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Abstract

Accurate forecasting of natural gas production is crucial for economic stability, environmental

sustainability, and market investment. This study presents an advanced forecasting method using

the fractional grey Bernoulli model, which combines fractional accumulation and Bernoulli processes

to enhance the predictive accuracy for nonlinear datasets. The model’s versatility and flexibility

allow it to adapt to various data characteristics and complexities, thereby outperforming traditional

grey models in forecasting performance. To optimize the model parameters, this study employs

the Particle Swarm Optimization (PSO) algorithm, further improving the model’s effectiveness.

Empirical analysis of natural gas production data from Brazil, Italy, and Qatar demonstrates that

the model exhibits significant advantages in both fitting and forecasting capabilities. The findings

indicate that the fractional grey Bernoulli model achieves high accuracy and reliability in predicting

natural gas production in these countries, providing a robust framework for strategic energy planning

and investment decision-making. With average forecast errors of 1.9113%, 4.0353%, and 1.8902% for

natural gas production in Brazil, Italy, and Qatar respectively, this study underscores the model’s

effectiveness in enhancing forecast reliability and minimizing risk, providing valuable insights for

sustainable energy development.

keywords: Fractional order, Grey Bernoulli model, Particle Swarm Optimization, Natural gas

production

1 Introduction

Accurate predictions of natural gas production are crucial for economic stability, environmen-

tal sustainability, and informed investment decisions on a global scale [1, 2]. As a vital energy

source, natural gas significantly influences the energy landscape of countries like Brazil, Italy, and

Qatar. These forecasts are essential not only for optimizing extraction strategies but also for aiding

policymakers and businesses in addressing the environmental challenges linked to energy produc-

tion, including carbon emissions. Understanding the dynamics of natural gas production is key to

enhancing energy policies and investment strategies in these regions, ultimately contributing to a

more sustainable and resilient energy future.

Grey system theory was first proposed by Deng in 1982 [3], with the grey model GM being

the most important and fundamental model. It laid the foundation for the development of grey

system theory and played a crucial role. Following the development of NGM(1,1) [4], DGM [5] and

other univariate models were subsequently proposed. Moreover, beyond univariate models, grey
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system modeling has gradually expanded to include research on multivariate grey models. Based

on the GM(1,1) model, Deng [6] proposed the GM(1,n) model in 1984, which is more general and

widely applicable than the GM(1,1) model. However, the GM(1,n) model has some theoretical

issues that were pointed out by Tien [7] in 2012. Tien noted that using the trapezoidal rule to

discretize the convolution integral of the analytical solution to the whitening equation could lead

to better prediction results. In 2005, Tien [8] proposed the GMC(1,n) multivariable grey model.

Later,the models such as NGMC(1,n) [9], DGMC(1,n) [10] were proposed soon. In 2008 and 2010,

Chen [11, 12] et al. proposed a nonlinear Bernoulli equation based on the GM(1,1) model, which

they referred to as the nonlinear grey Bernoulli model(BernoulliGM), abbreviated as the NBGM

model. The above models are all traditional first-order(1-AGO) accumulated grey models. They

have played a crucial role in the subsequent expansion, improvement, and optimization of grey

models.

The grey model, as an important tool for handling uncertainty and small sample data, has

demonstrated its unique advantages in various fields [13]. Existing research indicates that tradi-

tional large-sample statistical models perform poorly when data is insufficient, failing to provide

accurate predictions and analyses [14]. In contrast, grey models are particularly suited for small

sample data because they can achieve high prediction accuracy even with limited sample data

through inherent mathematical processing and model optimization [15]. This capability makes grey

models especially important in practical applications, particularly in fields such as energy [16–18],

where data collection is challenging or sample sizes are small. Further research and optimization of

grey models’ small sample prediction capabilities can enhance the accuracy of future trend predic-

tions and the scientific basis for decision-making [19]. In practical applications, due to the difficulty

in obtaining large, high-quality data samples, small sample prediction becomes particularly impor-

tant. Especially in the energy sector, where data collection is often limited, grey models are widely

used for energy forecasting. These models not only assist relevant departments in formulating ac-

curate energy policies but also effectively assess energy demand, contributing to the stability and

sustainable development of the energy market.

