| Equal and odd values of Generalized Euler Functions

Abstract :  Euler function ﬂn) and generalized Euler function qg(n) are two important
functions in number theory. Using the idea of classified discussion and determination of prime types, we
study the solutions of odd number of generalized Euler function equations gzg(n) :(/g(n+]) and obtain

all the solutions satisfying the corresponding conditions, where 82234.
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1 Introduction

Euler function (An) is a relatively important in number theory, and it is also studied by
the majority of researchers. Euler function ¢{N) is defined as the number of positive

integers not greater than [l ’and prime }to N.1f N>1, let canonical form of I be

N=pEP2...0f , where [, [y X are different primes , f,'Zl(]SI Sk) , then
1\ 1 1
) =ni-1y-1y..a- 1y

Generalized Euler function gzg(n) is defined as

r(@=

G-

where [x] is the greatest integer not greater than x. If €=l , the generalized Euler

function is just Euler function.

Cail*® studied the parity of ¢2(1) when €=234,6, and gives the conditions that both
@(N) and @(N+]) are odd numbers , Liang™, Cao'™ studied the solutions to the equations

involving Euler function , Zhang'*>®! investigated the solutions to two equations involving
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Euler function ¢{) and generalized Euler function ¢3(I), Jiang™ investigated the
solutions of generalized Euler function (@(ﬂ).

In {Unsolved Problems in Number Theory) [13] , proposing whether there are

infinitely many pairs of consecutive integer pairs [l and Ml such that

ﬂn)zﬂn-l-])’?bud McGranie found 1267 solutions to ¢AN)=¢{N+1) }whit \nleO,

and the largest of which is N=9985705 ¢{n)=¢n+])=237-11 we find the

following ’conclusions‘ on the ’basis‘ of the fact that the ‘documents‘ [1] and [8], both gzg(n)

and (@(I’H]) are odd numbers, and then obtain the solutions of the equation
@aN)=an+D).
Theorem 1.1 Both @(ﬂ) and @(n+D are odd and equal if and only if N=2

or 3.

Theorem 1.2 Both ¢g(n) and @(I’H—:D are odd and equal if and only if N=3
or4or5orl5.

Theorem 1.3  Both gq(n) and gq(n+]) are odd and equal if and only if N=4

or5or6or?7.

2 Lemmas |

Lemma 218 Exceptfor N=23242 ,both @) and @D are oddifand
only if n:ZpH , where f=1 p=3n0d4) , both 20°+1 and P are primes.

Lemma 222 (=0, @()=1: when N>3 g@(n)——%gdn) |

Lemma 239 Exceptfor N=31524 both @(n) and g@,(n+]) are odd if and
only if

(1) n+1=2" +](mZ]) is prime ; or

(2) n=21,qEE(mI:|6), both ( and g3—11 are primes, where
HZE,QE'XIT[I:{@, or

(3) n:328—](,6’2]) is prime.

Comment [H5]: Write ","
Comment [H6]: with

Comment [H8]: basics

o ) A

(
(
[ Comment [H7]: preliminary
(
(

Comment [H9]: articles

Comment [H10]: subtitle need instead
lemmas




Lemma 24Y 1f n>3, ﬂzg‘l Llpa,(p,3§:l]§isk , then
22T acort p =g 1<ik
a)=7 _
g¢(n), ahewise,

where £1n) is the number of prime factors of [l(counting repetitions) and a(n) is

the number of distinct prime factors of [l.

Lemma 254 For any positive integer [IT]I1 , we have

where \(mn) | represents the greatest common factor of [l and 1.
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Lemma 269 Thevalueof N such that both gq(n) and (q(n+]) are odd are
listed in Table 1.

