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MOLECULAR MECHANICS-BASED QUANTITATIVE STRUCTURE-ACTIVITY 

RELATIONSHIP STUDY ON THE INHIBITORY ACTIVITY OF SCHIFF BASES 

AGAINST ESCHERICHIA COLI 

          

ABSTRACT 

Due to their high inhibitory action against Escherichia coli (E. coli), the rise of multidrug-

resistant strains of the bacteria necessitates the testing and development of a new set of Schiff 

bases as anti-E. coli agents worldwide. In this study, the Genetic function approximation (GFA) 

Quantitative structure-activity relationship (QSAR) analyzes selected Schiff bases with anti-E. 

coli activity. This was done using different molecular descriptors and Hansch's approach, which 

results in the production of one statistically significant hepta parameter model as the strongest 

model with a  squared correlation coefficient (R
2
) = 0.828, adjusted squared correlation 

coefficient (R
2
adj) = 0.775, cross-validated correlation coefficient (Q

2
) = 0.691, Difference 

between R
2
 and Q

2
, Q

2
 (R

2
 - Q

2
) = 0.137, external prediction (R

2
pred.) = 0.751 and lack of fit 

(LOF) of 0.067 value were selected as the best model based on its sound statistical parameters. 

The development model demonstrated the predominance of the descriptors Minimum H E State 

(Hmin) and Valence path order 6 (VP-6) in influencing the observed anti-E. coli activity of Schiff 

bases. Insilico techniques can certainly provide a quick, inexpensive and safe quantitative risk 

assessment for this class of compounds. It is envisaged that the QSAR results identified in this 

study will provide important structural insights into the design of the novel anti-E. coli drugs 

from Schiff bases. 

Key words:  Escherichia coli, Schiff bases, Hansch's approach, QSAR, Descriptor        

INTRODUCTION 

Schiff bases are characterized by an imine group –N=CH, which helps to elucidate the 

mechanism of transamination and racemization in biological systems. In terms of biological 

capabilities, it has an antibacterial and antifungal effect. In recent years, Schiff bases have 

received considerable attention because of their physiological and pharmacological activities 

(Misbah, et al., 2013). Antimicrobial medications play a critical role in reducing illness and 

death caused by infectious diseases in both animals and humans (John, et al., 2015). Selective 

pressure given to existing antimicrobial medicines has, however, limited the creation and 

dissemination of drug-resistance traits among disease-causing and commensal bacteria 

(Aarestrup, et al., 2008). Escherichia coli or E. coli are gram-negative bacilli of the family 

Enterobacteriaceae. E. coli are normal inhabitants of the human large intestine (it is a bacterium 

commonly found in the intestines of humans and animals). Of serious concern is the 
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development of resistance by Escherichia coli or E. coli strains to the current antibiotics such as 

ampicillin, sulfonamide, gentamicin, streptomycin, ciprofloxacin, trimethoprim, amoxicillin 

(L.Blaettler, et al., 2009) (Kronvall, 2010). E. coli is commonly a commensal bacterium of 

humans and animals but Pathogenic variants cause intestinal and extra-intestinal infections, 

including gastroenteritis, urinary tract infection, meningitis, peritonitis, and septicemia (Von 

Baum & Marre, 2005) (Sodha, et al., 2011). This trend of resistance exhibited by this organism 

poses serious threat to human and animals health, necessitating the search for newer antibiotics 

John, et al., 2015). This class of organic compounds have also demonstrated significant 

inhibitory activity against the growth of E. coli (Hafiz, et al., 2015) (Malik, et al., 2011) 

(Santhosh & Parthiban, 2011) (Sahu, et al., 2008) making them potential drug candidate in man’s 

quest to curb the dangerous trend of multi-drug resistance posed by this pathogenic micro-

organism. 

Conventional drug discovery and development is characterized by trial-and-error approach. This 

is time consuming, costly due to the enormous expense of failures of candidate drugs late in their 

development and a threat to green chemistry due to enormous waste released into the 

environment. QSAR offer important structural insight in the design of novel anti-microbial drugs 

by exploring and harnessing the structural requirements controlling the observed anti-microbial 

activities as well as providing predictive model for bio-activities of potential drug candidates, 

reducing the requirement for lengthy, costly and hazardous laboratory test. QSAR is based on the 

conception that there exists a close relationship between bulk properties of compounds and their 

molecular structure (John, et al., 2015). Thus, it is the basic tenet of chemistry to identify these 

assumed relationships and then to quantify them allowing a clear connection between the 

macroscopic and the microscopic properties of matter (Sanja, et al., 2008). 