Various grey prediction models, such as the grey model(GM(1,1)) [6], have been widely used

due to their simplicity and applicability to small samples. However, these models often struggle

with complex, nonlinear datasets. Recent advancements have led to the development of more so-

phisticated grey models, including the fractional grey Bernoulli model(FBernoulliGM) [20], nonlin-

ear grey Bernoulli model(BernoulliGM) [12,21], hybrid accululation grey model(HAGM) [22], new

information priority nonlinear grey Bernoulli model(NIPBernoulliGM) [23], fractional-order nonho-

mogeneous discrete grey model(FNDGM) [24], new information priority grey model(NIPGM) [25]

,and fractional grey model(FGM) [26] to improve prediction accuracy. The fractional grey Bernoulli

model(FBernoulliGM) stands out among these models, demonstrating superior performance in han-

dling nonlinear relationships and providing more reliable forecasts.

The fractional grey Bernoulli model(FBernoulliGM) [20] emerges as a powerful tool for this

purpose, integrating the concepts of fractional accumulation and Bernoulli processes to enhance

predictive accuracy in nonlinear scenarios [27, 28]. Unlike traditional grey models, the fractional

grey Bernoulli model leverages fractional orders to better capture the intricacies of real-world data,

accommodating the variability and uncertainty inherent in energy systems. Its adaptability allows
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it to effectively model both short-term fluctuations and long-term trends in natural gas production.

Studies have shown that the fractional grey Bernoulli model can significantly enhance fore-

casting accuracy across diverse contexts. By employing this model, we can obtain more precise

estimates of natural gas production, which are crucial for strategic planning and policy formu-

lation. The flexibility of the The fractional grey Bernoulli model not only improves prediction

reliability but also facilitates a deeper understanding of energy dynamics in the studied regions.

This paper focuses on utilizing the fractional grey Bernoulli model to analyze and forecast natu-

ral gas production in Brazil, Italy and Qatar. The research aims to validate the model’s effectiveness

through empirical case studies, revealing its advantages over traditional forecasting methods. The

subsequent sections will elaborate on the model’s structure, present empirical findings, and draw

conclusions regarding its implications for energy forecasting and policy.

The remainder of this article is structured as follows: Section 2 introduces the prediction

model and the fractional order optimization method. Section 3 presents three prediction cases,

while Section 4 concludes the discussion.

2 RESEARCH METHODOLOGY

2.1 The fractional accumulation Bernoulli grey model

From Ref. [26], consider a nonnegative original series X(0) =
{
X(0)(1), X(0)(2), ..., X(0)(t)

}
.

The r-order fractional accumulation (denoted as r-FOA) of this series can be expressed as follows:

X(r)(m) =
m∑
j=1

(
m− j + r − 1

m− j

)
X(0)(j), m = 1, 2, . . . , t, (1)

where r represents the fractional order, and the binomial coefficient
(
m−j+r−1

m−j

)
is defined as:(

m− j + r − 1

m− j

)
=

(m− j + r − 1)(m− j + r − 2) · · · (r + 1)r

(m− j)!
. (2)

Similarly, the inverse fractional accumulation of order r (referred to as r-IFOA) is defined by

the following expression:

X(−r)(m) =
m∑
j=1

(
m− j − r − 1

m− j

)
X(0)(j), m = 1, 2, . . . , t. (3)

By utilizing these definitions, the relationship between r-FOA and r-IFOA can be established

as:

(X(r)(m))(−r) =
m∑
j=1

(
m− j − r − 1

m− j

)
X(r)(j) = X(0)(m), m = 1, 2, . . . , t. (4)