Table 1 The value of [l such that both ([A(n) and @(n—l-:D are odd

M n+1 conditions
4 5
7 8

57121 57122
p2 2q2 DE7(W1118),QEE(YT1118) are primes
Zf—l Z}H M—lﬂma,qﬂrm& are primes , and ﬁ is

mﬁ Z}b’_ﬁl prime
p2 p2+1 Zf+lz7(mﬁ&,q53mﬂ& are primes , and /j is

prime

p55(m118),E2i1 Eam& are primes
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3 3 x_
Aq[ 4q/ +1 %EKHUZM) is a prime

4qﬁ+lq53mﬁ4) are primes , /)’Zl

Lemma 27 1f n>4, n:Z‘I Llﬂa,(p,Z)ZlaZO,]SiSk , then

_ +(_ﬁ])qnj-& ,a=0ar] A EKTT'[X',M—),]SI <k,
A)=\7

3 Proof of Theorems

3.1 Proof of Theorem 1.1

We have (@(32@(3 2@(4)21 by definition of the generalized Euler function
g@(n), and @(2@:5@(243:81 by Lemma 2.2.

By lemma 2.1 , except for N=23242 , both (L}(ﬂ) and @(I”H—:D are odd if
and only if n:2p" ,where 521, p=3n00d4) , both 20+l and P are primes. By
lemma 2.2, When nz?;g@(n):%ga(n) , and @(n+]):%¢(n+]). Then for the
equation @(N)=@(N+D), ’we just need to solve the equation

A =¢(n+).

Put n=2p5, n+1:2p5+1 in (1) , since n+1:2pﬂ+1 is prime , then
AN+ =N.  We just need to solve the equation

dn=n,

but the solution is not satisfied with the form n=2p" , SO

}and it has only a solution N=1,

there is no solution.

Hence both (L}(ﬂ) and @(I”H—:D are odd and equal if and only if N=2 or 3.

3.2 Proof of Theorem 1.2
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By the definition of g@(ﬂ), We have

A=1ad=1a)=3r1O =[aA)=3@aD)=7,
hence @(3) :@(4), @(13 :@(16) Except N=318524 we discuss the solutions in 3

cases by lemma 2.3.

by lemma 2.4, we have

A =3¢+
l

since TH1=Z"+1 is prime and N+H1=2AM003), we have
A =3+
if @(=@(D, then
A=A
Simplify it , we obtain & ++1=2"—l,thus we have M=l N=4

Case2 When N=2,N=2+1, andboth (=5(M0G), 2%1 are primes, by

lemma 2.4, we have
A0 =50 —5
Since g?’-l;:l' is prime, Q=95(MO®) and ¢(9) =6, we have
2 +1=2+1=33mo8),

thus 2‘3—!—1 El]EZ(TT\O@ n+1:3><§§1 , then by lemma 2.4, we obtain

a+D)= (/J(%H) +%.

if @(=@@+), then AN=AM)+2 , namely

[ Comment [H19]: repeat

)

Comment [A20]: The former indicates
which two successive integers are, and
the latter states the conditions should be
satisfied.

Comment [H21]: if can explain how
you get it and the value Q(n),o(n) and
a?

Comment [A22]: a:O,

an=2", afn)=1,




7 -(1—%):2x(33+_1—1)+2 |

simplified to X=A4 , we have no solutions in this case.

Case3 When n:3-2/f—l, n+1=3-28 , and n:32ﬂ—](,6'2]) is prime, by

lemma 2.4 , we have
=300
meanwhile ,
B 1 (_])1+ﬂ2w(n)—a—1 B 1 (_])1+ﬁ
ah+) —?gz(n+b = —g(p(n+]) g
if f=Xk>0
1,311, 1
A=z ).
simplified to  ¢{N)=¢(M). Since n:SZﬁ—J(,BZD is prime , then
32-2-32-(15) (13 .

