An Investigation into Social and Cultural Pressures of Vulnerable Women using
Survival Analysis with Covariates

Abstract

In this study, we sought to model the time to the first birth interval from marriage for women in Nigeria, and
identify the various factors affecting this timing. The study was also set to determine the average/median
survival time for marriage to first birth interval among Nigerian women, to provide enlightenment in such
areas and possibly reduce anxiety levels of women who have little or no knowledge of the median survival

time to first birth who might be vulnerable to the exploitations of illicit religious and medical practitioners.

Data obtained from the Nigerian Demographic Health Survey (NDHS) 2018 was used for the purpose of this
research. Information on the following variables was obtained: Time to first birth from marriage, Age
Women's education, Wealth index, Place of residence, Employment, Contraceptive, Religion, and Region.
The Kaplan-Meier estimator was used to estimate the median survival time, while the log-rank test was used
to test the significance of the categories of the covariates used. The Density, Quantile, Survival and
Probability plots were used to study candidate distributions that appropriately describe the data, and the
Akaike Information Criterion (AIC) was used to select the best distribution for the Accelerated Failure Time

Model.

The study found that the median Survival time of marriage to the first birth interval was 20 months. Level of
education, religion, region, use of contraceptives and Wealth Index were found to significantly affect
marriage to the first birth interval. A log-normal Accelerated Failure Time Model was fit to the data.
Women with higher education were found to have a shorter time to first birth interval. Also, women from

South-Western Nigeria had shorter marriage to first birth interval than the other regions.

Keywords: Survival Analysis, Marriage Birth Interval, NDHS 2018, Accelerated Failure Time Model, Kaplan-Meier
Estimator



Introduction

The first visible outcome of the fertility process is the birth of the first child. The first birth marks a
woman’s transition into motherhood. It plays a significant role in the future life of each individual woman
and has a direct relationship with fertility (Tadesse, F., & Headey, D. 2010). The number of children a
woman bears throughout her reproductive period in the absence of any active fertility control, and women
who start giving the first birth very early in life tends to have a large number of children than those who start
late is determined by the timing of the first birth according to Gyimah, S. O. (2003). However, one of
determinant factors is the age at the start of marriage. Bongaarts, J. (2015), mentions that early childbearing
can interrupt a young women’s education and other activities which women need to accomplish. Clinical
outcomes come in a variety of statistical forms, such as continuous systolic blood pressure that can easily be
analyzed with linear regression. Others, such as mortality or myocardial infarction (Ml), are distinct events

and have forms that are slightly more complex to statistically analyze.

The growing issue of childlessness and delayed births has made women vulnerable, especially to fake
religious leaders and quack medical practitioners in search of answers/solutions. Social and cultural
pressures for children against couples often lead to desperate measures. Poor or even total lack of knowledge
of the average marriage to birth interval (AMBI) increases the level of anxiety amongst couples in the event
there is delay in child birth especially, the first one. Hence, this paper is to model marriage to first birth
interval among women so as to provide some confidence to women and marriages experiencing delay since

AMBI is a significant determinant of fertility.

Fertility is one of the factors that influence the fluctuation of the number of populations. One of the
indicators of fertility rate is the total fertility rate (TFR), which can be defined as the average number of
children that would be born to a woman over her reproductive age. According to (Islam, 2009), TFR can be
reduced by increasing the age at marriage. However, this strategy is difficult to apply in the developed
countries such as Indonesia due to the influence of social and cultural factors. Another alternative strategy is
by controlling the FBI, which is defined as the time interval of a married woman to give birth to her first
child since the time of first marriage. If the FBI is controlled, the next birth time would automatically be

controlled (Islam, 2009).



Data Structures and Methodology

The data used for this study was obtained from 2018 Nigeria Demographic Health Survey (NDHS). The
response variable is time-to-first birth from marriage among women in Nigeria that is measured in months.
For women who did not give birth (censored), the time was measured till the date of the interview. The
Independent variables are shown in the table below. The table shows the various covariates used to model

the survival time, and the categories for each covariate.