Eq.(4) highlights the intrinsic connection between the accumulated series X(r)(m), the inverse

accumulation X(−r)(m), and the original series X(0)(m). This relationship is crucial for recovering

the original series from predicted values X̂(r)(m) obtained through the fractional grey model, a

process that will be further explained in subsequent sections.
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From Ref. [20], the fractional accumulation nonlinear Bernoulli grey model can be formulated

as the following nonlinear differential equation:

dX(r)(t)

dt
+ aX(r)(t) = b(X(r)(t))γ , (5)

where γ represents a nonlinear parameter. When γ = 0, this model simplifies to the traditional

Bernoulli grey model (BernoulliGM). If γ ̸= 0 and γ ̸= 1, the equation can be linearized as:

dY (r)(t)

dt
+ (1− γ)aY (r)(t) = (1− γ)b, (6)

where the transformation Y (r)(t) = (X(r)(t))1−γ is applied. This linear Eq.(6) is known as

the whitening equation of the fractional Bernoulli grey model (FBernoulliGM). The corresponding

discrete form of this equation is:

Y (r)(m)− Y (r)(m− 1) + (1− γ)aZ(r)(m) = (1− γ)b, m = 2, 3, . . . , t, (7)

where the background value Z(r)(m) is given by:

Z(r)(m) =
1

2

[
Y (r)(m) + Y (r)(m− 1)

]
. (8)

Given the fractional order γ. To estimate the parameters a and b in Eq.(6), the least squares

method can be used. The estimation equation is:

[(1− γ)a, (1− γ)b]
T
= (BTB)−1BTY, (9)

where the matrices B and Y are constructed as follows:

B =


−Z(r)(2) 1

−Z(r)(3) 1
...

...

−Z(r)(t) 1


(t−1)×2

, Y =


Y (r)(2)− Y (r)(1)

Y (r)(3)− Y (r)(2)
...

Y (r)(t)− Y (r)(t− 1)


(t−1)×1

. (10)

Solving the differential Eq.(6) and substituting the values of (1− γ)a and (1− γ)b, we derive

the solution for Ŷ (r)(m) as:

Ŷ (r)(m) =

(
Y (r)(1)− b

a

)
e−a(1−γ)(m−1) +

b

a
, m = 1, 2, . . . , t, (11)

where Y (r)(1) = Y (0)(1). Finally, using equation (4) and the transformation in equation (6),

the predicted values for the original series can be expressed as:

X̂(0)(m) =
(
(Ŷ (r)(m))

1
1−γ

)(−r)

, m = 1, 2, . . . , t. (12)

2.2 Optimization algorithm solves nonlinear parameters

Based on the previous content, we can observe that the nonlinear parameter significantly affects

the accuracy of the model’s predictions to a considerable extent. This section provides a detailed

discussion on optimizing the algorithm for solving the optimal nonlinear parameters.
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To solve this optimization problem, we reformulate it as an error-minimization task by tuning

the parameters within the constraints set by the proposed model’s structure. Among various error

metrics, we choose the Mean Absolute Percentage Error (MAPE) as the standard for assessing the

model’s prediction accuracy. MAPE provides a straightforward representation of relative error,

known for its robustness and interpretability, making it suitable for different types of datasets.

The Mean Absolute Percentage Error (MAPE) for model fitting, validation, and forecasting is

defined as follows:

MAPEfit =
1

n

n∑
m=1

∣∣∣∣∣ Ŷ (r)(m)− Y (r)(m)

Y (r)(m)

∣∣∣∣∣× 100% (13)

MAPEvalid =
1

s

n+s∑
m=n+1

∣∣∣∣∣ Ŷ (r)(m)− Y (r)(m)

Y (r)(m)

∣∣∣∣∣× 100% (14)

MAPEpred =
1

p

n+s+p∑
m=n+s+1

∣∣∣∣∣ Ŷ (r)(m)− Y (r)(m)

Y (r)(m)

∣∣∣∣∣× 100% (15)

where n is the number of fitting points, s refers to the number of valid points, and p refers to the

number of predicted points.