The aim of this work is to build a statistically robust, predictive and rational Genetic function 

approximation (GFA) based QSAR model for inhibitory activity of Schiff bases against E. coli. 

by exploring the correlations between the experimental pMIC of the compounds and their 

calculated molecular descriptors. 

MATERIALS AND METHODS 

The materials used in this study include; H.P 2000/ computer system (Intel Pentium), 1.30GHz 

processor, 4GB RAM size on Microsoft windows 13 Ultimate Operating System, Spartan 14 

V.1.1.0, chem draw 12.0.1V, Padel descriptor tool kit and Microsoft office Excel 2016 version 

Statistical software, Material Studio (modeling and simulation software) version 7.0, DTC. In the 

present study, QSAR studies were performed using Hansch’s approach (Ameji et al., 2017). In 

Hansch’s approach, structural properties of compounds are calculated in terms of different 

physicochemical parameters and these parameters are correlated with biological activity through 

equation using regression analysis. The various steps are presented in a flowchart in Image.1 

DATA COLLECTION 

A data set comprising of series of 41 schiff bases Escherichia coli derivatives was taken from 

literature (Hafiz, et al., 2015) (Malik, et al., 2011), (Santhosh & Parthiban, 2011), (Sahu, et al., 
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2008), and (Karki, et al., 2013). The chemical structures and experimental minimum inhibitory 

concentration (pMIC) values of the inhibitory activity of Schiff bases against Escherichia coli is 

presented in Table 1 below. 70% of the data set (31 compounds) was used as training set for 

building the models while the remaining 30% (14 compounds) was used as test set for external 

validation of the most statistically significant QSAR model.  
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Image 1: QSTR Methodology flow chart (Source: Ameji et al., 2015). 

Table 1: Chemical Structures and Experimental Pmic Values of anti-Escherishia coli 

inhibitory activity. 

 

S/n 

 

Structure  

 

pMIC 

 

S/n 

 

Structure  

 

pMIC 

1.  

 

1.342 2.  

 

1.255 
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3. 

 

1.556 4. 

 

1.079 

5. 

 

 

1.806 6. 

 

1.415 

7. 

 

1.806 8. 

 

2.093 

9. 

 

2.301 10. 

 

2.301 

11. 

 

2.398 12. 

 

2.000 
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13. 

 

2.301 14. 

 

1.362 

15. 

 

1.322 16. 

 

1.380 

17. 

 

1.623 18. 

 

1.301 

19. 

 

1.591 20. 

 

1.342 
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21. 

 

1.204 22. 

 

1.602 

23. 

 

1.255 24. 

 

1.342 

25. 

 

1.301 26. 

 

1.322 

27. 

 

1.380 28. 

 

1.230 
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29. 

 

1.362 30. 

 

1.301 

31. 

 

1.204 32. 

 

1.301 

33. 

 

1.279 34. 

 

1.342 

35. 

 

1.415 36. 

 

1.204 
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37. 

 

1.255 38. 

 

1.230 

39. 

 

1.279 40. 

 

1.322 

41. 

 

1.431 42. 

 

1.255 

43. 

 

1.279 44. 

 

1.279 

45 

 

1.000    
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Molecular Optimization 

The chemical structure of each compound in the data sets was drawn with Chemdraw ultra 

V12.0, named and saved as *cdx file. The molecules were optimized with the molecular 

mechanics (MM) procedure included in Chem 3D Pro. Optimization was done in order to find 

the equilibrium or lowest energy geometry of molecule. The lowest energy structure was used for 

each molecule to calculate their physicochemical properties (molecular descriptors). 

Descriptors Calculation 

The molecular descriptors used in this QSAR modelling were calculated using (Pharmaceutical 

Data Exploration Laboratory) PaDEL descriptor tool kit. Over 1000 descriptors ranging from 

0D,1D,2D and 3D were used for this work. 

Data normalization.  

The chemical structures and the experimental pMIC of the compounds are presented in Table 1. 

Data normalization was performed on the dependent variable (MIC) by converting the 

experimental MIC values to logarithmic scale [pMIC = log10 MIC]. This was done to get a more 

linear response and reduced data dispersion. 