Table 1: Variables and categories for covariates used in the model

Variables Description Categories
Age Age of women at | Measured in years
marriage
Women Women’s level of | 0=No-education;] = Primary
education education 2 =Secondary and 3 = higher

Wealth index Household wealth | 0 =Poor; 1 =Middle; 2 =Rich

index
Place of | Place of residence | 1 =Urban; 2 =Rural
residence
Employment Employment status | 0 =unemployed,1 = Employed
Contraceptive Use of | 0=Non-User, 1 =User
Contraceptive
Religion Religion of | 0= Christian, 1 =Muslim,2 = Other

respondents




Region Region of | 1=North Central, 2=North East, 3=North West, 4= South East, 5=

residence South-South, 6= South West

Kaplan-Meier estimator

Let t4,t,,ts, ...denote the actual times of the occurrence of the event of interest of n individuals. Let
d,,d,,ds, ...denote the number of event occurrences at each of these times, and let ny,n,,ns, ... be the

corresponding number of subjects yet to experience the event of interest.
Note: n, =nqy — dl,n3 =N, — dz

Then for any time t € [0,t;) we have S(t) = P(T > t) = 1 ie propability of surviving beyond timet

for any time ¢ € [¢, t,) we have $(¢) =1 — 2

nq
Similarly, for any time t € [t,, t;)we have
S0 =(1-3)(1-3) ®

Hence in general for any time ¢ € [¢;, t;,, )we have

S =(1-%)(1_-% AN o 0/ _Y
Sw=(1 nl) (1 nz) ( n,-) = izl( n,-> @)
This is the Kaplan - Meier estimator of the survivor function S(t).

The Kaplan-Meier estimatorS(t) can be regarded as a point estimate of the survival function S(t) at any

time t.
Cox Proportional Hazards Models

Proportional hazards models are a class of survival models in statistics. Survival models relate the time that
passes, before some event occurs, to one or more covariates that may be associated with that quantity of

time. In a proportional hazards model, the unique effect of a unit increase in a covariate is multiplicative




with respect to the hazard rate. For example, taking a drug may halve one's hazard rate for a stroke
occurring, or, changing the material from which a manufactured component is constructed may double its
hazard rate for failure. Other types of survival models such as accelerated failure time models do not exhibit

proportional hazard

The purpose of the model is to evaluate simultaneously the effect of several factors on survival. In other
words, it allows us to examine how specified factors influence the rate of a particular event happening (e.g.,
infection, death) at a particular point in time. This rate is commonly referred as the hazard rate. Predictor

variables (or factors) are usually termed covariates in the survival-analysis literature.

The Cox model is expressed by the hazard function denoted by h(t). Briefly, the hazard function can be

interpreted as the risk of dying at time t. It can be estimated as follow:
h(t) = ho(t) * exp (B1x1+ Boxy + -+ + Bpxp) (3)

Where,

t represents the survival time

« h(t)is the hazard function determined by a set of p covariates (x;, xz, ..., xp,)

e The coefficients (ﬁl, Boy e ﬁp) measure the impact (i.e., the effect size) of covariates.

e The term h, is called the baseline hazard. It corresponds to the value of the hazard if all the x; are
equal to zero (the quantity exp (0) equals 1). The t in h(t) reminds us that the hazard may vary over

time.

The Cox model can be written as a multiple linear regression of the logarithm of the hazard on the
variables x;, with the baseline hazard being an ‘intercept’ term that varies with time. The
quantities exp (f;) are called hazard ratios (HR). A value of g; greater than zero, or equivalently a hazard
ratio greater than one, indicates that as the value of the i*" covariate increases, the event hazard increases
and thus the length of survival decreases. In other words, a hazard ratio above 1 indicates a covariate that is

positively associated with the event probability, and thus negatively associated with the length of survival.



A key assumption of the Cox model is that the hazard curves for the groups of observations (or patients)

should be proportional and cannot cross.
The hazard ratio for two subjects, k and k’ with respective hazard functions
hi (£) = ho(£)eXi=1 B @)
P (£) = ho(£)eXi=1 P (5)
IS given as:

M) _ ho()ei=BY QT B (6)
hir(8) ho(t)eZiz1 ¥ T eZimg B

This hazard ratio is independent of time. The proportional hazard assumption however implies that the
hazard of the event in any group is a constant multiple of the hazard in any other. In other words, if an
individual has a risk of death at some initial time point that is twice as high as that of another individual,

then at all later times the risk of death remains twice as high. It gives the effect size of covariates.
Accelerated Failure Time (AFT) Model

Let S;(t) and S,(t) be the survival functions of two populations. The AFT models says that there is a

constant ¢ > 0 such that
S:(t) = S,(ct) forallt > 0 @)
This model implies that the survival time of population 1 is ¢ times as much as that of population 2.
Let u; be the mean survival time for population i and let ¢; be the population quantiles such that

Si()( ;) = u for some € (0,1) . Then

oo

1y = f Sy(D)dt

0

oo

= cf S,(w)du (t = cu)

0



= cf S;(uw)du

- Cul (8)
And

S2(@2) = 6 = S;(cp,) )

Assume that S, (t) is a strictly decreasing function. Then we have

Py = cpy (10)

This shows that under the accelerated failure time model, the expected survival time, median survival time
of population 2 all are ¢ times as much as those of population 1. ¢ is sometimes called the acceleration

factor.