Minimizing MAPE allows us to determine the optimal value of r, improving the accuracy of

the model’s predictions. The optimization problem can be mathematically expressed as:

minMAPEvalid =
1

s

n+s∑
m=n+1

∣∣∣∣∣ Ŷ (r)(m)− Y (r)(m)

Y (r)(m)

∣∣∣∣∣× 100% (16)

s.t.



[(1− γ)a, (1− γ)b]
T
= (BTB)−1BTY

B =


−Z(r)(2) 1

−Z(r)(3) 1
...

...

−Z(r)(t) 1


(t−1)×2

Y =


Y (r)(2)− Y (r)(1)

Y (r)(3)− Y (r)(2)
...

Y (r)(t)− Y (r)(t− 1)


(t−1)×1

Z(r)(m) =
1

2

[
Y (r)(m) + Y (r)(m− 1)

]
Ŷ (r)(m) =

(
Y (r)(1)− b

a

)
e−a(1−γ)(m−1) +

b

a
, m = 1, 2, . . . , t

X̂(0)(m) =
(
(Ŷ (r)(m))

1
1−γ

)(−r)

, m = 1, 2, . . . , t

The optimization problem above is solved using the Particle Swarm Optimization (PSO) algo-

rithm.

Particle Swarm Optimization (PSO) [29] [30] is a population-based optimization technique

inspired by the coordinated behaviors seen in bird flocking and fish schooling. Each individual in

the population, referred to as a particle, represents a candidate solution. By iteratively adjusting
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their positions, particles explore the search space, leveraging both their personal experiences and

information shared within the swarm to approach the optimal or near-optimal solution.

To address the optimization challenge, we employ PSO, which utilizes both individual historical

information and collective knowledge to iteratively improve solutions. Each particle adjusts its

position in the search space based on its velocity, its own best-known position, and the best-known

position found by the swarm as a whole.

The equations for updating each particle’s velocity and position are given as:

vi(t+ 1) = w · vi(t) + c1 · r1 · (pi − xi(t)) + c2 · r2 · (g − xi(t)), (17)

xi(t+ 1) = xi(t) + vi(t+ 1), (18)

where vi(t) and xi(t) denote the velocity and position of the i-th particle at iteration t, w is

the inertia weight, and c1 and c2 are cognitive and social acceleration coefficients. r1 and r2 are

random variables uniformly drawn from [0, 1], pi represents the particle’s personal best position,

and g denotes the global best position discovered by the swarm.

This algorithm iteratively reduces the objective function, guiding particles toward optimal

solutions. Particle Swarm Optimization (PSO) is chosen for its simplicity, adaptability, and strong

global search performance. In this study, Particle Swarm Optimization (PSO) is used to tune

model parameters, aiming to minimize the Mean Absolute Percentage Error (MAPE) during model

validation.

To address the optimization problem mentioned above, we developed a solution process based

on the Particle Swarm Optimization (PSO) algorithm. The procedure is outlined in Algorithm 1.

This algorithm is implemented using Python.
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Algorithm 1: PSO-based optimization of γ and least squares for a and b

input : The original series X(0) = {X(0)(1), X(0)(2), . . . , X(0)(t)}, max iterations,

population size

output: The optimal values of (a, b, γ)

1 Initialize: PSO parameters (population size, inertia weight, cognitive and social

coefficients), swarm particles with random initial positions and velocities for γ

2 Set (MAPEmin) =∞
3 for each iteration up to max iterations do

4 for each particle in the swarm do

5 Step 1: Compute accumulative sequence Z(r)(m) using:

Z(r)(m) =
1

2
[Y (r)(m) + Y (r)(m− 1)]

6 Step 2: Construct matrices B and Y:

B =


−Z(r)(2) 1

−Z(r)(3) 1
...

...

−Z(r)(m) 1

 , Y =


Y (r)(2)− Y (r)(1)

Y (r)(3)− Y (r)(2)
...

