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BIVARIATE COMPOUND EXPONENTIATED SURVIVAL FUNCTION
OF THE LOMAX DISTRIBUTION: ESTIMATION AND PREDICTION

Abstract:

In this paper, bivariate compound exponentiated survival function of the Lomax
distribution is constructed based on the technique considered by AL-Hussaini (2011). Some
properties of the distribution are derived. Maximum likelihood estimation and prediction of the
future observations are considered. Also, Bayesian estimation and prediction are studied under
squared error loss function. The performance of the proposed bivariate distribution is examined
using a simulation study. Finally, a real data set is analyzed under the proposed distribution to
illustrate its flexibility for real-life application.

Keywords: Lomax Distribution; Bivariate distributions; Compound exponentiated survival
functions; Maximum likelihood estimators; Prediction; Bayes Estimators; Monte Carlo
simulations.

1. Introduction

Although bivariate extensions of univariate distributions are useful, it has not been applied
in practice due to shortage of inferential procedures caused by numerical complexity. Moreover,
generalization of univariate models is not straightforward in the sense that certain desirable
properties may hold for more than one multivariate model.

One of the objectives of this paper is to construct a bivariate compound exponentiated
survival function of the Lomax (BCESFLO) distribution; based on the technique considered by
AL-Hussaini (2011) who constructed a class of multivariate distributions. It could be useful in
studying reliability maintainability of complicated systems.

This paper consists of six sections. In Section 2, construction of BCESFLO distribution based on
the technique considered by AL-Hussaini (2011), also some properties of the distribution are
obtained. Maximum likelihood estimation and prediction are considered in Section 3. In Section
4, simulation study and an example data set are presented to illustrate the theoretical results derived
for ML estimation and prediction. In Section 5, Bayesian estimation; for the unknown parameters,
rf and hrf of BCESFLO distribution, is derived, also Bayesian prediction is considered. Numerical
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illustration: simulation study and an example data set for the results of Bayesian estimation and
prediction is introduced in Section 6.

2. Construction of a Compound Exponentiated Survival of the Lomax Distribution

Recently, in the statistical literature several methodologies of constructing bivariate and multivariate
distributions based on marginal and conditional distributions have been proposed; see Arnold et al.
(1999, 2001), Kotz et al. (2000) Sarabia and Gomez-Deniz (2008) and Balakrishnan and Lai (2009)

among others.

Bivariate survival data arise when each study subject experiences two events. Examples include failure
times of paired human organs; (e.g., kidneys, eyes, lungs, breasts and others), first and second
occurrences of given disease. Bivariate survival data may consist of time to diagnosis or hospitalization
and the time to eventual death from a fatal disease. The medical literature considered paired organs of
an individual as a two-component system, which work under interdependency circumstances. In
industrial applications these data types may come from system whose survival depends on the survival
of two similar components. For an example, the breakdown times of dual generators in a power plant
or failure times of twin engines in a 2-engine airplane are illustrations of bivariate survival data. In
fact, there are many bivariate distributions [see Kotz et al. (2000)] that can be employed for the analysis

of paired data.

Two bivariate Pareto distributions were suggested by Mardia (1962) which are called bivariate Pareto
of the first kind and bivariate Pareto of the second kind. Arnold (1983) suggested a bivariate Pareto of
the fourth kind and presented three methods to derive this model. Muliere and Scarini (1987) proposed
a bivariate Pareto survival function which was characterized by Padamadan and Nair (1994) using the

survival function of the marginal distributions. In this paper, a BCESFLO is introduced.

In this section, two cases of the construction of the CESFLO distribution (univariate and bivariate) are

introduced.

2.1 Construction of the univariate compound exponentiated survival of the Lomax
distribution

AL-Hussaini (2011) introduced a theorem to construct a class of distributions by
compounding the exponentiated survival function (sf) with the gamma probability density function
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(pdf). The resulting class includes all distributions with positive domain. Such domain could be
the whole positive half of the real line or subset of it. Suppose that T has Lomax (LO) distribution
with the following pdf and cumulative distribution function (cdf), respectively, as follows:

git,a) =a(l+t)" @D, t>0,a>0, (1)
and
Gt,a)=1—-(1+t)*, t>0,a>0. (2)

If G(t) is an absolutely continuous cdf and S is a positive real number, then

Flp)=1-[6c®)F =1-[A+6)"°T, 3
where F(t|f) is an absolutely continuous cdf, hence the sf can be written as
stlB) = [G®)]F = [(1+ )]~ (4)

The corresponding pdf is given by
d _
f@lp) = [1—sp] =Bl GO g®
=af[(1+t)" %11 +t)" @D, t>0,(a,p >0), (5)

where g(t) is the pdf corresponding to G(t), and S is a positive random variable with pdf n(g)
which is given by

a

1) = 5y B ep(=bp), B> 0,(ab>0), 6)
and
O = [ reipm@as, %
0
where f(t|B) is given by (5),
hence
a 1 _ —(a+1)
fO =220 [1-3mT0| ®)

applying (8), where G(t) = (1 +t)™* = g(t) = a(1 +t)~@*D, and A;(t) = % = 1L+t , then the

pdf of the CESFLO distribution is given, for t > 0, > 0,8 > 0, by
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—(a+1)

£ = %[%t] 1+ %ln(l +0] L t>0ap>0, )

from (9) the cdf of the CESFLO distribution can be written as

—-a

a
F(t) =1— [1 +7In(1 + t)] . (10)

The hazard rate function (hrf) corresponding to H(t) is

__f@®
Ay (t) = 1-F(D)
a «a al -1
E(1+t)[1+3n(1+t)] : (11)

The reversed hazard rate function (rhrf) is given by

—(a+1)
a a a
b_(1+t) [1 + ;ln(l + t)]

3y(0) = 2 -
1— [1 +ZIn(1 + t)]

2.2 Construction of the bivariate compound exponentiated survival of the Lomax
distribution

Suppose that t = (t4, t,) is a random vector such that F(¢t;|8) and f(t;|3) are given by

F(t1B) =1 - [G®]%F =1 [(1 +t)74]%F,

and

fIB) = 0,ay[(1 + t;)~%]%F-1(1 + ¢)~(@+D) i =12, (12)

where g is a positive random variable following the gamma distribution with pdf given by (6).
The bivariate pdf of the random vector t can be constructed by compounding cp(g; ,8) with n(B)
to yield

£() = ] o(t:B) n(BYdB,
where
2
owp) =] [rwim,  and  t=t.