Let T; be the event time for individual i, and let x; = (1,xi1, ...,xl-p)Tbe a fixed covariate vector that allows

a possibly non-null intercept. The AFT model can be represented by
lOgT =x'i[?+0£i, = 1,...,71 (11)

where ¢g; are independent and identically distributed random errors with a distribution with support in the

whole real line and that does not depend on x;.

The vector g = (ﬁo,ﬁl, ...,[)’p)Tand o are unknown parameters.

The above framework describes a general class of models: depending on the distribution we specify
for € that we will obtain a different model, but all will have the same general structure. Accelerated failure
time models allow a wide range of parametric forms for the density function. For each distribution of ¢,
there is a corresponding distribution for T. The members of the AFT model class include the exponential
AFT model, Weibull AFT model, log-logistic AFT model, log-normal AFT model, and gamma AFT model.

The table below gives a brief summary of Parametric AFT models.



Table 2: Summary of Popular Parametric AFT Models

Distribution of ¢ Distribution of T
Extreme value (1 parameters) Exponential
Extreme value (2 parameters) Weibull

Logistic Log-logistic
Normal Log-normal
Log-Gamma Gamma

Given the values of the covariates X, the density function has the following form

f(t) = (ot) 1 f, (RE2ELE) (12)

g

Where o is the scale parameter, and ¢ (x) is some function of covariates; A popular choice for ¢ (x)

is p(x) = exp (x'B) (13)

AFT models assume a survivor function of the following form,

Pr(T >t) = S(t) = S; I($)El (14)

where S; is baseline survivor function.

The Weibull, lognormal, and log-logistic distributions for lifetime correspond to extreme value, normal, and

logistic distributions for log of the lifetime, and the survivor function is given by
S(t) = S, (M) (15)

if o(x) = exp(x'B) ,the survivor function can be rewritten as

S() = S, (lgf_—xﬁ) (16)

g



Table 3: The S, (&) functions for some common distributions

Distribution Survivor Function S, (€)
Normal 1—®(e)
Extreme value exp (—e?)
L ogistic (1+e5)!

Parameter Estimation using Maximum Likelihood estimation

Survival times may be subject to right censoring. Here, the censoring times are represented by the
independent random variablesC;, fori = 1,...,n, which are assumed to be independent of T;,...,T,. The
censoring mechanism is assumed to be non-informative, that is, the distribution of the C;s does not depend
on unknown parameters. Let §; = 1, if the observation for individual i is a failure time, andé; = 0, if itis a
censoring time. The observations can be represented by the pairs of random variables(Y;, §;), whereY; =

min (log T; log C;), and the covariate vectorsx’;, fori = 1,...,n.

The likelihood function for the unknown parameters is given by

o=y () () &

g a

where y; is the observed value of Y;, f(.)and S(.)denote the density and survival functions of g;,

respectively, and 8 = (BT, 0)T is the vector of unknown parameters
: Yi—xtiB sLali
Using € = — the log likelihood assumes the form

£(0) =1logL(0) = Xi=, 6;(log f (&) —logo) + (1 —6;) log S(&;) (18)
The components of the score vector is given by

IC)) 1 ,
Upj(0) = 35, = 5 =1 AiXij) forj=0,..,p (29)
J



and

alLe
U,(0) _L 21 L &a—5;, (20)

where a; = — [8; B0 4 (1 5) S22 (21)

In matrix form, the score vector can be written as

Ug(0)

UU(H)] B [a‘l(eTa - 175)]' (22)

U(o) = [

where X = (xq,..,x,) T isthen*(p+1) matrix of covariates, and &= (6,..,6,)7

e = (exp{e}, ..., exp{e, DT and a = (ay, ..., a,)T are n dimensional column vectors.

Table 4 gives the expression for a; in equation (21) for AFT models frequently used in survival data
applications. The expression for a;for the exponential distribution equals the corresponding a; for the
Weibull distribution withg = 1. Maximum likelihood estimates (MLEs) for 3 and gare obtained by solving
the system of equations U(@) = 0, which requires a numerical nonlinear optimization algorithm (such as

Newton-Raphson and Fisher’s scoring)

Table 4: Expression for a; in equation 21 for some common models

Model Error Distribution a;
Weibull Standard extreme value exp(g;) — 6;
Log-Normal Standard Normal 5 ( 1-4; )dCD(si)
! 1-— Cb(fl') dfi

Logistic Standard Logistic exp (&

g g p(l) (1+5i)_61

1 —exp (&

Note: ®(.)is the standard normal cumulative distribution function.

