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A Relation Between Different Physical Parameters of a
Planet and Its Consequences

Abstract

The main aim of this work is to establish a relation between various physical
characteristics of a planet, which were previously considered independent. f]‘he
proposed ‘relation between planetary parameters’ (RPP) elegantly shows that the
ratio of axial tilt to the product of rotation period and square of the orbit radius is
always constant for a planet\. We also show that the relation can be obtained from

more fundamental law of physics, the principle of conservation of angular
momentum. In other words, we can realize this relation by conserving the total
angular momentum of a planet. At last, we provide some applications of this
relation.
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1 Introduction

In the early seventeenth century, Mathematician Johannes Kepler developed his laws of
planetary motion by a rigorous analysis of the data compiled by his mentor Tycho
Brahe. The proposed relation (RPP) was developed similarly and was obtained from a
parent equation in its initial publication [1]. This parent equation was stated without
any derivation because it was created by the trial-and-error method (shown in
Appendix lAD However, in this paper, a few changes have been made to the parent
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equation, and a way to obtain it theoretically from the principle of conservation of
angular momentum is also discussed. All the analyses will be based on some simple
assumptions to avoid various mathematical complexities. In the end, a few of its
applications will be demonstrated.

2 The Parent Equation

On analysing the data of Planetary parameters, it was observed that the ratio of specific
quantities was a constant for nearly all planets. This unique ratio is called the parent
equation. Which is given as follows:

név _ &)
g
In the above equation, n represents the number of 'significant moons' of a planet (will
be discussed ahead), 0 represents the axial tilt of a planet, v represents the magnitude of
the equatorial linear velocity of a planet, r represents the orbit radius of a planet, d
represents the diameter of a planet and 1 is a constant for all planets, and we call it, as
the ‘planetary parameters constant’ (PPC).
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The axial tilt or obliquity is the angle between a planet’s rotational axis and its orbital
axis. Equatorial linear velocity is the velocity a particle experiences on a planet's
equator due to its spinning; its direction is tangential to its surface. The orbit radius is
the average distance between a planet and the Sun. Most planets are not uniform in
shape; hence the average diameter of a planet is considered.

In the above equation, most of the quantities are related to either the orbital or
rotational characteristics of a planet. Hence, ‘n’ seems out of place in the parent
equation. However, as we verify it via substitution, the value of ‘n’ exactly balances off
both sides of the equation, giving a constant. Hence, it is an integral part of the parent
equation.

Figure 1: The side view of a planet representing the quantities of the parent equation (not to

\ Sun

scale),

Note: Some might argue that many such equations can be formed by randomly
arranging these planetary parameters; however, the chances of these randomly created
equations giving a constant for all planets are less. This point makes RPP stand out
because it gives a constant for nearly all planets. Hence, even though many equations
can be formed, they won’t be of significant meaning.

2.1 Exploring the value of n

Concerning equation 1, the term ‘significant’ in the context of ‘n’ means any satellite
orbiting a planet with enough mass (compared to the planet's mass) and proximity to
the planet such that its presence or absence affects the planet. To understand this
quantitatively, imagine a body of mass w, orbiting a planet of mass m with an average
orbit radius a. Then the possibility of such a body, becoming a ‘significant moon’ is given
by a quantity y, which is defined as,

= ma
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We propose that the above relation can be used to determine whether an orbiting
satellite is a significant moon or [nod. To find an approximate range of ¥, its values for
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various moons of our solar system and their planets are given in Table 1. For this
calculation, only the major moons of a planet are considered because their data is
readily available, and they will be a significant moon to their planets.