Then the bivariate pdf of the random vector t can be constructed by compounding cp(g; B) with n(B),
then the BCESFLO can be written as follows:
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—(a+2)

) [ & _
f(t)=rtyty) = % [l_[ Yi e (ti)] [1 - Z Yiln G(ti)] )

i

where y; =% and A;(t;) = then

2 2 —(a+2)
f(t)=ala+1) a;y; In(1 + t;) bt >0,i=1,2 (13)
[Tl i 5
Proof
£©) = | ocp)nap, s
0
where
: : g(t)
.R) = _ = TG ()08 L2222
o(t:6) L[f(a [ ]_[e (G125
2
= B2 1_[ 6; 1 (t;) exp [Z 6; Bln(@(ti))] : (15)
i=1
Substituting (15) and (6) in (14), one obtains
(t) 1_[9 AG(t)F( )f ﬁa+1 -B[b- le 10 ln(G(t )) dﬁ
r( +2) e
- ]_[yl ot )” Z% InG(, )]
where y; = %, A6(t) = ‘Zg‘g
Then the pdf in the bivariate case can be rewritten as
_ 01 aq 0, az
ot =steo [ 12)) ()
01 a; 0; a, ~(a+2)
x [1 + { In(1+t,) + In(1 + tz)}] . (16)

The contour plots of the joint pdf of the BCESFLO distribution for different parameter values are
presented in Figure 1.
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(1.2) (1.b)

(1.0) (1.d)

Figure 1. The contour plots of the joint pdf of the BCESFLO distribution for different
parameter values

(1.a) (a =0.8,b=10.8,a; = 0.8,a, = 0.8,0; = 0.8,6, = 0.8),

(1.b) (a=15b=0.50 =2,a,=1,0, =1,6, =0.5),
lc)(a=1,b=10a,=1,a,=1,0, =1,0, =0.5)

and (1.d) (a=1,b=1,04 =1,a,=1,0, =1,0, =1).

The distribution function can be obtained from (13) as follows:

2
_ Vi\T§ t;
i=1

The cdf of BCESFLO distribution is given by

—(a+2)

dt,dt, .

2

1+ Z aiVi 11’1(1 + ti)

i=1

F(£)=J:1J:Za(a+1)
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t1 rt2
F(ty,tp) = f f(ty, ty) dt,dty

[ [ |3 2) 26%)

—(a+2)

2 In(1 + tz)}] dt,dt,

0
x[1+{ 1b Lin(1+t) + Zb
—-a

— 14 [1 . {91 ! % In(1 + tz)}]_a - [1 + {01 M1+ tl)}]

- [1 + {szaz In(1 + tz)}] . (17)

0
In(1+t,) +—

The marginal’s pdf and cdf of the BCESFLO distribution can be written, respectively, as

(t)—aei( & )[1+9 1 1+t](a+1)
F) ==-\117, bn( i)

and

F(t)—l—[l

(18)
The joint reliability function (rf) of the BCESFLO distribution is given by:
R(ty,t) =p(Ty > t1, T, > t5) =1 —F(ty) — F(t,) + F(ty, t2)

- [1 + {91ba1 In(1+t;) + szaz In(1+ tz)}]_a. (19)

Also, the joint hrf of the BCESFLO distribution can be defined as

_fut) ) 92( a; )
h(tyt,) = R(ty,t,) ala+1) 1 +t))\b\1+¢,
-2
X [1 +{ LN @+ t) + Zb 2 ln(1+t2)}] . (20)
If (T,,T,)~ BCESFLO, then for all values of t; > 0,t, > 0 both components of h(t,,t,) are

decreasing functions of t; and t,. The contour plots of the joint hrf of the BCESFLO distribution
for different parameter values are presented in Figure 2.
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(2.b) (2.b)

(2.c) (2.d)

Figure 2: The contour plots of the joint hazard of the BCESFLO distribution for different
parameter values
(2a)(a=11,b=2,a; =1.5a, =2.2,0, =1.9,0, = 3.1),

(2b) (a = 1,b = 1, o = 1, o = 0.5, 91 = 0.5, 62 = 05),
(20) (a = O.8,b = 0.8, o = 0.8, o = 0.4, 91 = 0.4‘, 92 = 04‘)

and(2d) (a=1b=10 =1,a, =1,6, =1,6, = 1).

3. Maximum Likelihood Estimation
In this section the ML estimation and prediction for the vector of the parameters

w = (a,b,ay, a3, 04, 6,) for the BCESFLO distribution will be considered.

8
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3.1 Maximum likelihood estimation of the parameters

The likelihood function of the BCESFLO distribution can be derived using the pdf in (16) directly,

but compounding of [T, f(¢;|w) and n(B) can be applied to make the ML estimation easier,
hence

L(w tl: tZJ.B) - nf(tlptZ]' .81) - 1_[ [l_[f(tleBj)n(.Bj ]
F(a)]" Hﬁ, ororalal gu tt,) 1_[]:1(1 to,)

X exp —zﬁj[elal In(1+ 1) + By, In(1 + t,) + b] {, 21)
j=1
where w = (a, b, ay, @, 04, 0,). The log likelihood function is given by

{(w;ty,t;,) =nalnb—nlinl(a)+ (a+1) Z Inp; |+ nilnb; +ninb, + nlna,
j=1

n n
+n Ina, —Zln(1+t1j)—Zln(1+tzj)
=1 =1

n
- 2 Bi[61aaIn(1 + t1) + Bya,In(1 + t5,) + b] {, (22)
j=1
The ML estimates of the parameters are obtained by differentiating (22) with respect to the
parameters, setting to zero and then solving the resulting non-linear system of likelihood equations.
Hence

n
9¢/da = nlnb — mp(a) + z Ing; =0,

J:

n
9¢/3b = na/ 2
0¢/0a, =nj/a, — Zﬁjelln(l + tlj) =0,

92/96, = n/8, — Zﬁjalln(l +t,) =0,

j=1

92/da, =n/é, Z B0,in(1+t,)) =0,

j=1
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and

90/96, = n/8, — Z BiayIn(1 + t;;) = 0,
=1
where ¥(a) = I'(@)/T(a).