The observed information matrix is



d?1 d?1

a2 dpd
10)=—| % B where 6 = (B,0) (23)
dodB’  de?

Other methods used in this study include: Newton Raphson Iteration while hypotheses were tested based on
standard criteria such as the Likelihood Ratio and Wald tests. The Goodness of fit of the model were
assessed using Akaike Information Criterion (AIC), R? Cox-Snell Residual. Cox-Snell residuals are

calculated by using cumulative hazard H(t;, B8, o)function and standardized residual as:

rs, = 08ti=(BotBixi) (24)

t o

Where f,, 8, and  are maximum likelihood estimates of B,, 8, and o, respectively.

Result and Discussion

The data obtained for the study were analyzed and interpreted in this section. The general median survival
time was ascertained as well as those of the subcategories of various covariates. An appropriate survival

model was built to model the first birth interval.
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Figure 1: Kaplan-Meier Plot of First Birth Interval

The Kaplan Meier Plot above shows the probability of survival as the survival time increased. That is, the
probability of not having a first child (i.e., not experiencing the event of interest) as the survival time

increases.

Table 5: General Median Survival

Time n events median 0.95LCL 0.95UCL

22798 21514 20 20 20

Calculations from the Kaplan-Meier and its plot shows that the median survival time for the marriage to first

birth interval for Nigerian women stood at 20 months using the NDHS 2018 datasets.

Table 6: Median survival Time by Level of Education

n events median 0.95LCL 0.95UCL

edu=0 10780 10171 23 23 23
edu=l 3790 3651 18 18 19
edu=2 6291 5922 17 17 18

edu=3 1937 1770 16 16 17




The result shows that median survival times for Nigerian women with no education (edu=0) is 23 months,
18 months for those with primary education (edu=1), 17 months for those with secondary education (edu=2)
and 16 months for respondents with higher educational qualification (edu=3). It is observed that the median

survival time dropped with increasing educational qualification.

Table 7: Median survival Time by Place of Residence

n events median 0.95LCL 0.95UCL

por=1 7958 7564 18 18 18

por=2 14840 13950 21 21 21

The result on type of place of residence shows that respondents who lived in urban areas (por=1) had a
median survival time of 18 months while their rural counterparts had a median survival time of 21 months

Table 8: Median survival Time by Working Status

n events median 0.95LCL 0.95UCL

work=0 7061 6457 21 21 22

work=1 15737 15057 19 19 20

The result on working status of the respondents shows that those who were not working had a median
survival time of 21 months while those that worked had a 19 months median survival time.

Table 9: Median survival Time by Religion

n events median 0.95LCL 0.95UCL

religion=0 8927 8462 17 17 17

religion=1 13711 12899 22 22 22




religion=2 160 153 21 19 25

The results further reveal that the median survival time for Christians (religion=0) were 17 months, while

the Muslims (religion=1) had a median survival time of 22 months and those of other religions (religion=2)

had a median survival time of 21 months.

Table 10: Median survival Time by Use of Contraceptive

n events median 0.95LCL 0.95UCL

contr=0 19600 18345 21 20 21

contr=1 3198 3169 16 16 17

Respondents who did not use contraceptives (contr=0) had a median survival time of 21 months while those

who used contraceptives (contr=1) had a median survival time of 16 months.

Table 11: Median survival Time by Wealth Index

n events median 0.95LCL 0.95UCL

wI=1 10593 9968 22 22 22
WI=2 4540 4342 19 19 20
WI=3 7665 7204 17 17 18

The results on wealth index showed that respondents who were poor (WI=1) had a median survival time of

22 months, those of the middle class (WI=1) had a median survival time of 19 months whereas the rich had

a median survival time of 17 months.

KM Plots for Covariates

The following plots are the Kaplan Meier plots for all covariates
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Figure 2: KM plot for level of education
According to the plots in Figure 2 above, there is an observed difference between survival times for the
different levels of education. The curve for no education was consistently above those of the other levels of
education, which implies that Nigerian women with no education had a higher probability of not having
their first baby relative to those with some form of education. On the other hand, Women with higher
educational qualification had a lower probability of not having their first baby compared to the other
women; in other words, women with higher education had a greater probability of having their first baby

than the other women with lower educational qualifications.
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Figure 3: KM plot for Place of Residence

The Kaplan-Meier plot of the Place of residence above suggests there is difference in the survival of those

who lived in urban residents and rural residents. The women who resided in rural areas as indicated by the



red curve have a higher probability of not having their first baby compared to their counterparts who lived in
urban areas. This can alternately be put as, women who lived in urban areas have a higher probability of

having their first babies than those who resided in rural areas.
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Figure 4: KM plot for Work Status