Table 1: Calculation for Significant Moons

Mass of the | Mass of the | The Orbital
Name of Name of moon planet radius of the X
Moon Planet (winkg) (m moon m™)
x 10%* kg) (a in km)
7.34 3.2
Moon [2] Barth | [ 0z 597 | 384400 x 1011
Phobos [3] 10.6 15 9376 £, LS
x 10 X 10
Mars 108 0.642 7.1
Deimos [3] % 1015 23463.2 x 10716
4.8 3.7
Europa [4] % 1022 670900 x 10714
_ 1.48 7.2
Ganymede [4]]  Jupiter | [ a3 1898 ] 1070400 1 o 1914
8.93 11
lo [4] X 1022 421700 X 10_13
Titan [5] 1.34 23 1221870 o -13
x 10 X 10
Saturn 1.08 568 7.9
Enceladus [5] % 1020 237948 x 10716
Umbriel [6] 127 266000 s
x 10 X 10
Uranus 34 86.8 8.9
Titania [6] % 1021 435910 x 1071
. 2.13 58
Triton [7] Neptune % 1022 102.4 354759 % 10-13

According to the data in the above table, a body orbiting a planet will be a significant
moon (at least in our solar system) to that planet if the value of y is approximately
between 8 X 10716 and 3 x 10~1. But the range may vary from one planet to another,
and the above-given range may not be accurate. Hence, to find the range of y, for a
particular planet, a detailed study of its moons has to be done. So, now let’s find out the
number of significant moons for all the planets of our solar system by doing simple
analyses.

2.1.1 Mercury and Venus

Mercury and Venus have zero moons; hence, the value of n will be zero for them and the
value of 1 for these planets will be zero. Due to the absence of moons for Mercury and
Venus, RPP and the parent equation do not apply to them.




2.1.2 Earth and Mars

For Mars and Earth, which have relatively lesser moons, the value of n is equal to the
total

number of natural moons they currently possess. So, for Earth, the number of significant
moons is 1, and for Mars, it is 2.

2.1.3 Jupiter and Saturn

For Jupiter and Saturn, which have many dispersed moons, the value of n is unequal to
the total number of moons they currently possess. This is because some of their moons
are small and distant, causing insignificant effects on the planet and hence can be
ignored. Now let’s analyse the moons of Saturn [8], to find out the number of significant
moons it has.

Mass of Saturn (mg) = 5.683 x 1026 kg

Table 2: Analysis of Saturn's Moons

Sr. | Name of Moon Mass of the moon Orbit radius X
No (M in 107 kg) (a in km) (m™Y
1 Aegaeon 0.000001 167493.665 1.05
2 | Aegir 0.001 20735000 8.48
3 Albiorix 0.21 16182000 2.28
4 | Anthe 0.00005 197700 4.45
5 | Atlas 0.066 137670 8.43
6 | Bebhionn 0.001 17119000 1.02
7 | Bergelmir 0.001 19336000 9.10
8 Bestla 0.002 20192000 1.74
9 | Calypso 0.04 294710 2.38
10 | Daphnis 0.002 136500 2.57
11 | Dione 10,970 377420 5.11
12 | Enceladus 1,076 238040 7.95
13 | Epimetheus 5.3 151410 6.15
14 | Erriapus 0.008 17343000 8.11
15 | Farbauti 0.0009 20377000 7.77
16 | Fenrir 0.0004 22454000 3.13
17 | Fornjot 0.001 25146000 6.99
18 | Greip 0.001 18206000 9.66
19 | Hati 0.001 19846000 8.86
20 | Helene 0.25 377420 1.16
21 | Hyperion 55 1500880 6.44
22 | Hyrrokkin 0.003 18437000 2.86
23 | lapetus 17,900 3560840 8.84
24 | ljiraq 0.012 11124000 1.89
25 | Janus 19 151460 2.20
26 | Jarnsaxa 0.001 18811000 9.35
27 | Kari 0.002 22089000 1.59
28 | Kiviuq 0.033 11110000 5.22




29 | Loge 0.001 23058000 7.63
30 | Methone 0.0002 194440 1.80
31 | Mimas 373 185540 3.53
32 | Mundilfari 0.002 18628000 1.88
33 | Narvi 0.003 19007000 2.76
34 | Paaliaq 0.082 15200000 9.49
35 | Pallene 0.0004 212280 3.31
36 | Pan 0.049 133580 6.45
37 | Pandora 1.37 141720 1.70
38 | Phoebe 83 12947780 1.12
39 | Polydeuces 0.015 377200 6.99
40 | Prometheus 1.59 139380 2.00
41 | Rhea 22,900 527070 7.64
42 | Siarnaq 0.39 17531000 391
43 | Skathi 0.003 15540000 3.39
44 | Skoll 0.001 17665000 9.96
45 | Surtur 0.001 22704000 7.75
46 | Suttungr 0.002 19459000 1.80
47 | Targeq 0.002 18009000 1.95
48 | Tarvos 0.027 17983000 2.64
49 | Telesto 0.07 294710 4.17
50 | Tethys 6,130 294670 3.66
51 | Thrymr 0.002 20314000 1.73
52 | Titan 1342000 1221870 1.93
53 | Ymir 0.049 23040000 3.74