The invariance property of the ML estimators can be applied to obtain the ML estimators for the
R(t1,t,) and h(t,, t,) by replacing the parameters in (19) and (20) by their ML estimators as given

below
_ 0, & 0, & e
R(ty,t,) = ll +{ 15 Lin(1+t) + ZB 2 In(1 + tZ)H , (23)
and
w=aa+0|| 370 || £ (5%)
h(t;,t,) =aa+1) At AT
b, & 4, @ 2
x [1 +{ 15 Lin(1+¢t) + 25 2 In(1 + tz)}l . (24)

and hence the R(t,,t,) and A(t,, t,) can be calculated numerically.
3.2 Two-sample maximum likelihood prediction

Considering two- sample prediction, the two samples are assumed to be independent and drawn from
the same distribution. In univariate case, the density of the s-th order statistic in the future sample is
used to obtain the predictive pdf of the s-th ordered statistic. The first variable in the vector of bivariate
distribution is the ordered observation and the second variable is its concomitants, therefore the joint
pdf of the ordered observations and the concomitants is needed to obtain the joint predictive density
function of future ordered observations and their concomitants.

For a future bivariate sample of size m, the joint pdf of future s-th ordered observation and its s-th
concomitant denoted by (y1(s.my Y2(s:my)s S = 1,2, ..., m, has the joint pdf which is given by (16) after
replacing t; by yi(s:m) and t; By ¥,(s.my. FOr simplicity, it can be written as (yl(s),yz(s)) instead
of (V1(s:my» Y2(s:my)- Then the joint pdf of (yy(s), ¥2(s)) can be derived as follows:

m! - _
fsm (Vacsyr Yoy @) = (s— D! (m— S)!f(yl(s)%(s)?Q)[F(yus)'h(s))]s 1[1 - F(Yl(s)'yZ(s))]m ’,

using binomial expansion to simplify the last term in the previous equation, one gets

- m-—sS . j
(1= FOro Y] = }'l:_os( j ) (1) [FOr9 Y]

10
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Thus, the joint probability density of (), ¥2(s)) i

m-—s

+j-1
fsm(yl(s) YZ(s)' (‘)) f(yl(s); }’2(5)» (‘)) z CmS] [F(yl(s) yz(s))]s = (25)
j=0
where
m! .
= —1)J
Cm.s.j (s—l)!(m—s—j)!(]')!( D’ (26)

Substituting f (¢, t;) given in (16) and F(tq,t,) in (17) after replacing t; by y; s and t; by y,(s)
then, the joint ML predictive pdf of the ordered observations and their concomitants is given by
fs:m(yl(s):yz(s);QML) =

3] a 0 a
a@a+1|| — <—1 ) é(—z )

b \1+ Y1 b \1+yys
6, a é A
1 + { 1b 1 lTl(l + yl(s)) + — b ln(l + yz(s))}l

m-—s

8,
X Y Cmsj {1 + l1 +{

Jj=0
0, &
_[1+{1A1

The point predictors of the future ordered observations and their concomitants (Yl(s), YZ(S)),
s =1,2,...,m, can be obtained as follows:

—-(a+2)
X

1n(1 + yz(s))}l_d

~ R s+j-1

In(1 + yl(s))}l_a —~ ll + {HZA&Z In(1+ yz(s))}l_a} ,

(Vi(s) Y2(9)) > 0, > 0. (27)

6
ln(l + Y1(s)) +

v, = E1(s); Omr) = j 3’1(s)J f(yl(s)fyz(s);QML)dyZ(s)dyl(s)r (28)
Y1(s)=0 Ya(s)

and

Y, = EWae); Om) = j Va(s) J F (Vaesy Ya(s); @mn)dy1(s)dY2(s), (29)
Y2(s)=0 Y1(s)

From (28) and (29), the point predictors Y; and Y, cannot be obtained in closed form. Then, the
joint point predictors of the future ordered observations is

?1 ’?2 = E(J’l(s):}’Z(s)iQML) =J J J’1(s)}’2(s)f(}’1(s)'}’2(s)iQML)d}’z(s)d%(s): (30)
o Jo

which can be evaluated numerically.

11
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4. Numerical Hlustration

This section aims to clarify the theoretical results for both estimation and prediction on the basis
of simulated and real data set.

4.1 Simulation study

In this subsection, a simulation study is conducted to illustrate the performance of the presented
ML estimates on the basis of the generated data from the BCESFLO distribution. The ML averages
of the estimates of the parameters, rf and hrf are computed. Moreover, confidence intervals (CIs)
of the parameters, rf and hrf are calculated. Simulation studies are performed using Mathematica
11 for illustrating the obtained results.

The steps of the simulation procedure are as follows:

a) For given values of w (where w = (a, b, 4, ay, 64, 6,)), random samples of size n are
generated from the BCESFLO distribution.

b) For each sample size sort t;;s, such that (t11, t21), (t12, t22), -, (E1n tan).

c) Repeat the previous two steps N times, where N represents a fixed number of simulated
samples.

e For the number of the population parameter values the Newton-Raphson method can be
used, the ML averages and the Cls of the parameters are obtained. Also, the rf, hrf and their
Cls are calculated using the ML averages of the parameters.

e Evaluating the performance of the estimates is considered through some measurements of

accuracy. To study the precision and variation of the estimates, it is convenient to use the

Zliil(estimator—true value)?
N

estimated risk (ER) =

e Simulation results of the ML estimates are displayed in Tables 1, 2, where N = 10000 is
the number of repetitions and samples of size (n=30, 50, 100) and the population parameter
values are
(a=11,b=2,a, =15a,=220,=190, =3.1),
and (a = 0.6,b = 1.2,a; = 0.79,a, = 1.1,6, = 0.95,6, = 1.55).

e Tables 1 and 2 present the ML averages, ERs, and Cls of the unknown parameters based.
While Tables 3 and 4 display the ML averages, Ers and Cls of the rf and hrf for different
values of time t,4, t,,. The ML two-sample predictors are presented in Table 8.

4.2 Example data set

In this example, a data set is analyzed from a Sankaran-Nair bivariate Pareto distribution [see
Sankaran-Nair (1994) and Sankaran and Kundu (2014)]. The generated data set for n=30 is:

(0.252, 8.400), (1.105, 0.458), (0.427, 1.602), (12.491, 2.383), (0.260, 0.106), (0.240, 1.769), (4.888,
0.758), (0.870, 0.572), (0.036, 0.254), (1.537, 0.023), (1.508,0.535), (0.239, 1.4120), (0.173, 0.011), (1.090,

12
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1.278), (6.002, 0.017), (0.897, 2.032), (0.690, 0.138), (1.883, 0.398), (0.960, 0.257), (0.561, 0.573), (5.370,
0.325), (0.167, 0.260), (13.602, 0.364), (3.922, 0.938), (0.132, 0.547), (0.603,0.102), (0.226, 0.481), (0.143,

0.779), (0.643, 0.071), (0.349, 1.586).