Y (r)(m)− Y (r)(m− 1)


7 Step 3: Solve for (1− γ)a, (1− γ)b and compute a and b:

[(1− γ)a, (1− γ)b]
T
= (BTB)−1BTY

8 Step 4: Predict Y (r)(m):

Ŷ (r)(m) =

(
Y (r)(1)− b

a

)
e−a(1−γ)(m−1) +

b

a

9 Step 5: Compute X̂(1)(m) and X̂(0)(m) using:

X̂(1)(m) = Ŷ (r)(m)
1

1−γ , X̂(0)(m) = (X̂(1)(m))(−r)

10 Step 6: Evaluate the particle fitness using MAPE:

MAPEvalid =
1

n

n∑
m=1

∣∣∣∣∣X(0)(m)− X̂(0)(m)

X(0)(m)

∣∣∣∣∣
11 end

12 if MAPEvalid < MAPEmin then

13 Update MAPEmin ←MAPEvalid

14 Update the best values of γ∗

15 end

16 Update particle velocities and positions using PSO update rules

17 end
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3 Applications in forecasting natural gas production

Forecasting natural gas production trends in regions such as Qatar, Brazil, and Italy is essential

for ensuring stability in the global energy landscape and promoting economic growth. These coun-

tries are significant players in the international natural gas market, influencing supply dynamics and

global pricing mechanisms. Accurate predictions of their production levels allow policymakers and

businesses to formulate effective energy strategies, ensuring market stability while reducing risks

and supporting economic development. Furthermore, these insights contribute to energy security

and guide investment decisions, ultimately fostering the sustainable growth of the global energy

sector.

We meticulously collected annual natural gas production data from Qatar, Brazil, and Italy

for the years 2008 to 2016. This data is sourced from reference [31], which clearly indicates that all

figures are extracted from the authoritative BP Statistical Review of World Energy.

In our study, we utilized data from 2008 to 2012 for model fitting to ensure the accuracy

and reliability of the constructed model and data from 2013 to 2014 for model validation. Subse-

quently, we selected data from 2015 to 2016 for prediction to applicate the model’s effectiveness

and practicality. Through this process, we aim to not only reveal the production trends of these

three countries in natural gas but also provide robust data support and theoretical foundations

for future energy policy formulation, thereby promoting the sustainable development of the global

energy market.

3.1 Case 1: forecasting natural gas production in Brazil

The study of natural gas production in Brazil is essential for understanding the country’s

growing role in the global energy market. As Brazil emerges as a key player in South America,

its natural gas resources are becoming increasingly significant for the region’s energy security and

economic development. By examining production trends in Brazil, we can assess the country’s

potential to reduce its reliance on imported energy, boost domestic industries, and contribute to a

more stable and diversified regional energy supply. Moreover, Brazil’s advancements in natural gas

production could have a positive impact on its environmental policies, promoting a cleaner energy

transition within the region.

In Table 1, the prediction results and errors of several models (FBernoulliGM, BernoulliGM,

HAGM, NIPBernoulliGM, NIPGM, FNDGM, GM, and FGM) are compared against the original

data from 2008 to 2016. Each model’s performance is measured by MAPE values during fitting

(MAPEfit), validation (MAPEvalid), and prediction (MAPEpred).

Notably, the NIPGM model achieves the lowest fitting error with a MAPEfit of 0.5771%, while

HAGM performs the best overall in fitting with the second-lowest MAPEfit of 0.595%. FBernoul-

liGM, however, stands out in the validation phase, achieving the best MAPEvalid of 0.1408%, indi-

cating its superior capability in predicting validation data. In terms of prediction, FBernoulliGM

also excels, showing the lowest of1.9113%, outperforming other models such as NIPGM, which has

a of17.3919%. The GM model shows the worst prediction results with a high of43.156%. Overall,

FBernoulliGM demonstrates strong prediction capabilities, while the NIPGM and HAGM models

excel in fitting performance.
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As shown in Fig.1, the comparison of the predicted data for different models is thoroughly illus-

trated. The parameters were fine-tuned through the PSO (Particle Swarm Optimization) algorithm,

with 1,000 iterations. The convergence curve of MAPEvalid is displayed in Fig.2.