The Kaplan Meier plot of the work status suggests a difference in the survival time of respondents who
worked and those who did not work, albeit very slight as the curves are quite close to each other. This
implies that women who did not work have a slightly higher probability of not having their first babies than

those who worked. Simply put women who worked have a higher probability of having their first baby.
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Figure 5: KM plot for Religion

The Kaplan-Meier plot for religion shows some differences in the survival time for the various religions.
The survival times for Christians were consistently below those of Muslim and other religions. This means
that Christian women have a lower probability of not having their first child when compared to Muslim
women and women of other religions. The survival curve for Muslim didn’t differ significantly from each

other as they were very close to each other with some intersections.
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Figure 6: KM Plot for Use of Contraceptive

The plot on use of contraceptives suggests a difference in the survival times of Users and Non-Users of
contraceptives, with the non-user curve above that of users. This implies that women who did not use
contraceptives have a higher probability of not having their first babies than those who used contraceptives.
That is to say, that women who did not use contraceptives have a lower probability of having their first

babies.
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Figure 7: KM plot for Wealth Index

The Kaplan-Meier plot in figure 7 above suggests a difference in the survival of time across different
economic class. The curve for poor women was higher than those of the rich most of the time. This means
that the poor women had a higher probability of not having their first baby than the richer women. In other,
they poor women had a lower probability of having their first babies than the richer ones. On the other hand,
the curve for the rich women was consistently lower, implying that the rich women have lower probability
of not having their first babies that is they have a higher probability of having their first babies when

compared to the poorer women.
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Figure 8: KM plot for Region

The plot above suggests a difference in the survival time for the different regions. The survival curve for
North West is observed to above all other curves, which means that women from the North West region of
the country have a higher probability of not having their first babies than those from the other region; their
probability of having their first baby is thus lower than those from the other region. while that of South West
was consistently below those of the other regions, which means that women from the South West region
(pink curve) of the country have lower probability of not having their first baby than women from the other
regions. It can be put simply as women from the South West region have a higher probability of having their
first babies than the women from the other region. In the same vein, albeit slightly, women from South
(indicated by the blue curve) have a higher probability of experiencing their first babies than women from
the North Central (black curve), and the women from the North Central than those from the North East (Red
curve), and those of the North East than those of the South-South (blue curve), and lastly those of the South-

South than those of the North west (green curve).

Accelerated Failure Time (AFT) Results

In this section we investigated possible/suitable distributions that describe the event of interest, which in

this study is the time to first birth for married couples. Several distributions were already considered for



describing the First birth interval (too many to be included is single plot), but upon a prior visualization the

ones shown below were the closest to describing the event of interest.
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Figure 9: Density Plot of First Birth Interval

Probability density curves of all the distributions under investigation plotted with the histogram plot of the
data on ‘First Birth Interval’ are displayed in figure 9. This is visualizing how well each of the distributions
describes the data. With the distributions distinguishable with the different colors as shown in the plot
above, we observe that the Weibull distribution does not appropriately describe the First Birth Interval, as it
does poorly in covering the peak as well as the tail. This is an indication that the Weibull distribution may
not very well describe our data. On the other hand, the other two distributions Log-logistic and Log-Normal
distributions do better, with Log-Logistic describing the peak better while the Log-Normal describes the tail

better.



Quantile plot is another graphical method for determining whether sample data conform to a distribution.
The plot shows a wider deviation of the Weibull distribution at the beginning with intersections at the

middle and towards the end. The Log-Normal and Log-Logistic lay more consistently to the curve for the
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Figure 10: Quantile Plot of First Birth Interval
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Figure 11 Survivor Plot of First Birth Interval

Figure 11 displays the survival curves of all the distributions overlaid on the First Birth Interval curve. The
plot measures how appropriately the distribution describe our data by how close the curve for each
distribution is to the curve of the actual data. For most part, the curve for the Weibull distribution was
further apart from the curve for the first birth interval, whereas, the log-normal and log-logistic curves were
closer to the curve for the first birth interval. This is an indication that these two might describe the first

birth interval better than the Weibull distribution.
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Figure 12: Probability Plot of First Birth Interval

The probability plot once again shows how the Weibull distribution did not adequately mimic the path
described by the data. The curve for the Log Normal and Log Logistics shows how closely the respective
distributions follow the path shown by the data, with slight deviations towards the end. After the
visualizations, further test was carried out using the AIC to determine the best distribution from amongst the

three initially considered based on their strengths in describing the data via the plots.