Learning process 

During this process, the correlation between biological activities (pMIC) of the compounds and 

the calculated descriptors were obtained through correlation analysis using the Microsoft excel 

package in Microsoft office 2016. Pearson’s correlation matrix was used as a model, in order to 

select the suitable descriptors for this regression analysis. The selected descriptors were 

subjected to regression analysis with experimentally determined activities as the dependent 

variable using Genetic Function Approximation (GFA) in material studio software to build 

QSAR models. The models were estimated using the “lack of fit” (LOF) score, which was 

measured using a slight variation of the original Friedman formula, so that best model received 

the best fitness score (Wu, et al., 2015). LOF is measured with the aid of the original Friedman 

formula (Friedman, 1990) shown in equation 1.  

LOF = SSE(1-c+dp/m)2-----------------------------------------1 

SSE gives the sum of squares of errors, ‘c’ the number of terms in the model, other than the 

constant term, ‘d’ gives the user-defined smoothing parameter, ‘p’ is the total number of 

descriptors contained in all model terms (ignoring the constant term) and ‘m’ is the number of 

samples in the training set. LOF measure cannot always be reduced by adding more terms to the 

regression model in contrast to the commonly used least squares measure. By limiting the 

tendency to simply add more terms, the LOF measure resists over fitting (Materia studio, 2016).  
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Model validation 

The fitting ability, stability, reliability and predictive ability of the best models were evaluated by 

internal and external validation parameters. The validation parameters were compared with the 

minimum recommended value for a generally acceptable QSAR model shown in Table 2. 

Internal validation parameters  

This validation was done using the data that created the model. The various internal validation 

parameters invoked in this study are; the square of the correlation coefficient (R2), Adjusted R2 

(R2adj), Q2 (Leave one out cross validation coefficient, Validation ratio (F value). 

External validation parameters  

Internal validation is an essential step in QSAR model development. The desired internal 

validation results show that the model exhibits higher stability and prediction ability. However, it 

does not show any real prediction ability for external test set of molecules. Therefore, the 

external predictive ability and extrapolation of the best model should be evaluated (Wu, et al., 

2015). The external prediction parameter used in this work is R
2
pred.  
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Table 2: Validation metrics for a generally acceptable QSAR model 

 

S/N 

Symbol Name  Threshold  

1 R
2
 Coefficient determination  >0.6 

2 Q
2 

Cross validation coefficient  >0.5 

3 R
2
pred. External test set’s coefficient 

of determination 

>0.6 

4 R
2
 - Q

2
 Different between R

2 
andQ

2 
<0.3 

5 F value Validation ratio High 

6 
P95%  

Confidence interval at 95% 

confidence level.  
< 0.05  

 

Source: (Ravichandran, et al., 2011) 
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RESULTS AND DISCUSSION 

Model 1 Equation; 

𝑝𝑀𝐼𝐶 =   1.186𝑋1 −  3.486𝑋2  −  0.329𝑋3 −  6.116𝑋4 +  0.091𝑋5 −  0.078𝑋6 

+  0.540𝑋7  +  3.872. 

Friedman LOF = 0.073, R
2 

=0.828, R
2

adj =0.775, Q
2
=0.691, S.R = yes, Fvalue =15.777, 

C.Exp.error =0.069, Minimum error = 0.000. 

Table 3: Definition of Various Descriptors Used. 

S/N Descriptor Symbol              Definition 

1 X1 VPC-4 Valence path cluster, order 4 

2 X2 VP-6 Valence path, order 6 

3 X3 

maxsCH3 

Maximum atom-type E-State:-

CH3 

4 X4 Hmin Minimum H E-State 

5 X5 ETA_Eta Composite index Eta 

6 X6 

WT.eneg 

Non-directional WHIM, 

weighted by Mulliken atomic 

electronegativites 

7 X7 

WK.eneg  

Non-directional WHIM, 

weighted by Mulliken atomic 

electronegativites  

Plot of Experimental Versus Predicted pMIC of model 1 

The agreement between the experimental and predicted pMIC values of molecules used in the 

training and test set compounds by the optimization model are presented in Fig. 1 and Fig. 2, 

respectively. 
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Figure 1: Plot of Actual Versus Predicted pMIC (Training set) 

 

Figure 21: Plot of Actual Versus Predicted pMIC (Test set) 

Residual Plot of Model  

The measure of the dispersion of residual pMIC values from the predicted pMIC values is shown 

in Fig. 3. 

 

Figure 3: Residual Plot of Model. 

Comparison of Actual and Predicted pMIC  
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The comparison of the predicted pMIC of the model with their experimental values is presented 

in Table 4. 