The Kolmogorov—Smirnov goodness of fit test is applied to check the validity of the fitted model.
The p values are given, respectively 0.808 and 0.393. The p values showed that the model fits the
data very well. Table 5 displays the ML estimates and standard errors (Se) of the unknown
parameters for the real data set. While Tables 6 and 7 present the ML estimates, Se and Cls of the
rf and hrf for different values of time t,4, t,,. Table 8 gives the ML two-sample predictors for the

future observation.

Table 1

ML averages, variance, estimated risks and 95% confidence intervals of the parameters

(N=10000,a=1.1,b=2,a; =1.5,a, =2.2,0, =1.9,0, = 3.1)

n Parameters Averages Var ER UL LL Length
a 0.9764 0.0010 0.0163 1.0393 0.9134 0.1259

b 1.7883 0.0030 0.0478 1.8963 1.6804 0.2159

30 ay 15112 9.6547e-06 0.0001 1.5173 1.5051 0.0122
a, 2.2207 0.00003 0.0005 2.2319 2.2095 0.0224

6, 1.9142 0.00002 0.0002 1.9219 1.9065 0.0154

0, 3.1292 0.00007 0.0009 3.1450 3.1134 0.0315

a 0.9951 0.00002 0.0110 1.0040 0.9861 0.0179

b 1.8199 0.00007 0.0325 1.8359 1.8038 0.0321

50 a, 1.5086 1.4879e-08 0.0001 1.5089 1.5084 0.0005
a, 2.2168 9.5819e-08 0.0003 2.2174 2.2162 0.0012

6, 1.9109 2.3872e-08 0.0001 1.9113 1.9106 0.0006

0, 3.1237 1.9025e-07 0.0006 3.1245 3.1228 0.0017

a 0.9969 1.7630e-06 0.0106 0.9996 0.9944 0.0052

b 1.8235 5.2811e-06 0.0312 1.8279 1.8189 0.0090

100 a, 1.5089 1.4657e-9 0.0001 1.5089 1.5088 0.0002
a, 2.2167 1.0896e-08 0.0003 2.2169 2.2166 0.0004

0, 1.9112 2.3517e-09 0.0001 1.9113 1.9111 0.0002

0, 3.1236 2.1634e-08 0.0005 3.1239 3.1233 0.0006

13
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Table 2
ML averages, variance, estimated risks and 95% confidence intervals
of the parameters
(N=10000,a=0.6,b=1.2,a; =0.79,a, =1.1,60; = 0.95,0, = 1.55)

n Parameters Averages Var ER UL LL Length

a 0.9567 0.0005 0.1277 1.0020 0.9113 0.0908

b 1.7614 0.0018 0.3169 1.5254 1.6791 0.1647

30 ay 1.5235 9.5511e-07 0.5983 1.5254 1.5216 0.0038
a, 2.2370 7.6043e-06 1.29277 2.2424 2.2316 0.0108

0, 1.9298 1.5324e-06 0.9599 1.9322 1.9273 0.0049

0, 3.1521 0.00002 2.5668 3.1598 3.1445 0.0152

a 0.9425 1.2119e-06 0.1173 0.9447 0.9404 0.0043

b 1.7359 3.3451e-06 0.2872 1.7395 1.7323 0.0072

50 aq 1.5232 9.6456e-07 0.5978 1.5251 1.5212 0.0038
ay 2.2376 3.2349e-08 1.2941 2.2379 2.2372 0.0007

6, 1.9293 1.5476e-06 0.9591 1.9318 1.9269 0.0049

0, 3.1529 6.4230e-08 2.5694 3.1534 3.1525 0.0009

a 0.9411 5.4548e-07 0.1164 0.9426 0.9397 0.0029

b 1.7335 1.5400e-06 0.2846 1.7359 1.7311 0.0049

100 ay 1.5238 4.0737e-07 0.5988 1.5251 1.5226 0.0025
ay 22382 1.0435e-09 1.2955 2.2383 2.2381 0.0001

0, 1.9302 6.5359¢-07 0.9608 1.9317 1.9286 0.0032

0, 3.1538 2.0718e-09 2.5723 3.1539 3.1537 0.0002

Table 3

ML averages, relative absolute biases, variance, estimated risks and 95% confidence
intervals of the reliability and hazard rate functions
N = 10000,a = 11,b = Z,a = 1.5,“2 = 2.2,91 = 19,0 = 3.1,t01 = Z,t 2 = 3)

n rf and hrf Averages RAB Var ER UL LL Length
R(to1, toa) 0.0756 | 0.2194 0.00002 0.0001 | 0.0831 | 0.0681 | 0.0150

30 h(ty1, toz) 0.0051 0.1669 5.7242e-08 0.0016 0.0055 0.0046 0.0009
50 R(ty1, toz2) 0.0761 0.2178 0.00001 0.0001 0.0831 0.0691 0.0140
h(tyq, to2) 0.0051 0.1666 5.2811e-08 0.0016 0.0055 0.0046 0.0009

100 R(ty1, toz2) 0.0759 0.2160 0.0000 0.0001 0.0826 0.0688 0.0138
h(toq,to2) 0.0050 0.1654 5.0551e-08 0.0015 | 0.0055 | 0.0046 | 0.0009