Table 12: Akaike Information Criterion (AIC) from the distributions

Distribution AlIC

Log-Normal 170731.5

Log-logistic 170949.0




Weibull

177957.0

The above result shows the Log-Normal Distribution as a better fit to describing the event as it has the
smallest AIC, and hence was used to obtain the following results. This means that for the most part and as
the survival time increases, the Log-Normal distribution would still model the first birth interval better than

the Log-Logistic and Weibull distribution. The table below contains the estimates of the Accelerated Failure

time

model

Table 13: Estimates of the Accelerated Failure Time Model (Log-Normal Distribution)

value std. Error pa p
(Intercept) 3.050391 0.024601 123.99 2e-16
age -0.000300 0.000490 -0.61 0.54066
factor(edu)l -0.094177 0.012550 -7.50 6.2e-14
factor(edu)?2 -0.119160 0.013003 -9.16 < 2e-16
factor(edu)3 -0.130319 0.018285 -7.13 1.0e-12
factor(por)?2 -0.000884  0.010145 -0.09 0.93056
factor(work)1 0.018905 0.009258 2.04 0.04115
factor(religion)l 0.071204 0.012598 5.65 1.6e-08
factor(religion)2 0.048772 0.047754 1.02 0.30710
factor(region)2 -0.006056 0.013678 -0.44 0.65792
factor(region)3 0.140730 0.013374 10.52 < 2e-16
factor(region)4 0.070983 0.017020 4.17 3.0e-05
factor(region)5 0.196680 0.017047 11.54 < 2e-16
factor(region)6 0.010055 0.016321 0.62 0.53783
factor(contr)1l -0.107340 0.011882 -9.03 < 2e-16




factor(wI)2 -0.036616 0.011492 -3.19 0.00144
factor(wi)3 -0.044212 0.012833 -3.45 0.00057

Log(scale) -0.527278 0.004846 -108.81 < 2e-16

Scale= 0.59

Log Normal distribution

Loglik(model)= -85347.7 Loglik(intercept only)= -85916.1
Chisq= 1136.8 on 16 degrees of freedom, p= 5.4e-232

Number of Newton-Raphson Iterations: 3

n= 22798

The coefficients (Value)in the table above are logarithms of ratios of survival time, so a positive coefficient
means longer survival. However, to get a more intuitive interpretation of the time ratio, the time ratios are

transformed using the exponential function as shown in the table below.

Table 14: Time Ratio from the AFT model

Variables Coefficient Time Ratio (TR)
(Intercept) 3.05039122 21.12360687
age -0.0002999 0.999700175
factor(edu)l -0.0941773 0.910121395
factor(edu)?2 -0.1191601 0.887665655
factor(edu)3 -0.1303191 0.877815273
factor(por)2 -0.0008841 0.999116327
factor(work)1 0.01890452 1.019084338

factor(religion)1 0.07120418 1.073800448




factor(religion)2 0.04877201 1.049980941

factor(region)2 -0.0060564 0.993961907
factor(region)3 0.14072973 1.15111349

factor(region)4 0.07098298 1.073562948
factor(region)5 0.19668029 1.217354775
factor(region)6 0.0100551 1.01010582

factor(contr)1l -0.1073402 0.898220072
factor(W1)2 -0.0366158 0.964046442
factor(W1)3 -0.0442118 0.956751336

The coefficients for the various factors from the table above are interpreted as follows:

Education: A time ratio of .91 shows that the survival time of respondents with a primary education is
about 91% of the survival time of respondents with no education. In other words, the survival time of
respondents with primary education is 9% shorter than the survival time of respondents with no education.
Similarly, the survival time for respondents with a secondary education is about 88% of the survival time of
respondents with no education. And finally, the survival time of respondents with higher educational

qualification is about 87% of the survival time of respondents with no education.

Religion: The time ratio of 1.019 shows that the survival time of Muslim respondents is about a 102% of
the survival time of Christian respondents. In other words, the survival time of Muslim respondents is about
2% longer than the survival time of Christian respondents. Also, the survival time of respondents who

practiced other religions is about 5% longer than the survival time of the Christian respondents.

Region: The time ratio of 1.15 shows that the survival time of North-Western respondents is 115% of the

survival time of North-Central respondents. In other words, the survival time of North-Western respondents



is about 15% longer than the survival time of North-Central respondents. The survival time of the South-
Eastern respondents were about 7% longer than the survival time of the North-Central respondents. The
survival time of South-Southern respondents is about 22% longer than the survival time of the respondents
from the North-Central region. There were, however, no significant differences in the survival times of the

North-East and South-Western respondents.

