x) 0.14946 0.000200975 0.000289528

7 Applications

In this Section, three sets of data are presented to demonstrate the utility of using the TIITLGIE
distribution. We compared the Type II Topp-Leone Generalized Inverted Exponential Distribution
(TIITLGIE) with, Type II Topp Leone Standard Inverse Exponential distribution (TIITLSIE), Type II
Topp Leone Generalized Standard Inverse Exponential distribution (TIITLGSIE) and Topp Leone
Generalized Inverted Exponential distribution (TLGIE)(4). The parameters are estimated using maximum
likelihood method, and computed using Mathematica (V.10.2).
The following statistical measures were calculated: log-likelihood(LL), Akaike information criterion(AIC),
Consistent Akaike information criteria (CAIC)(12) and Hannan-Quinn information criterion (HQIC)(11).

7.1 Data set 1

The first data set, is the numbers (in million Riyals) of credit facilities provided to micro enterprises in
Saudi Arabia From Q1 2018 to Q2 2021. This data is downloaded from (https://data.gov.sa/Data/en/dataset/credit-
facilities-provided-to-smes).

7.2 Data set 2

The second data set represents the number of daily COVID-19 cases in
Jeddah, Saudi Arabia from 2nd May to 6th July. These data were taken from the website of the Saudi
Ministry of Health with URL: https://covid19.moh.gov.sa/.
The data is as follows :245,261,385,312,315,373,265,374,236,306,338,482,444,450,357,305,
526,311,390,403,444,474,350,327,325,360,251,247,586,293,279,418,259,459,572,351,577,
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447,460,294,391,527,352,413,477, 279,300,384,421,342,388,393,214,218,243,171,121,212,
167,172,164,169,169,149,209,227.

7.3 Data set 3
The data set shows the seasonal (July 1 - June 30) rainfall in inches recorded at Los Angeles Civic
Center from 1962 to 2012. These data were taken from the website of Los Angeles Almanac with
URL:
http://www.laalmanac.com/weather/we13.php reported by United States National Weather Service
3.21,4.42,7.17,7.22,7.35,7.66,7.77,7.93,8.08,8.11,8.38,8.69,8.98,9.08,9.09,9.24,10.43,10.71,
11.47,11.57,12.31,12.32,12.4,12.46,12.48,12.82,13.19,13.53,13.69,14.35,14.92,16.36,16.49,
16.58,17.86,17.94,19.67,20.2,20.44,21.0,21.26,22.0,24.35,26.98,27.36,27.47,31.01,31.25,33.44,
37.25.

In Table (4-6) shows that the TIITLGIE distribution has smaller values for measure, (LL, AIC, CAIC
and HQIC) compared with the values of others models for the three data sets.
Figure (4-6) shows the empirical distribution and estimated CDF of the models for three data sets.

Table 4: Statistical measures for data set 1.

Model Parameters LL AIC CAIC HQIC
TIITLGIE α̂ = 4.19523 θ̂ = 12.9575 λ̂ = 4.78025 - 2.11004 10.2201 13.6486 9.46762
TIITLSIE α̂ = 3.37693 - 10.3583 22.7165 23.161 22.4657
TIITLGSIE α̂ = 15.6049 θ̂ = 0.392864 - 9.31184 22.6237 24.1237 22.122
TLGIE α̂ = 1.42755 θ̂ = 0.5 λ̂ = 0.992072 - 15.2647 36.5295 39.958 35.777

Table 5: Statistical measures for data set 2.

Model Parameters LL AIC CAIC HQIC
TIITLGIE α̂ = 15.6834 θ̂ = 0.962963 λ̂ = 483.436 - 406.108 818.216 818.603 820.812
TIITLSIE α̂ = 0.197486 - 553.007 1108.01 1108.08 1108.88
TIITLGSIE α̂ = 8.5854 θ̂ = 0.067094 - 525.562 1055.12 1055.32 1056.86
TLGIE α̂ = 1.39053 θ̂ = 0.5 λ̂ = 211.596 - 450.282 906.564 906.951 909.16

Table 6: Statistical measures for data set 3.

Model Parameters LL AIC CAIC HQIC
TIITLGIE α̂ = 13.8009 θ̂ = 0.510292 λ̂ = 12.4307 - 168.324 342.648 343.17 344.832
TIITLSIE α̂ = 0.504938 -218.012 438.023 438.107 438.752
TIITLGSIE α̂ = 6.98918 θ̂ = 0.164037 - 205.072 414.144 414.399 415.6
TLGIE α̂ = 1.33702 θ̂ = 0.5 λ̂ = 8.6618 - 186.422 378.844 379.366 381.028
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Figure 4: Plot of the Goodness of fit of TIITLGIE distribution using data set 1.

Figure 5: Plot of the Goodness of fit of TIITLGIE distribution using data set 2.
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Figure 6: Plot of the Goodness of fit of TIITLGIE distribution using data set 3.

8 conclusions
In this study, we derived a three parameter Type II Topp Leone Generalized Inverted Exponential
Distribution. Statistical properties of TIITLGIE distribution are computed. Maximum Likelihood estimators
of TIITLGIE distribution obtained. Finally, three real data applications are analyzed, it is significantly
the TIITLGIE distribution provides better result than derived models.
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