14
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Table 4

ML averages, relative absolute biases, variance, estimated risks and 95% confidence
intervals of the reliability and hazard rate functions
(N =10000,a=0.6,b=1.2,a; =0.75,a, =1.1,0; = 0.95,0, = 1.55,ty; = 2,tp, = 4)

n rf and hrf Averages RAB Var ER UL LL Length
R(to1, to2) 0.0524 0.8323 | 1.2496e-08 | 0.0226 | 0.0527 | 0.0522 | 0.0004
30
h(to1, toz) 0.0014 0.1493 5.0258e-10 0.0009 | 0.0016 | 0.0013 | 0.0003
50 R(to1, toz) 0.0522 0.8321 1.8122e-09 0.0224 | 0.0525 | 0.0523 | 0.0002
h(toy, toz) 0.0013 0.1386 | 1.8525¢-10 | 0.0006 | 0.0015 | 0.0012 | 0.0003
R(to1, to2) 0.0520 0.8320 | 1.7635e-09 | 0.0221 | 0.0521 | 0.0519 | 0.0002
100
h(to1, to2) 0.0011 0.1382 2.5761e-12 0.0002 0.0012 0.0010 0.0002
Table 5
ML estimates and standard errors of the parameters for the real data set
Parameters Estimates Se
a 0.9952 0.0109
b 1.8246 0.0307
@ 15123 0.0002
a, 2.2275 0.0008
6, 1.9156 0.0002
0, 3.1387 0.0015
Table 6

ML estimates and standard errors of the reliability and
hazard rate functions for the real data set

rf and hrf Estimates Se

R(toq,t02) 0.0727 0.0001

h(to1,toz) 0.0052 0.0044
Table 7

ML estimates and standard errors of the reliability and
hazard rate functions for the real data set

rf and hrf Estimates Se
R(tgq,t02) 0.0654 0.0001
h(toq,to2) 0.0034 0.0038
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Table 8

ML predictors and bounds of the future observation

under two-sample prediction

(n=30,a=0.3,b=0.5a,=0.7,a,=2,0; =1.9,0, =3.1)

] Y Estimates UL LL Length
Vi) 0.0068 0.0448 0.0000 0.0448
! Yaes) 0.1141 0.3374 0.0147 0.3227
Yies) 0.0295 0.0452 0.0001 0.0451
" Yas) 0.2062 0.3563 0.0113 0.3450
Vi) 0.4845 2.1960 0.0222 2.1738
° Yas) 0.6831 1.3169 0.2638 1.0532

4.3 Concluding remarks

1. It is noticed, from Tables 1 and 2 that the ML averages are very close to the population
parameter values as the sample size increases. Also, ER is decreasing when the sample size
is increasing. This is indicative of the fact that the estimates are consistent and approaches
the true parameter values as the sample size increases.

2. The lengths of the Cls of the parameters become narrower as the sample size increases.

3. The ML averages for the rf and hrf perform better as the sample size increases. Also, ER

is decreasing when the sample size is increasing.

4. The length of the ClI for the first future order statistic is smaller than the length of the CI for the

last future order statistic [Tables 8 and 9].

5. The ML interval includes the estimates (between the LL and UL).

5. Bayesian Method

In this section Bayesian estimation and prediction for the vector of parameters

w = (a,b,ay,a,,0,,0,) for the BCESFLO distribution will be studied.

5.1 Bayesian estimation

AL-Hussaini and Ateya (2005) estimated the parameters under a squared error loss (SEL)
function using Tierney- Kadane’s (1986) approximation form. lliopoulos et al. (2005) considered
bivariate gamma distribution for estimating the unknown parameters based on SEL function. Chadi
et al. (2013) estimated the parameters and the mean time between failures of a bivariate
exponential model under various loss functions, namely SEL, absolute error, DeGroot, LINEX

16
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and Entropy loss functions. Lin et al. (2013) obtained the estimators for the parameters of Moran-
Downton bivariate exponential distribution based on complete and Type-11I censoring. Independent
gamma priors were assumed for scale parameters and beta distribution for correlation parameter.
Pradhan and Kundu (2015) derived the estimators for the parameters of the Block and Basu
bivariate Weibull distribution.

If (a,b), (a1,0,) and (a,, 8,) are independent, a prior density function of
= (a,b, a4, 64, a3, 0;) is given by
m(w) « my(a, b)m, (e, 61)73(az, 62), (31
where the first prior is
m1(a,b) = my;(a|lb)m,(b), alb ~Gamma(cy, b)and b~Gamma(c,, c3),
the second prior is
my(aq, 01) = my1(@1]101)72,(61),  a1]|01~Gamma(cy, 8,)and 6,~Gamma(cs, cg),
and the third prior
m3(ay, 0,) = m31(ay|0,)13,(6,), @,|0,~Gammal(c,, 6,) andf,~Gamma(cg, cg).

The three priors can be written as

ﬂl(a: b) o bc1+c2—1ac1—1e—b(c3+a), (32)
1y (g, 0;) o 45 gfr o= Oalcotan) (33)
and

m3(ay, 0,) 9267+CS_1a§7_1e‘92(c9+“2). (34)

Substituting from (32) and (33) in (31) and using the likelihood function in (21), then the posterior
density function will separate into three posteriors, which are

na+cl+cz 1 n
7 (a, blty, by, B) € ———— 1_[/3] actexp |—b z Bi+estall, (35)
(r (a)) j=1
ﬂ; (alf 91 |t11 tZJ ﬁ) &
n n
9f“+65+"_1af“+n—1 1_[(1 +t;) texp -6, Z aBiIn(1+ty;) +co +ay| ,(36)
j=1 =1

and

17
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m3(ay, 0z ]t1, t5, f)
Hc7+cg+n—1 c;+n—-1

5 a, i+ exp[—@z i1 a2p; In(1 + tzj) + ¢ + az] ,(37)

by using (35)-(37) and if (a, b),(a, ,6; ) and (@, , 8, ) are independent, hence the posterior
density function is given by

ua (ﬂ|t1' L2, ﬁ) < my(a, b|ty, ty, f)my(ay, 01ty ty, f)ms(ay, 62]ty,t2, ) (38)

The Bayes estimators are the posterior means

(U;(SE) = E((U] |t1, tz) = f (l)] T[* (Qltl, tz,ﬁ)d&, ] = 1,2, ...,6,
w

which can be evaluated numerically to obtain the Bayes estimates for the parameters.

The Bayes estimators of the R(t;,t,) and h(t,t,) can be obtained using (19), (20) and (38),
respectively, as given below

Rsg(ty,t3) = E(R(tp tz)lﬁ) = f R(ty,t) " (Qltp tz)dQ' (39)
and -
hsg(t1,t2) = E(h(tp tz)l@) = f h(ty,t) " (Qltp tz)dﬁ- (40)

Equations (39) and (40) can be_calculated numerically to obtain the Bayes estimates of the
parameters, rf and hrf based on SEL function.