Table 1. Detailed results in Case 1

Year Original Data FBernoulliGM BernoulliGM HAGM NIPBernoulliGM NIPGM FNDGM GM FGM

2008 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00
2009 11.90 12.09 11.65 11.79 11.78 11.96 11.92 12.18 12.21
2010 14.60 14.23 14.43 14.60 14.46 14.43 14.43 14.22 14.23
2011 16.70 16.80 16.89 16.93 16.94 16.86 16.96 16.59 16.64
2012 19.30 19.23 19.07 19.17 19.15 19.25 19.19 19.37 19.35
2013 21.30 21.24 21.00 21.29 21.07 21.62 21.12 22.61 22.37
2014 22.70 22.70 22.70 23.30 22.70 23.94 22.81 26.39 25.75
2015 23.10 23.58 24.20 25.22 24.06 26.23 24.32 30.80 29.54
2016 23.50 23.91 25.53 27.04 25.18 28.49 25.69 35.95 33.81

MAPEfit 1.0185 1.1189 0.595 0.8363 0.5771 0.6919 1.1954 1.1515
MAPEvalid 0.1408 0.7042 1.3451 0.5399 3.4825 0.6648 11.2029 9.2298
MAPEpred 1.9113 6.7001 12.1207 5.6524 17.3919 7.3003 43.156 35.8756
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3.2 Case 2: forecasting natural gas production in Italy

Research into Italy’s natural gas production is vital for grasping its role in the European

energy landscape. As a major consumer and hub for energy distribution in Europe, Italy’s

production capabilities play a pivotal role in balancing the region’s energy supply. By analyzing

Italy’s natural gas output, we can evaluate its contribution to energy diversification, which is crucial

for reducing Europe’s dependence on external suppliers, such as Russia, and strengthening energy

resilience. The study also highlights Italy’s efforts in fostering sustainable energy practices and

supporting Europe’s transition toward greener energy sources.

In Table 2, a comparison of the original data and predictions from the same models over the

years 2008 to 2016 is presented. The fitting errors (MAPEfit) show that FNDGM provides the

best fitting performance with a MAPEfit of 0.3995%, significantly outperforming the other models.

HAGM also performs well in fitting with a MAPEfit of 0.7401%. However, in the validation

phase, NIPBernoulliGM performs the best with a perfect MAPEvalid of 0%, making it the most

accurate in predicting unseen data. Despite this, FBernoulliGM proves to be the best performer in

the prediction phase, achieving a MAPEpred of 4.0353%, slightly outperforming BernoulliGM and

HAGM, which have MAPEpred values of 4.3046% and 8.0386%, respectively. In contrast, NIPGM

exhibits the highest error with a MAPEpred of 32.6385%, indicating weak predictive ability.

The comparison of the predicted results from each model is presented in detail in Fig.3. The

parameter optimization is achieved using the PSO (Particle Swarm Optimization) algorithm, with

the number of iterations set to 1000. The convergence curve of MAPEvalid is shown in Fig.4.
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Table 2. Detailed results in Case 2

Year Original Data FBernoulliGM BernoulliGM HAGM NIPBernoulliGM NIPGM FNDGM GM FGM

2008 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40
2009 7.30 6.94 6.99 7.21 6.86 7.73 7.35 7.36 7.96
2010 7.60 7.76 7.74 7.64 7.81 7.65 7.52 7.52 7.73
2011 7.70 7.87 7.88 7.81 7.91 7.61 7.72 7.68 7.59
2012 7.80 7.60 7.62 7.76 7.53 7.59 7.80 7.84 7.50
2013 7.00 7.11 7.12 7.51 7.00 7.58 7.71 8.01 7.44
2014 6.50 6.50 6.50 7.09 6.50 7.58 7.43 8.18 7.39
2015 6.20 5.84 5.83 6.53 6.10 7.58 6.93 8.35 7.35
2016 5.30 5.18 5.16 5.87 5.81 7.58 6.19 8.53 7.32