External validation of the model  

The actual, predicted and residual pMIC values of the test set compounds is presented in the 

Table 5. 

Table 2. Actual, Predicted and Residual pMIC of model (training set) 

 

Compound 

 

Actual pMIC Equation 1: predicted values Equation 1: 

residual values 

1 1.342 1.182 0.160 

2 1.255 1.324 -0.069 

4 1.079 1.308 -0.229 

5 1.806 1.754 0.052 

7 1.806 1.682 0.124 

8 2.093 2.049 0.044 

10 2.301 2.165 0.136 

11 2.398 2.165 0.233 

13 2.301 2.231 0.070 

14 1.362 1.303 0.059 

16 1.380 1.536 -0.156 

17 1.623 1.624 -9.090e-004 

19 1.591 1.898 -0.307 

20 1.342 1.593 -0.251 

22 1.602 1.268 0.334 

23 1.255 1.171 0.084 

25 1.301 1.342 -0.041 

26 1.322 1.421 -0.099 

28 1.230 1.054 0.176 

29 1.362 1.376 -0.014 

31 1.204 1.384 -0.180 

32 1.301 1.212 0.089 

34 1.342 1.416 -0.074 

35 1.415 1.404 0.011 

37 1.255 1.172 0.083 

38 1.230 1.055 0.175 

40 1.322 1.374 -0.052 

41 1.431 1.497 -0.066 

43 1.279 1.400 -0.121 

44 1.279 1.264 0.015 

45 1.000 1.187 -0.187 
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Table 5: Actual, Predicted and Residual pMIC of model (test set). 

Molecular Optimization and Descriptor Calculation  

The molecules used for this study were successfully optimized at each stage. The optimization 

time for each level of theory follows Molecular mechanics. The molecular properties 

(descriptors) computed from each optimized structure include the Chemdraw 12.0.1V software, 

PaDEL descriptor toolkit listed above. The successful optimization of the studied molecules 

indicates that their structures correspond to their real or natural geometry. Thus, all the 

descriptors derived from these structures are reliable. 

GFA derived QSAR model for Schiff bases against Escherichia coli.  

Based on the model with the best statistical parameters, model-1 was identified as the best model 

for predicting the pMIC of Schiff bases molecules. Model-1 was developed to predict the 

inhibitory activity of Schiff bases against E. coli. The result of the GFA QSAR model is in 

conformity with the standard shown in Table 2, as R
2
 = 0.828, R

2
adj =0.775, Q

2
 = 0.691, R

2
pred. = 

0.751. This confirms the robustness of the model.  

The closeness of coefficient of determination (R
2
) to its absolute value of 1.0 is an indication that 

the model explained a very high percentage of the response variable (descriptor), high enough for 

Compound 

 

pMIC VPC-

4 

VP-6 Maxs 

CH3 

hmin ETA_ 

Eta 

WT. 

eneg 

WK. 

eneg 

pred. 

Pmic 

3 1.556 0.854 0.541 2.083 0.097 11.356 16.271 -0.247 1.348 

6 1.415 0.846 0.615 0 0.072 15.826 12.251 -0.150 2.693 

9 2.301 0.412 0.298 0 0.144 7.991 10.182 0.327 2.546 

12 2 0.890 0.648 0 0.129 11.982 13.415 -0.082 1.879 

15 1.322 0.964 0.720 1.575 0.100 13.230 16.858 -0.125 1.196 

18 1.301 1.383 1.039 0 0.065 16.168 13.818 -0.072 1.848 

21 1.204 1.522 1.064 0 0.076 17.585 14.045 -0.071 1.968 

24 1.342 1.349 1.049 0 0.100 16.126 15.912 0.349 1.620 

27 1.38 1.830 1.330 2.078 -

5.95E-

04 

28.200 18.322 -0.181 1.766 

30 1.301 1.730 1.427 1.715 0.028 27.871 21.432 0.171 1.170 

33 1.279 2.177 1.562 2.084 -0.017 32.487 15.928 0.009 2.144 

36 1.204 1.830 1.330 2.078 -

5.95E-

04 

28.201 18.322 -0.181 1.766 

39 1.279 1.191 0.899 0 0.069 16.509 20.789 -0.250 1.472 

42 1.255 0.610 0.442 2.065 0.105 10.737 18.325 -0.246 1.146 
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a robust QSAR model. The high adjusted R
2 