5.2 Bayesian prediction

The joint pdf of (yl(s),yz(s)) has the form as given in (27), and hence the joint Bayes predictive
density of the ordered observations and their concomitants is given by

h(y1(s) Yas)lw) = J f iy Yo lw)m™ (wlys, y2) dw, (41)
w

where

j=jf fjff . dw = dadb da,da,d6,do,, (42)
w a b 0

ay a; 6, 0

substituting (27) and (38) in (41), yields the joint Bayes predictive density of (yl(s),yz(s)) IS

18
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h()’1(s);)’2(s)|£) = f L1 Isdw , (43)
w
where
. (a+ 1)a“ pna+cy+cy=3gCatestn Catnglrtcgtn Crtn
1= \n 1 1 2 2
(T(@))
—|p(>¥™ . B: 0 2] -1 -1
I =e [ (Z]_lﬁj+c3+a)+ 1(ce+ar)+ 2(69+a2)](1 +J’1(s)) (1 +Y2(s)) ,
01 aq 0; ay ~(ax2)
I3 = [1 + { 5 In(1+ yl(s)) + A In(1+ Yz(s))}] ’
n -1 n -1 n a+1
= 1_[(1 +715) 1_[(1 +32)) nﬁj e[ By iy +0200 X 87 |
j=1 j=1 j=1

and

m-—s
0; 0, «
= Cngy {1 + [1 +{ = (1 +yie) + = n(1+ Yz(s))}]
7=0

B N (R T Cmee) [ (a4

The point predictors of the future ordered observation and their concomitants (Y, Ya(s)),

—-a

s =1,2,...,m,under SEL function can be obtained as follows:

Yy = E(yye|w) = Y1(s) f (V105 Y2(5)| @) dYa(5)dY1(s)» (45)
Y1(s)=0 Ya(s)

and

Y; = E(yys|w) = f Ya(s) f f (V1(s) Vo) | @) dya(s)dyacs), (46)
Y2(s)=0 Yi(s)

From (45) and (46), the point predictors Y;" and Y," cannot be obtained in closed from. The joint
Bayes points predictors of future ordered observation is

Yy, Y5 = E(yis) Yas) @) = f J Y1) Y2)f Y105y Va(s)| @) dY1(5) AV 2(s) - (47)
0 0
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6.

Numerical Ilustration

This section aims to investigate the precision of the theoretical results of Bayesian estimation and
prediction based on the simulated and real data set.

6.1 Simulation study

In this subsection, a simulation study is conducted to illustrate the performance of the presented
Bayes estimates on the basis of generated data from the BCESFLO distribution. Bayes averages
of the estimates for the parameters, rf and hrf are computed. Moreover, credible intervals of the
parameters, rf and hrf are calculated, Bayes point predictors for a future observation from the
BCESFLO distribution are computed for the two-sample case. All simulation studies are
performed using R programming language.

Simulation algorithm

A. In similar manner to the steps used in Subsection 4.1, different samples can be generated.

B. The Bayes estimates of a, b, @, a,, 6, and 6, are obtained by following the steps:

1.
2.

Assuming the population parameters and the sample size n.

Generate random samples with different sizes (30, 50, and 100) from the population distribution
under study.

Repeat Step 2, N times, where N =10000.

If w; is an estimate of w, based on sample j, j = 1,2,..., N, then the average estimate over the
samples is given by w; = %2?’:1 w;.

The ER of w*, over the N samples is given by

ER(a"),ER(b*),ER(aj), ER(a3),ER(67) and ER(H,).

In the case of two-sample Bayesian prediction

1.
2.

Assuming the population parameters and the sample size n.
Generate a bivariate random sample of size n, say (T, Y;), (T, Y,) as shown in the beginning

of this algorithm.
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3.

Follow steps in Subsection 5.2.

The underlying population in Tables 10 and 11 displays the averages estimates, ERs and
variances of the Bayes case based on sample of different sizes n and N=10000 repetitions with
informative prior. The generated population parameters are

(a=06b=08,04 =11,a, =1.5,0, =1.2,6, =1.7)

and (a = 2.5,b=0.67,04 =3,a, = 2.5,6; = 7.4,0, = 5.1),

the given vector of hyper parameters is

(c1=01,c,=0.2,c3=0.3,c4 =0.4,c5 = 0.5,c = 0.6,c; = 0.7,cg = 0.8,c9 = 0.9).

Tables 12 and 13 present the Bayes averages, ERs and credible intervals of rf and hrf for
different values of the time t,4, t,, based on informative priors.

The Bayes two-sample predictors under informative priors are presented in Tables 18 and 19.

Considering the two-sample prediction and using informative prior, in Tables 18 and 19 the
hyper parameters are

(c;=0.1,¢c, =0.2,¢c3=0.3,c4 =0.4,¢c5 = 0.5,c4 = 0.6,c; = 0.7,cg = 0.8,c4g = 0.9),

the population parameters are (a = 0.6,b = 0.8,a; = 1.1,a, = 1.5,0, = 1.2,0, = 1.7)

and (a = 1.5,b = 0.55,a; = 5.8,a, = 3.5,0; = 3.5,0, = 2.5).

6.2 Example data set

The data set is given in Subsection 4.2 and analyzed to illustrate the theoretical results of Bayesian
estimation and prediction. Tables 14- 17 present the Bayes averages and ERs, of the estimates of
the parameters, rf and hrf, for the real data set under informative prior. Bayes predictors and
standard errors of the future observation are given in Tables 20.

6.3 Concluding remarks

In our study we observe the following

1.

The variance of the estimates is inversely proportional to the sample size and that the variance
of an estimate tends to zero as the sample size tends to infinity.

The lengths of the Cls of the parameters become narrower as the sample size increases.

The Bayes averages for the rf and hrf performs better as the sample size increases. Also, ER is

decreasing when the sample size is increasing.
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4. 1t is interesting to notice that if the variables of the prior density are independent and if the
likelihood function factors out with respect to these variables, then the variables of the posterior
given data are also independent.

e That if m(wy,..,w) =TIl m(w,) and if L(wy, .., wt) =TT, L(w;|t), then

n*(a)l, s wk|£) « T(wq, ..., wk)L(wl, s a)k|£) =[1X, n(w,) L(a)ilg)
= [T 7" (w4]t) = (0]t .., wilt) ,
are independent, the analysis will be easier.