Contraceptive Use: the result shows that the survival time of respondents using a contraceptive is about 90%
of the survival time of respondents not using contraceptives. In other words, the survival time of respondents
who use contraceptives is about 10% shorter than the survival time of respondents who do not use

contraceptives.

Wealth Index: the survival time of the middle class and rich respondents are both about 96% of the
respondents who are poor, that is, to say that the survival times of the middle class and rich respondents are

about 5% shorter than the survival time of respondents who are poor.
The place of Residence and working status of the respondents were however not very significant.
Log Rank Test

A further analysis is carried out to provide backup to the observations from the Kaplan Meier plots above.

This is done using the log rank test as shown below:

Table 15: Log rank test for Level of Education

N Observed Expected (0-E)A2/E (O-E)A2/V

edu=0 10780 10171 11534 16l 369.5
edu=1l 3790 3651 3384 21 26.5
edu=2 6291 5922 5109 129 180.2
edu=3 1937 1770 1487 54 61.5

Chisg= 389 on 3 degrees of freedom, p= <2e-16



The result of the log-rank test shows that there is a significant difference in the survival time of respondents
with different levels of education with the p-value less than 0.05. In other words, the time to first birth

differed significantly for at least two levels of education.

Table 16: Log rank test for Place of Residence

N Observed Expected (O-E)*2/E (O-E)"2/\V

por=1 7958 7564 6975 498 78.1

por=2 14840 13950 14539 239 78.1

Chisg= 78.1 on 1 degrees of freedom, p= <2e-16

With a p-value less than 0.05 the result shows that there is a significant difference in survival time between
the urban and rural residents. That is to say that, the time it took women who lived in urban areas to have
their first babies was indeed different from the time it took the women who lived in rural areas to have

theirs.

Table 17: Log rank test for Work Status

N Observed Expected (0-E)A2/E (O-E)A2/V

work=0 7061 06457 6814 18.71 29

work=1 15737 15057 14700 8.67 29

Chisg= 29 on 1 degrees of freedom, p= 7e-08

A p-value less than 0.05 shows that there is significant difference in the survival time of working and non-
working respondents. This shows that the survival time or the time to first birth from marriage of working

women differed significantly from those of non-working women.



Table 18: Log rank test for Religion

N Observed Expected (0-E)A2/E (0-E)A2/V

religion=0 8927 8462 7354 167.03 269.93
religion=1 13711 12899 13983 84.10 255.53
religion=2 160 153 177 3.21 3.43

Chisg= 270 on 2 degrees of freedom, p= <2e-16

There is a significant difference in the survival time of respondents for the different religions practiced. It
can be alternately put as, the survival time or the time to first birth from marriage differed significantly for at
least two religions. This is however the case, as we observed a significant gap between the survival times of
the Christian and Muslim Women, although, not much difference was observed for Muslim women and

those of other religions.

Table 19: Log rank test for Contraceptive Use

N Observed Expected (0-E)A2/E (0O-E)A2/V

contr=0 19600 18345 19139 33 318

contr=1 3198 3169 2375 266 318

Chisg= 318 on 1 degrees of freedom, p= <2e-16

The result also reveals that the survival time of respondents using contraceptive is statistically different from
those who do not contraceptives. This implies that the duration from marriage to first birth for women who

used contraceptives was indeed different from those who did not use contraceptives.

Table 20: Log rank test for Wealth Index

N Observed Expected (0-E)A2/E (O-E)A2/V

wI=1 10593 9968 10944 86.96 188.0

wI=2 4540 4342 4160 8.01 10.5




WI=3 7665 7204 0411 98.11 148.4

Chisg= 205 on 2 degrees of freedom, p= <2e-16
A p-value less than 0.05 shows that there is a significant difference in the survival time of respondents
across the various wealth categories. This means that the duration from marriage to first birth of at least two

categories of the wealth index classes were indeed different.

Cox Proportional Hazard Results

In this section the Cox proportional hazard (a semi-parametric approach) was used to study the effect of the

various covariates on the marriage to first birth interval.