If we observe the above table, the moons which have very little mass and are distant
from the planet are giving the value of y in the range 1.05 X 1072* to 9.96 x 10724,
Hence, we can assume that all the moons lying in this range are insignificant. Now, to
bring the value of 1 for Saturn closer to the value of 1) obtained for Earth and Mars, we
need the value of n to be at least 32. So, if we take the range of y for significant moons,
from 1.93 x 10713 to 2.86 x 10723, we get the value of n as 32. Hence, out of 53
analysed moons, only 32 are significant for Saturn. One more thing should be
considered: here, we have examined only 53 out of 83 confirmed moons of Saturn (due
to the lack of their data). So, the above range is not very accurate. But, the number of
significant moons should always be around 32, independent of the range of y. Now, let’s
have a look at Jupiter’s moons.

Jupiter currently has 79 confirmed moons [9]. Out of them, we need at least 74 moons to
be significant, because if we take n to be 74, then we get the value of ¥ to be
6.00 x 10728, which is close to all other planets’ 1. We can also analyse the moons of
Jupiter, as we have done for Saturn in the above table. But the analysis is not very
important because the number of significant moons has to be very close to 74,
independent of the range of y.

2.1.4 Uranus and Neptune
For Uranus and Neptune ](according to the recently available data), the number of

significant moons required is more than the number of current known moons. For

[

Comment [Bs10]: which data?
specify

|

Comment [RS11]: Added in the
manuscript

. J




Uranus, we need at least 57 significant moons, but only 27 [10] moons have been
discovered so far. Considering the trend of outer planets having many moons, Uranus
might have many more moons, but we haven’t found them yet.

For Neptune, the number of significant moons required is immense. It needs at least 452
significant moons. To explain this colossal number of moons, we have two speculations.
Firstly, the orbit of Neptune passes through the inner edge of the Kuiper belt [11]; hence
some Kuiper belt objects (KBOs) might be acting as significant moons to the planet. The
second speculation is that due to the considerable distance between Earth and Neptune,
we might have some errors in our readings of the physical parameters of Neptune. The
error in other readings is causing the equation to give the value of n to be very high.

2.1.5 Limitations of RPP
Mccording to the International Astronomical Union, a planet is any celestial body that

(a) is in orbit around the Sun

(b) has sufficient mass for its self-gravity to overcome rigid body forces so that it
assumes a hydrostatic equilibrium shape

(c) has cleared the neighbourhood around its orbit. \

Due to this definition of a planet, RPP does not apply to Moons because they do not
directly orbit the Sun. Also, RPP does not apply to dwarf planets like Pluto because of
their unclear neighbourhood. For RPP to work for a planet, it should have at least one
significant moon.

The moon provides stability to Earth’s rotational axis [12], which means the moon
prevents the wobbling of Earth’s axial tilt. The moon's effect on Earth’s axial tilt can be
mathematically realized from the parent equation. Hence, the presence of ‘n’ in equation
1 is justified because the moon affects a planet’s physical characteristics in real life.

2.2 Verification of the parent equation by the method of
substitution

Without any derivation, the only way to verify the parent equation is by substituting the
planetary parameters in it and comparing the obtained value of i for different planets.
The example below shows this method for Earth.

For Earth [13], we have

n =1,
6 = 0.410 rad,
v = 465.1m/s,

r = 149.6 X 10°m,
d = 12742 x 10°m
On substituting the above values in equation 1,
1% 0.410 x 465.1
V= (149.6 x 10%)2 x 12472 x 103
2P =6.68 X 10728 rad(m2s71)
Similarly, the value of 1 has been calculated for other planets (in Appendix B) and is
given in table 3.
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Table 3: Values of PPC for Different Planets

Name of the Value of ¢
planet (rad(m™%s71))
Earth 6.68
x 10728

Mars 6.02
x 10728

Jupiter 6.00
x 10728

Saturn 6.14
x 10728

As observed in the above table, the value of PPC ranges from 6.0 x 10728 to
6.68 x 10728 for all given planets. To use ¥ in our calculations, its average value will be
considered, which can be found using the data from table 3.