(R
2
adj) value and its closeness in value to the value 

of R
2 

implies that the model has excellent explanatory power to the descriptors in it. Also, the 

high and closeness of Q
2
 value to R

2
 revealed that the model was not over fitted. The high R

2
pred. 

is an indication that the model is capable of providing valid predictions for new molecules that 

falls within its applicability domain. F value judges the overall significance of the regression 

coefficients. The high F value of the model is an indication that the regression coefficients are 

significant. The comparison of observed and predicted inhibitory activities of the molecules is 

presented in Table 3. The predictability of model 1 is evidenced by the low residual values 

observed in the Table. Also, the high linearity (R
2
 = 0.828) of the plot of observed pMIC against 

predicted pMIC (Figure 1) also shows the high predictability of the model.  To ascertain whether 

there exists a systematic error in the model development, observed pMIC was plotted against 

residual pMIC (Figure 3). The propagation of residuals on both sides of zero indicated that there 

was no systemic error in model development (Heravi-Jalali & Kyani, 2004).  

Significance of the descriptors in model 1  

The positive coefficient of the descriptors; X1, X5 and X7, indicate that the magnitude of the 

pMIC of these compounds against E. coli increases with increase in the values of these 

descriptors. Hence, the higher the values of these descriptors in these molecules, the lower the 

biological activity of the molecules against E.  coli and vice versa.  

X6 and X7 (Non-directional WHIM, weighted by Mulli ken atomic electronegativites(WT.eneg), 

Non-directional WHIM, weighted by Mulliken atomic electronegativites (WK.eneg)), are 

descriptors of molecular electronegativity. The result of the QSAR optimization model shows 

that the E. coli inhibitory activity of the compounds increases with decrease in electronegativity 

of the compounds.  

 X1 and X2 (Valence path cluster, order 4(VPC-4), Valence path, order 6(VP-6)) is a descriptor of 

molecular size. Its correlation with pMIC of the molecule as shown in the model indicate that the 

biological activity of the studied compounds against E. coli increases with decrease in the size of 

the compounds. Therefore, for an enhanced biological activity from Schiff bases against E. coli, 

the size of molecules should be minimal.  

Summary of Findings 

The generated optimum QSAR models performed to explore the structural requirements 

controlling the observed biological activities of Schiff bases are represented by the model above. 

This Model gives the best predictive model for pMIC of Schiff bases against E. coli. The 

observed pMIC of the compounds against E. coli was found to be heavily influenced by X2 and 

X4. These descriptors contribute about 61.16% of the observed anti-E. coli inhibitory activity of 

the molecules. The negative coefficients of the descriptors as shown in the model implies that the 
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lower the value of these descriptors in a molecule, the higher the pMIC, and the lower the 

biological activity of the molecule against E. coli and vice versa. 

CONCLUSION 

The generated QSAR models, was performed to explore the structural requirements controlling 

the observed antibacterial properties. The research has achieved the stated objectives. The 

robustness and applicability of the QSAR models has been established by internal and external 

validation techniques. It has been established that; The dominant structural features responsible 

for the inhibitory activity of Schiff bases against E. coli were X1, X2, X3, X4, X5, X6, and X7 

(Valence path cluster, order 4(VPC-4), Valence path, order 6(VP-6), Maximum atom-type E-

State:- CH3(maxsCH3), Minimum H E-State(Hmin), Composite index Eta(ETA_Eta), Non-

directional WHIM, weighted by Mulliken atomic electronegativites(WT.eneg) and Non-

directional WHIM, weighted by Mulliken atomic electronegativites (WK.eneg)), were the 

dominant structural features responsible for the observed inhibitory activity of the molecules 

against  E. coli. Also, it is envisaged that the wealth of information in these models will provide 

a fast, economical and more environmentally friendly insight to designing novel and less toxic 

bioactive Schiff base compounds that will curb the emerging trend of multi-drug resistant strain 

of E. coli.  

RECOMMENDATIONS 

In the future design of novel Schiff bases as anti-E. coli drug, it is recommended based on this 

research that; The compounds should be made less bulky as possible since molecular size is 

negatively correlated to the bioactivity of the compounds as shown in the GFA derived model. 

And the number of hydrogen atoms in the moiety or parent structure should be high in order to 

achieve a reasonable anti-E. coli activity. Also, further QSAR work should be done on the 

pharmacokinetic properties of these compounds. Since safe and effective drug treatment is not 

only a function of its activity and but also a function of how the human body responds to the 

administration of the medication.   
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