5. The likelihood function of the BCESFLO distribution can be derived using the pdf in (16)
directly but compounding of [T, £ (¢; |w) and n(8) can be applied to make the ML estimation
easier. The results become better as the informative sample size gets larger. In all cases, the

simulated percentage coverage is at least 95%.
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Table 10
Bayes averages, relative absolute biases, estimated risks and
95% credible intervals for the parameters of BCESFLO

(N =10000,a=0.6,b=0.8,a; =1.1,a, = 1.5,0, = 1.2,8, = 1.7)

n Parameters | Averages RAB ER UL LL Length
a 0.60059 | 9.9478e-04 | 4.6360e-07 | 0.6012 | 0.5986 | 0.0026
b 0.8007 0.0008 8.9479e-07 | 0.8019 | 0.7992 | 0.0028
30 aq 1.0985 1.3765e-03 | 2.8541e-06 | 1.1002 | 1.0973 | 0.0029
a, 1.4993 0.0015 3.9345e-06 | 1.2030 | 1.1998 | 0.0032
0, 1.2018 0.0005 8.7362e-07 | 1.5004 | 1.4982 | 0.0021
6, 1.7015 0.0009 3.7897e-06 | 1.7037 | 1.6998 | 0.0039
a 0.5998 0.0004 4.4439%-07 | 0.6006 | 0.5982 | 0.0024
b 0.7996 4.5745e-4 | 6.5481e-07 | 0.8008 | 0.7982 | 0.0026
50 aq 1.0997 0.0003 3.6181e-07 | 1.1001 | 1.0978 0.0023
a 1.5002 9.6223 1.7531e-06 | 1.2023 | 1.1996 | 0.0027
0, 1.2011 1.1497e-04 | 3.7496e-07 | 1.5012 | 1.4989 | 0.0024
6, 1.7006 3.6611e-04 | 8.0349e-07 | 1.7016 | 1.6994 | 0.0021
a 0.5997 5.3088e-04 | 2.3494e-07 | 0.6004 | 0.5988 | 0.0017
b 0.7999 7.8312e-05 | 3.9512e-07 | 0.8009 | 0.7986 | 0.0024
100 aq 1.0999 4.1095e-05 | 2.9580e-07 | 1.1007 | 1.0986 | 0.0022
a 1.5001 6.3095e-04 | 8.3359e-07 | 1.2002 | 1.1982 | 0.0019
0, 1.1992 3.4961e-05 | 3.2374e-07 | 1.5007 | 1.4988 | 0.0019
6, 1.6996 2.1334e-04 | 4.4509e-07 | 1.7006 | 1.6985 | 0.0021
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Table 11
Bayes averages, relative absolute biases, estimated risks
and 95% credible intervals for the parameters of BCESFLO
(N=10000,a=2.5,b=0.67,a; =3,0, =2.5,0; =7.4,0, =5.1)

n Parameters Averages RAB ER UL LL Length
a 2.5014 0.0005 2.6580e-06 25024 | 2.4994 | 0.0029

b 0.6710 0.0015 2.0137e-06 0.6724 | 0.6694 | 0.0029

a, 3.0017 0.0005 4.5668e-06 3.0044 | 2.9998 | 0.0045

30 a, 2.5017 0.0007 3.9767e-06 2.5029 | 2.4998 | 0.0030
0, 7.3985 0.0006 3.2725e-06 7.4001 | 7.3970 | 0.0020

0, 5.1023 0.0004 7.0838e-06 5.1039 | 5.0998 | 0.0041

a 2.4991 0.0003 1.0481e-06 24999 | 2.4978 | 0.0020

50 b 0.6709 0.0013 1.8134e-06 0.6720 | 0.6695 | 0.0025
a, 3.0007 0.0002 1.1669e-06 3.0025 | 2.9982 | 0.0043

a, 2.4984 0.0001 3.0778e-06 24999 | 2.4971 | 0.0028

0, 7.4008 0.0001 9.0744e-07 7.4016 | 7.3995 | 0.0020

0, 5.1013 2.6363e-04 2.5136e-06 5.1029 | 5.0996 | 0.0033

a 2.4994 2.1057e-04 6.5731e-07 2.5002 | 2.4984 | 0.0018

100 b 0.6698 2.5083e-04 4.2225e-07 0.6710 | 0.6686 | 0.0023
a, 3.0001 6.5163e-05 9.1350e-07 3.0015 | 2.9974 | 0.0041

a, 2.5003 5.7028e-05 1.3608e-06 2.5010 | 2.4993 | 0.0016

0, 7.4004 1.4222¢-04 3.3561e-07 7.4023 | 7.4005 | 0.0018

0, 5.0988 0.0002 1.5726e-06 5.0997 | 5.0975 | 0.0021
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Table 12
Bayes averages, relative absolute biases, estimated risks
and 95% credible intervals for the reliability and
hazard rate functions of BCESFLO
(N=10000,a=0.6,b=0.8,a; =1.1,a, =1.5,0, =1.2,0, =1.7,ty; = 2,ty5, = 4)

n rf and hrf Averages RAB ER UL LL Length
R(to1, toz) 0.2886 0.0006 5.4372e-07 0.2897 | 0.2874 0.0024

30 h(to1, toz) 0.0032 0.4062 6.6236e-06 0.0055 | 0.0012 0.0042
R(to1, toz) 0.2881 0.0011 3.3358e07 0.2888 | 0.2868 0.0019

> h(to1, toz) 0.0055 0.0387 2.8049e-07 0.0063 | 0.0042 0.0022
R(to1,to2) 0.2884 6.3252e-05 1.2286e-07 0.2890 | 0.2877 0.0014

10 h(to1, toz) 0.0055 2.6847e-02 2.7532e-07 0.0062 | 0.0043 0.0019

Table 13

Bayes averages, relative absolute biases, estimated risks and
95% credible intervals for the reliability and
hazard rate functions of BCESFLO
(N = 10000,a =1. 5,b = 0.55,“1 = 5.8,“2 = 3.5,01 = 3.5,02 = 2.5,t01 = Z,toz = 3)

n rf and hrf Averages RAB ER UL LL Length
30 R(toq, toz) 0.0035 0.7896 5.5620e-06 0.0061 0.0009 0.0052
h(tgy, toz) 0.0472 0.0402 4.2526e-06 0.04841 0.0449 0.0034