Average value of
6.68 + 6.02 + 6.00 + 6.14) x 10728
P = ( 7 ) rad(m=2s71)
= P = 616 x 10728 rad(m™2s™1)
Hence, for any further calculation, the value of 1 will be considered as 6.16 X
10728 rad(m=2s™1).

The parent equation is expressed in terms of equatorial linear velocity (v) and diameter
(d), which are related quantities. Hence, the parent equation can be simplified further.

3  The Relation between Planetary Parameters (RPP)

N . . . . d . .
To simplify the parent equation, we will substitute the expression v = ”T in equation 1,
which gives us,

o _¥ @)
r’t nm

where t = Rotation Period of a Planet (about its axis).

The rest of the quantities are the same as stated before

Equation 2 is the simplified form of the parent equation, and it is also the expression for
RPP. On the RHS, there are n, 1, and m. Out of which i and m are constants across all the
planets in our solar system and n is assumed to be a constant for a planet (its value
changes for each planet). Hence, for a particular planet, the RHS is constant, making the
equation as follows:

o (3)

= constant
r<t

From the above equation, we realize that,

“For a planet, the ratio of axial tilt to the product of the square of orbit radius and
rotation period is always a constant.”



4  Realization of RPP from the Conservation of Angular
Momentum

To obtain RPP’s parent equation from the principle of conservation of angular
momentum, we make the following assumptions first.

1. The orbits of planets are perfectly circular, with the Sun stationary at its centre.

2. h‘he planets orbit the Sun at a constant speed.

3. The planets rotate about their axis with constant angular velocity and constant
equatorial linear velocity.

4. h‘he planets are perfectly spherical‘.
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Now consider a planet with mass ‘m’, orbital radius 7, radius ‘R’, equatorial linear
velocity ‘v, orbital velocity ‘v,’, the tilt of the rotational axis (axial tilt) ‘6" and orbiting
around its Sun of mass ‘M’. The system is shown in figure 2.

Figure 1: The Planetary System (not to scale)
From classical mechanics, we know that the angular momentum of such a system
remains constant with time, as gravity is a central force [14]. Now, let’s calculate the
total angular momentum for the planet about point O’. A planet usually possesses two
kinds of angular momenta. One is orbital angular momentum, which is due to its orbital
motion around the point O’. The second is the ‘spin’ angular momentum due to the
planet’s rotation about its axis. The situation is shown in figure 3.
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Figure 3: Angular Momenta of a Planet

In figure 3, L is the orbital angular momentum, and [ is the spin angular momentum.
From classical mechanics, we know that L is constant to time, and hence all the planets
orbit the Sun in the same plane. Here, / is also a constant because we have assumed that
the planet is rotating about its axis with a constant angular velocity w.

So, here,

L = mry,
And

l = lw
Where [ is the moment of inertia of the planet (sphere) about its axis of rotation.

Hence the total angular momentum in the vertical direction can be written as,
L+ lcosd =« (4)
And the total angular momentum in the horizontal direction is,
lsinf = f (5)

Here, @ and [ are two arbitrary constants. On substituting the values of / and L, we can
rewrite equations 4 and 5 as,

mrv, + lcosf = «a (6)

And
lwsind = f (7)

Now, substituting the value of v, as ZTE (T is the orbital period of a planet) in equation 6,

2mmr?
T

=a—1lcoscos@

(a—1lcoscos0)T

or,2r? =
m

Multiplying R on both sides,



, (a—lcoscos8)RT
@R)yr* =
mm

(a —lcos cos 6)RT (8)
mm

or,dr? =

Now from equation 5,

2
ngv sinsinf =pf

5B 9)

sinsing =—t

or,v sin sin 7R

Dividing equation 9 with equation 8, we get,
vsinsind (58 ) m
drz (2mR (a — L cos cos 6 )RT
v sin sin 6 _ 501 (10)
T g " 2(a — 1 cos cos 0 )TR?