MAPEfit 2.3617 2.1468 0.7401 2.9959 2.0819 0.3995 0.5294 3.2053
MAPEvalid 0.7857 0.8571 8.1813 0 12.4505 12.2253 20.1374 9.989
MAPEpred 4.0353 4.3046 8.0386 5.6178 32.6385 14.2833 47.8104 28.3308
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Fig. 3. Comparison of observed and fitted data in Case 2
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3.3 Case 3: forecasting natural gas production in Qatar

The significance of studying natural gas production in Qatar lies in its status as one of the

world’s largest exporters of natural gas. Qatar’s production levels have a profound influence

on the global energy market, particularly in meeting the energy demands of Asia and Europe. By

focusing on Qatar’s production trends, we can understand its role in maintaining global energy

security, stabilizing natural gas prices, and ensuring a steady supply to major importing countries.

Additionally, Qatar’s strategies in managing its vast natural gas reserves provide valuable lessons

for other nations in optimizing resource utilization and advancing environmental sustainability.

In Table 3, predictions and errors from various models are analyzed over the years 2008 to 2016.

The FNDGM model delivers the most accurate fitting performance with a MAPEfit of 0.0446%,

showcasing its superior capacity to model the training data. In terms of validation performance,

NIPBernoulliGM emerges as the best model with a MAPEvalid of 2.5704%, followed closely by

FBernoulliGM, which also performs well in both validation (MAPEvalid of 2.5873%) and prediction

(of1.8902%), making it a top performer overall. Meanwhile, BernoulliGM achieves the lowest

prediction error with a of1.8652%. In comparison, HAGM’s of91.4939% highlights significant

shortcomings in its predictive ability. GM and FGM show poor predictive performance, with values

of 58.011% and 13.262%, respectively.

Fig.5 provides a detailed illustration of the prediction results for each model. Parameters were

optimized using the PSO (Particle Swarm Optimization) algorithm, with 1,000 iterations. The

MAPEvalid convergence curve is depicted in Fig.6.

Table 3. Detailed results in Case 3

Year Original Data FBernoulliGM BernoulliGM HAGM NIPBernoulliGM NIPGM FNDGM GM FGM

2008 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00
2009 89.30 97.14 95.72 98.63 95.67 97.89 89.30 101.50 99.92
2010 131.20 123.57 123.35 122.52 122.68 121.56 131.16 118.87 121.51
2011 145.30 143.99 143.96 143.25 143.28 141.62 145.45 139.21 140.78
2012 157.00 158.66 158.63 157.68 158.35 158.61 156.86 163.04 157.87
2013 177.60 168.41 168.38 160.24 168.47 172.99 166.15 190.95 173.04
2014 174.10 174.10 174.10 140.78 174.10 185.18 174.10 223.64 186.49
2015 178.50 176.52 176.56 81.07 175.59 195.51 181.11 261.92 198.43
2016 181.20 176.36 176.41 -51.47 173.25 204.25 187.40 306.75 209.03

MAPEfit 3.3108 3.0266 3.7816 3.1755 4.105 0.0446 6.2196 4.5886
MAPEvalid 2.5873 2.5957 14.4566 2.5704 4.4799 3.2235 17.9859 4.8421
MAPEpred 1.8902 1.8652 91.4939 3.0088 11.1251 2.4419 58.011 13.262
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3.4 Discussion

In this study, based on the analysis of natural gas production forecasts, we compared the

FBernoulliGMmodel with various classical grey models, such as BernoulliGM, HAGM, NIPBernoul-

liGM, NIPGM, FNDGM, GM, and FGM. The experimental results demonstrate that FBernoulliGM

excels in accuracy and predictive power, particularly when handling nonlinear and complex trends

in the data.