We get [#=0, this is contradicted with the condition f2L.1f [=XK+1K=>0,
1 11 1
3(;(n)—g_g(;(n+b+3 :

simplified to  {N)J=AM)+2 , then

32232 (1) (-)+2

’We have /)'=1, n:5.ﬂ

ﬁum up‘ , both (@(n) and @(n+]) are odd and equal if and only if N=3 or 4 or

5 or 15.
33  Proof of Theorem 1.3
By lemma 2.7, wehave @(@=1L@a®=1 , @(?)=1 @@ =land
@(r12) =14l'iﬂ, @(5r12) =]
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hence @(4) :gﬁ@, @(7) :glz(a Then we discuss the solutions in 6 cases by lemma
2.6.

Case 1 When n:pz, I'H-].:Z:]Z, and both P=/(N0d8), =A"100S) are primes. By
lemma 2.7, we have @(ﬂ) Li'_(ﬁ(ﬂ)'*‘% Since (=1("004) ,then (/;(n+]) :%(AI'H-:D,

namely
JA =360+
Simplified to  ¢A{1)-+Z=¢AI1), namely
P02 2=27- () ().
Then O-(0—1)—p-(p—-D=2Z by p?—l-lEZ:]Z, we have p:q2 +(+L Then
P =(f +0r+D7 >(f +0f 238F >,

which is contradicted with the condition pz-l-lEZf]z , ho solution.

Case2When N=2f—-1M+1=2f andboth AP-1=Hnwd8, q=3nudd

odd. By lemma 2.7, we have  ¢2(N+1) :211¢(n+])+%.

are primes , where /j isla

Since Zf—lE](rﬂIM-) , we have (Q(n):%-ﬂn),namely
A=l
Simplified to - {N)=AM)+2 namely
(@ D-1=2f () ()42

Then (q+])'q&l=4, since both (J and O+l are positive integers , and
q=3Modd) , so O+1>4, then g=34=1, n=5

Case 3 When HIZ}H , n+1=2q‘*+1, and both 2qﬁ+1z7(mﬁ&, g=3nudd)
are primes , where /3 is ’a odd. By lemma 2.7, we have (q(n)—j}r(p(n)% and
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PO )=50(0+)—,
then
/05300
Simplified to ¢{1)+H={N+1), namely
o) () =2

Then (OHD)-0P =4 since g and Q4+l both are positive integers , and
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=3 , so G+1>4 , then Q=3 /=1 n=6
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Case 4 When N= pz,n+1:p"+1 and both P=9modd), Ez—il Ear’ﬂﬁB) are @(n)_(ll(n +])
- in this case.

primes. By lemma 2.7, we have @(n) dn) and

a(+) :Zgﬁ(n+]).
When @(N)=q@ (D, we have
A= 4dr+1.
Simplified to
1 1
p-0-=L

then P=L Which contradicts P=5(N0d8).

Case 5 When N=3-1M1=%, and —_C{mﬂ4) is a prime , then
n=4-#=22 % By lemma 2.7, we have (Q(ﬂ) ﬁ({(ﬂ) and

) =30+

namely 4§4ﬂ) 4(4n+]) simplified to  {N)=¢N+D),i.e., 2( Z —]) =3 4,
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Then 5 :——?, which is impossible.

Case 6 When N=4’,N+1=40/+], and both 4q3+lq53(mﬁ19 are primes ,
where [5>1.

By lemma 2.7, we have (Q(I’])I%-ﬂn) and @(n+]):%ﬂn+:b,namely
1A=+
Simplified to  {N=AN+D, namely
Na Ly _
&P 0304

Then (=—LWhich contradicts the condition that Q=3M004) is }a’ prime.

‘Sum‘up ,both gq(n) and (Q(I'H—]) are odd and equal ifand only if N=4 or5 or
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4 Expectation

Euler function ¢{N) and generalized Euler function @(n) are two important
functions in number theory. which this article has studied is the odd solutions of generalized
Euler function equation (2(N)=@(N+1),where €=234. Similarly, we can use a similar
method to study the odd solutions of qg(n)Zgzg(nH)in combination with the relevant

conclusions of the literature [8]. In the future, we can study all the solutions of the equations

([g(ﬂ)qu(nH) and qg(n) =¢g(ﬂ+k) for positive ’k rfurther.
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