For a particular planet, everything is a constant on the RHS of the equation, and the LHS
resembles the parent equation. Hence, it can be said that

S5Bm ¥ (11

2(a —l cos cos 0 )TR? T

And obviously,

vsinsinf P nv sin sin 6
—  ~Zor, \ Al
dr? dr?
So, this is how the parent equation can be realized from the conservation of angular
momentum. Now, let’s discuss another way to realize the parent equation.

4.1 Reverse approach to realize the Parent equation

From equation 11, it is clear that % is related to % and if I and L are directly divided for a

planet without invoking the conservation principle, it is obtained that,

l %va

L mry,
On substituting the value of v, in the above equation,

Il 2R T

L 5r 2nmr

l vRT
L = Sz

On rearranging the above equation,

5ml v

LRT 72
On multiplying % to both RHS and LHS,

5l _ v (12)
2LTR? ~ dr?



The RHS of the above equation somewhat resembles the parent equation. On
substitution, it is found that for all planets the LHS of equation 12 is nearly equal to %.

One example is shown below,

For Earth [13],
1 =7.07x 103 kgm?s~1
L =2.7x10%* kgm?s~!

T = 3.14

= 6371 x 103m

= 3.154 x 107s

P = 6.16 X 10728 rad(m™2s71)

n=1
6 = 0410 rad

R
T

On substitution,

5ml 5% 3.14 X 7.07 x 1033

2LTR? 2% 2.7 X 10%° x 3.154 x 107 x (6371 x 103)2
v 6.16 x 10728

dr2 - 1x 0410

=1.60 X 1072 m=2s~1

=150x 102" m2s !

) 5ml v
" 2LTR? ~ dr?
Hence, the relation is obtained as
v P 5ml (13)

drZ  nf  2LTR?
The above equation is the parent equation and a rearranged form of equation 11.

5 Applications

The first application is a set of planetary hypotheses. In that subsection, we will make
some hypotheses based on RPP. If any of these hypotheses are proved via observations,
that can be considered as proof of RPP.

5.1 Planetary hypotheses

Previously, the physical characteristics of a planet like the axial tilt, orbit radius, and
rotational period were considered independent of each other. Hence, it was believed
that the change in one quantity would not affect the others directly. This concept
changes with the introduction of RPP because it has a direct relationship amongst these
physical characteristics.

So, from equation 3, we have,

6
r2t
Where k is a constant. Hence, we can write,

0 o« r’t (14)



By considering each variable to be a constant one at a time, three relations are
obtained:

1. 0 < 1?

This result is obtained by assuming that t is a constant, and it suggests that if a
planet’s distance from the Sun is changed, keeping its rotational period constant,
then its axial tilt will also change, and vice versa. This result shows that by simply
moving a planet close or away from the Sun, a planet’s axial tilt can be changed,
directly affecting that planet's seasons.

2. 0t

This result is obtained by assuming that r is a constant. It suggests that if we
change a planet’s axial tilt such that its orbit radius remains the same, then its
rotation period also changes, and vice versa. According to this relation, the axial
tilt of a planet directly affects the day on it.

1

This result is obtained by assuming that 0 is a constant. It suggests that by
changing a planet’s orbit radius such that its axial tilt remains the same, its
rotation period also varies, and vice versa. According to this relation, as a planet
moves closer to the Sun (perihelion), then the duration of its day increases.
Similarly, as the planet moves away from the Sun (aphelion), the day's duration
decreases. However, the change in the day's duration may not be very significant
because the difference in ‘r’ is not very drastic (due to our solar system's lower
eccentricity of orbits). Kepler’s third law of planetary motion shows a relation
between orbit radius and orbital period [15]. Similarly, the RPP offers an
association between orbit radius and rotation period.