Compared to traditional GM and FGM models, FBernoulliGM, through the introduction of

fractional-order accumulation and the New Information Priority Accumulation method, enhances

the model’s sensitivity to historical data, allowing it to better capture subtle fluctuations and

trends. This advantage is especially evident when applied to natural gas production data with small

sample sizes and significant fluctuations, significantly improving the model’s forecasting accuracy.

Additionally, the FBernoulliGM model has a more simplified structure compared to more com-

plex models like NIPBernoulliGM and HAGM, which offers advantages in computational efficiency.

Especially when performing large-scale forecasting tasks, FBernoulliGM converges faster and has

lower computational costs. This allows FBernoulliGM to strike a better balance between accuracy

and efficiency.

However, FBernoulliGM also has certain limitations. For instance, when the data exhibits

extreme nonlinearity or abrupt trends, the prediction error of this model may increase, making it

less effective at handling all outliers. Moreover, while the fractional-order accumulation method

enhances data adaptability, the selection of its parameters still relies on experience, which may

affect the model’s generalizability.

Overall, the FBernoulliGM model demonstrates strong adaptability and stability in natural

gas production forecasting, especially in small-sample scenarios, where its forecasting performance

significantly surpasses other traditional grey models. This provides new ideas and tools for data

forecasting in the energy sector, while also indicating that there is room for improvement in future

work, particularly in optimizing model parameters and further enhancing the ability to handle

nonlinearities.

4 Conclusions

This study demonstrates that the FBernoulliGM model exhibits significant effectiveness in

predicting natural gas production, especially in situations involving small samples and fluctuating

trends. By combining the fractional-order accumulation method with the New Information Priority

accumulation method, the FBernoulliGM model significantly improves prediction accuracy and

adaptability compared to traditional grey models (such as GM, FGM, and NIPBernoulliGM). Its

ability to capture subtle data trends and fluctuations makes it particularly well-suited for forecasting

natural gas production in different regions.

In this study, the particle swarm optimization (PSO) algorithm was utilized to finely tune

the model parameters, and the Mean Absolute Percentage Error (MAPE) was employed as the

evaluation criterion to systematically assess the performance of seven models. The analysis results

further confirm that the FBernoulliGM model has significant advantages in both fitting and pre-

dictive capabilities, demonstrating its outstanding reliability in forecasting natural gas production
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data. These findings provide a solid theoretical foundation and practical reference for future natural

gas production forecasts.

However, despite the model’s excellent performance in most scenarios, its predictive effective-

ness may decline in highly nonlinear conditions, and its dependence on parameter selection remains

a limitation. Nonetheless, the FBernoulliGM model achieves a good balance between prediction ac-

curacy and computational efficiency, providing a valuable tool for forecasting in the energy sector.

Future research can focus on further optimizing parameter selection and enhancing the model’s

capability to handle extreme nonlinear data. Overall, this study contributes significantly to the

application of grey system theory in the energy field, particularly in natural gas production fore-

casting.
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[28] U. Şahin, T. Şahin, Forecasting the cumulative number of confirmed cases of covid-19 in italy,

uk and usa using fractional nonlinear grey bernoulli model, Chaos, Solitons & Fractals 138

(2020) 109948.

[29] F. Marini, B. Walczak, Particle swarm optimization (pso). a tutorial, Chemometrics and Intel-

ligent Laboratory Systems 149 (2015) 153–165.

[30] D. Wang, D. Tan, L. Liu, Particle swarm optimization algorithm: an overview, Soft computing

22 (2) (2018) 387–408.

18



[31] X. Ma, W. Wu, B. Zeng, Y. Wang, X. Wu, The conformable fractional grey system model, ISA

transactions 96 (2020) 255–271.

19


	Introduction
	RESEARCH METHODOLOGY
	The fractional accumulation Bernoulli grey model
	Optimization algorithm solves nonlinear parameters

	Applications in forecasting natural gas production
	Case 1: forecasting natural gas production in Brazil
	Case 2: forecasting natural gas production in Italy
	Case 3: forecasting natural gas production in Qatar
	Discussion

	Conclusions