Table 21: Estimates of Cox Proportional Hazard model

coef exp(coef) se(coet) z Pr(>|lz])
age 0.0004445 1.0004446 0.0008570 0.519 0.6039
factor(edu)l 0.1347100 1.1442049 0.0216178 6.231 4.62e-10 ***
factor(edu)2 0.1776957 1.1944618 0.0226240 7.854 4.02e-15 ***
factor(edu)3 0.1739136 1.1899528 0.0319060 5.451 5.0le-08 ***
factor(por)?2 0.0067438 1.0067666 0.0175573 0.384 0.7009
factor(work)1l -0.0153650 0.9847524 0.0160807 -0.955 0.3393

factor(religion)l -0.1146443 0.8916833 0.0220516 -5.199 2.00e-07 ***
factor(religion)2 -0.0738940 0.9287701 0.0823788 -0.897 0.3697
factor(region)?2 0.0156494 1.0157725 0.0238230 0.657 0.5112
factor(region)3  -0.1819309 0.8336590 0.0232398 -7.828 4.94e-15 ***
factor(region)4  -0.1327357 0.8756965 0.0294150 -4.513 6.41e-06 ***
factor(region)5  -0.3259824 0.7218179 0.0296735 -10.986 < 2e-16 ***
factor(region)6  -0.0242312 0.9760601 0.0282422 -0.858 0.3909

factor(contr)l 0.2250395 1.2523722 0.0202109 11.135 < 2e-1l6 #*#**




factor(Wi)?2 0.0476039 1.0487552 0.0199194 2.390 0.0169 *

factor(wi)3 0.0477812 1.0489411 0.0222617 2.146 0.0318 *

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 “ " 1
Concordance= 0.583 (se = 0.002 )

Likelihood ratio test= 833.1 on 16 df, p=<2e-16

855.1 on 16 df, p=<2e-16

864.7 on 16 df, p=<2e-16

wald test

Score (logrank) test

The above result shows the significance level of the different tiers for each covariate on the survival time of
respondents. The first category of each covariate is used as the reference group for the purpose of
interpretation and comparison. The table further shows the hazard ratios for subcategories of each covariate.
The result hence shows that the respondent’s level of education has a significant impact on the marriage to
first birth interval. Respondents with primary education have 14 percent higher risk of becoming a mother
relative to those with no education, similarly respondents with secondary education about 19 percent greater
chances of becoming mothers compared to those with no education while those of higher education are at 18
percent greater risk of becoming mothers. The result however shows that the place of residence and working
status did not significantly affect the marriage to first birth interval.

The religion practiced had a significant effect in the marriage to first birth interval, respondents who
practiced the Islamic religion were found to have 11% fewer chances of becoming mothers relative to their
Christian counterpart, the sub-category “others” were however not significant.

The geographic regions of the respondents were also found to significantly impart the marriage to first birth
interval. Respondents from the North-West region of the country have 18 percent lower chances of having
their first birth after marriage compared to their colleagues from the North-Central, the respondents from the
South-East have 13% fewer chances of becoming mothers relative to those from the North-Central region,
similarly respondents from the South-South have 32% lower chances of having their first child after
marriage relative to those from the North-Central part, whereas the sub category North-East and South-West

were not significant. The use of contraceptive was found to have significant impact on the marriage to first



birth interval, as respondents who used contraceptives had 25% greater chances of having their first baby
relative to the respondents who did not. The economic status of the respondents was equally significant in
determining the marriage to first birth interval, as those of the middle class and the rich have about 5%

chances higher of becoming mothers relative to the poor class.

Table 22: Result of the Schoenfeuld residual

chisq df p
age 49.2 1 2.4e-12
factor(edu) 404.5 3 < 2e-16
factor(por) 116.3 1 < 2e-16
factor(work) 23.7 1 1.1e-06

factor(religion) 261.3 2 < 2e-16

factor(region) 465.1 5 < 2e-16

factor(contr) 30.0 1 4.3e-08
factor(wi) 250.3 2 < 2e-16
GLOBAL 626.4 16 < 2e-16

The result from the Schoenfeuld residual shows that on more general basis, the covariates listed above have
a significant effect on the marriage to first birth interval. Specifically, with all the p-values less than 0.05,
this implies that all the covariates (which includes education, place of residence, work status, religion,

region, use of contraceptive and Wealth Index) all had a significant effect on the survival time.

Conclusions

The study found that the median survival time of First Birth Interval for Nigerian women is 20 months.
Furthermore, there was a significant difference in the survival time of the covariates, and the covariates

generally had a significant effect on the survival time of First Birth Interval. The factors that significantly



impacted the survival time of First Birth Intervals includes Level of education, religion, region, use of
contraceptive and Wealth Index. A Log-Normal Accelerated Failure Model was fit to the data. Women with
higher education have a shorter time to first birth interval than women with lower educational attainment.
The Christian women have the shortest time to first birth interval, followed by the Muslim women and then
women who practiced other religions. Women from the South-West have shortest time to becoming mothers
while North-West women have the longest time to becoming mothers. Finally, awareness should be
promoted throughout the entire public regarding the median survival time to first birth interval in order to
reduce anxiety among couples who may think they have waited too long for their first baby. Women should

be exposed to better education, as those with a higher education showed a higher risk to first birth.
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