6 Conclusion

We started this paper with a relation between different planetary parameters and the
connection between those parameters was intriguing, especially the inclusion of n in
RPP. The proper definition of n was critical to understand, as it affects other
parameters of a planet. Then we discussed a theoretical approach to obtain RPP. In the
end, the applications of RPP showed the beautiful ways in which we can use it in our
ongoing research. RPP relates quantities that seemed independent hence it has opened
new horizons in planetary research. Also, it can be used to model the early planets
during planetary formation.
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Appen

dix A

To understand our thought process while developing the parent equation shown in Table A1
Table A1: Obtaining the parent equation

Planet Name 1 0 0 Ov nvé
” = pe ar? ar
(m™%) (rad(m™) | (rad(m=?)) (rad(m™%s71)) (rad(m™%s71))
Earth [13] 4.46 1.83 1.43 6.68 6.68
x 10723 x 10723 x 10730 x 10728 x 10728
Mars [13] 1.92 8.45 1.24 3.01 6.02
x 10723 x 10724 x 10730 x 10728 x 10728
Jupiter [13] | 1.64 9.01 6.44 8.12 6.00
x 10724 x 10726 x 10734 x 10730 x 10728
Saturn [13] 4.86 2.26 1.94 1.92 6.14
x 10725 x 10725 x 10733 x 1072° x 10728

The result ofri2 for the selected planets was coming close. In an attempt to bring the value of riz

even closer, different quantities were multiplied to it until a constant was obtained. The result of
this trial and error was the Parent equation. In Table A1, the data obtained is very small hence,
plotting it on a graph is difficult. To make a graph, we’ll find the logarithm of each entry, as

shown in Table A2.
Table A2: Obtaining the parent equation logarithmically

Planet A B Cc D E
Name |1 2 %) ov név

-|) =[togio ()] | = [roso (G2 | = [oso (7)] | = [tosro ()
Earth [13] 22.35 22.73 29.84 27.17 27.17
Mars [13] 22.71 23.07 29.90 27.52 27.22
Jupiter [13] 23.78 25.04 33.19 29.09 27.22
Saturn [13] 24.31 24.64 32.71 28.71 27.21

Based on the data of Table A2, we will plot Figure Al.

Earth ==@=Mars

Jupiter ==@==Saturn

Figure A 1: The convergence of different physical parameters of a planet




Appendix B

The value of Y calculated for different plane
For Earth we know [13],
n=1
6 = 0410 rad For Saturn we know [13],
v = 465.1m/s n = 32
r = 149.6 x 10°m 6 = 0.466 rad
d = 12742 x 10°m v = 9870 m/s

On substituting the values in equation 1,

_ 1x0.410 X 465.1
T (149.6 X 109)2 x 12472 x 103

w1
=6.68 x 10728 rad(m=2s71)

(B

For Mars we know [13],

n=2
6 = 0439 rad
v = 24117 m/s
r = 2279 x 10°m

d = 6779 x 103 m
On substituting the values in equation 1,

_ 2 % 0.439 x 241.17
T (227.9 x 10%)2 x 6779 x 103
1 =6.02 x 10728 rad(m=2s71)

(B2)

For Jupiter we know [13],
n =74
6 = 0.05462 rad
v = 12600 m/s
r = 77857 x 10°m
d 139820 x 103 m
On substituting the values in equation 1,

¥

1P =6.00 X 10728 rad(m=2s71)

Observation:

r = 143353 x 10°m
d = 116460 x 103 m
On substituting the values in equation 1,

Y
2P =614 X 10728 rad(m=2s71)

For Uranus we know [13],

n = 57 (say)
6 = 1.70 rad
v = 2590 m/s

r = 287097 x 10°m
d = 50724 x 10°m
On substituting the values in equation 1,

/4
%P =6.00 X 10728 rad(m2s71)

For Neptune we know [13],

n = 452 (say)
6 = 0.4942 rad
v = 2680m/s

r =45 x 1012 m
d = 49244 x 103 m
On substituting the values in equation 1,

452 x 0.4942 x 2680

T (45 x 1012)2 x 49244 x 10°
s~ =6.00 X 10728 rad(m=2s71)

In equations B1 and B2, the axial tilt for both planets is similar; however, the value of n for Mars
is double Earth’s n. To compensate for this doubling, the equatorial linear velocity of Mars
becomes nearly half of Earth’s v. This mechanism ensures that we always get the value of Y
similar for all planets.