50 R(toq,toz) 0.0025 0.2684 4.1521e-07 0.0031 0.0014 0.0017
h(tyy, toz) 0.0441 0.0268 2.5180e-06 0.0453 0.0429 0.0024

100 R(toq,toz) 0.0019 0.0051 1.4099e-07 0.0026 0.0009 0.0016
h(toq, toz) 0.0456 0.0059 2.8211e-07 0.0464 00447 0.0017

Table 14

Bayes estimates and standard errors
for the parameter of BCESFLO

Parameters Estimate Se
a 0.6013 0.0009
b 0.8001 0.0008
ay 1.1025 0.0009
oy 1.5003 0.0008
0, 1.2003 0.0007
0, 1.6999 0.0004
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Table 15

Bayes estimates and standard errors
for the parameters of BCESFLO

Parameters Estimates Se
a 1.5018 0.0014
b 0.5510 0.0005
oy 5.8005 0.0007
a, 3.5027 0.0008
0, 3.5027 0.0014
0, 2.4978 0.0013
Table 16

Bayes estimates and standard errors for the
reliability and hazard rate functions of BCESFLO

rf and hrf Estimates Se

R(to1,to2) 0.2897 0.0004

h(to1,toz) 0.0035 0.0008
Table 17

Bayes estimate and standard errors for
the reliability and hazard rate functions

n rf and hrf Estimate Se
30 R(toq,te2) 0.0029 0.0009
h(toq, toz) 0.0461 0.0005
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Table 18

Bayes predictors, relative absolute biases, estimated risks
and 95% credible interval of the future observation
(N=10000,a=0.6,b=0.8,0;, =1.1,a;, =1.5,0; =1.2,0, =1.7)

n | s | Yo | Averages RAB ER uL LL | Length
Y1s) | 39999 | 2.7731e-05 | 50017e-07 | 4.0009 | 3.9982 | 0.0026

“ 1 3,5 | 70003 | 4006405 | 3.53496-07 | 7.0011 | 6.9989 | 00021
V1w | 40003 | 6.6825¢-05 | 8.0271e-07 | 4.0015 | 3.9986 | 0.0029

12 5,5 | 69982 | 25996e-04 | 3.7367e06 | 6.9994 | 6.9968 | 0.0026

Y1) | 4.0009 0.0002 | 16289¢-06 | 40022 | 3.9992 | 0.0031

. V2 | 6.9981 0.0003 | 5.13026-06 | 7.000L | 6.9959 | 0.0042

Y1s) | 40005 | 11660e-04 | 4.6721e-07 | 4.0013 | 3.9993 | 0.0019

' 2 | 70000 | 2.0907¢-06 | 16751e-07 | 7.0006 | 6.9989 | 0.0017

50 Y1s) | 40007 | 16923¢-04 | 10526e-06 | 4.0016 | 3.9989 | 0.0027
o 2s) | 69994 | 8285105 | 59514e-07 | 7.0004 | 6.9983 | 0.0020

Y1e) | 40014 0.0004 | 3.25266-06 | 4.0028 | 3.9998 | 0.0030

. Y2 | 7.0008 0.000L | 15965¢-06 | 7.0024 | 6.0024 | 0.0033

Y1s) | 39997 | 69537e-05 | 29892e-07 | 4.0006 | 3.9989 | 0.0017

' 2y | 70004 | 51504¢-05 | 29367e-07 | 7.0009 | 6.9994 | 0.0016

100 Y15 | 39997 | 8.0968e-05 | 3.7275e-07 | 4.0005 | 3.9983 | 0.0022
. V2s) | 70014 | 2.0482¢-04 | 24549e-06 | 7.0023 | 6.9996 | 0.0027

Y1s) | 40002 | 5724405 | 7.7567e-07 | 4.0016 | 3.9983 | 0.0032

. Y2s) | 69985 | 2.1164e-04 | 3.8607¢-06 | 7.0005 | 6.9964 | 0.0041
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Table 19

Bayes predictors, relative absolute biases, estimated risks and
95% credible intervals of the future observation

(N = 10000,a = 1.5,b = 0.55,a; = 5.8,a; = 3.5,0; = 3.5,0, = 2.5)

n s Y Averages RAB ER uL LL Length
Yis) 3.9986 0.0003 3.1005e-06 | 4.0007 | 3.9982 0.0025

' Ya(s) 7.0008 1.1791e-04 1.1019e-06 | 7.0016 | 6.9991 0.0026

30 Yics) 3.9983 4.3381e-04 3.2831e-06 | 3.9993 | 3.9957 0.0036
o Yas) 6.9994 7.2306e-05 1.6241e-06 | 7.0013 | 6.9969 0.0043

Yis) 3.9978 5.4197e-04 6.6847e-06 | 3.9999 | 3.9956 0.0043

w0 Yas) 7.0022 0.0003 7.1597e-06 | 7.0041 | 6.9994 0.0048

Yis) 3.9997 7.5194e-05 3.0675e-07 | 4.0005 | 3.9989 0.0017

' Yas) 7.0002 2.6742e-05 2.5213e-07 | 7.0011 | 6.9990 0.0021

50 Yis) 4.0001 2.7094e-05 4.2356e-07 | 4.0010 | 3.9986 0.0024
. Yas) 6.9983 0.0002 3.5432e-06 | 6.9999 | 6.9971 0.0029

Yis) 4.0008 0.0002 1.0349-06 | 4.0018 | 3.9993 0.0025

w0 Yas) 7.0023 3.3174e-04 7.4926e-06 | 7.0049 | 6.9995 0.0054

Yis) 3.9997 8.631e-05 3.6679e-07 | 4.0004 | 3.9989 0.0015

' Yas) 6.9999 1.5412e-05 2.2928e-07 | 7.0006 | 6.9988 0.0019

100 Yis) 4.0007 0.0001 1.0153e-06 | 4.0019 | 3.9995 0.0024
o Yas) 6.9989 0.0001 1.8428e-06 | 7.0003 | 6.9975 0.0028

Yis) 3.9996 9.3514e-05 1.1006e-06 | 4.0010 | 3.9979 0.0031

w0 Yas) 7.0027 3.9138e-04 9.4936e-06 | 7.0048 | 6.9999 0.0049
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Table 20
Bayes predictors and standard errors
of the future observation

S Yes) Estimate Se

] Yics) 3.9999 0.0005
Vais) 7.0009 0.0006

» Y1) 3.9993 0.0007
Vais) 7.0021 0.0007

18 Y1) 3.9987 0.0008
Vaes) 7.00248 | 0.0019
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