
 

 

 
 

Response of species to the impact of climate change in the Gum Arabic 
belt, Sudan: A case study in Acacia senegal 

 
 

.

ABSTRACT 
 
Sustainable management strategies are imperative for numerous indigenous agroforestry 
plant species, such as Acacia senegal, as they confront mounting challenges from rapid 
population growth, explanation in cultivated areas, and environmental threats like climate 
change. The goal of this study was to forecast the spatial distribution of Acacia senegal in 
the Gum Arabic belt in Sudan in current (1985–2000) and for future climate scenarios 
(2021–2100). Bioclimatic data was employed for modeling purposes utilizing Maxent, with 
the assessment of model precision conducted through the utilization of the Area Under the 
Curve (AUC) and showed a high goodness-of-it (AUC=0.905±0.003). Significant differences 
were shown in species distribution between current and future periods under Shared 
Socioeconomic Pathways (SSPs) of SSP2-4.5 and SSP5-8.5 scenarios.  Our findings 
indicated the main predictors was bio16 and bio5 with   highest percent of contribution 
(56.3% and 10.5%). Under current potential distribution (25.4%), it is projected that Acacia 
Senegal would expand 36.2%-87.7% (SSP2-4.5) and 38.9-42.5%(SSP5-8.5). It is expected 
that Acacia Senegal will create new environments suitable for it due to expected climate 
changes. Hence, the research necessitates the formulation of a strategic plan aimed to 
rehabilitation plantations of Acacia senegal and cultivation these species within existing and 
prospective habitats conducive to their development.  Whereas this plan seeks to enhance 
ecosystem functionalities and guarantee their sustained existence amidst shifting climatic 
conditions, owing to the economic, societal, and ecological advantage. 
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1. INTRODUCTION 
 
Population growth, expansion in agricultural areas, and CO2 emissions are crucial threats 
that directly or indirectly affect biodiversity, especially within sub-Saharan Africa. Most 
regions in Africa are threatened by climate change [1], [2]. Due to the social, environmental, 
and economic importance of this arid and semiarid region, its greatest threat is climate 
change, and land degradation is caused by unsustainable agriculture, overgrazing, 
desertification, and deforestation [3]. Acacia senegalis highly significant as a prevalent 
species within the sub-Saharan region [4]. Acacia senegal naturally occurs either as a 
common extensive pure stand or mixed with other species with good diversity, such as 
semidesert grassland, Anogeissus woodland and rocky hill slopes, and the species can grow 
on different soil textures (sandy-light loamy soils) [5]. It is a species of tree, and forest shrubs 
have multiple purposes for commercial use, food, medicine, and cosmetics. It also supports 
dry-land ecosystems[6]–[9][10]. 

Geographic shifts in species are caused by climate change, especially in Africa[11], [12]. For 
instance, some studies are actively focusing on understanding how climate change affects 
the geographic shifts of various species by using predictive modeling (Maxent) [13], [14][15]. 
Predictive modeling, which relies on environmental data sourced from documented 



 

 

occurrence sites, plays a pivotal role in analytical biology. It hasapplications in different 
fields, such as those related to the environment, such as sustainable management programs 
of reserves, ecology, evolution, and epidemiology. This approach enables the prediction of 
species geographic distributions and plays a significant role in understanding and 
addressing biological phenomena [16]. Maxent is a proper method for addressing insufficient 
or incomplete information to make predictions or extract inferences about species 
distributions in current potential areas or new suitable areas. It serves as a general-purpose 
tool for analyzing and estimating outcomes based on limited data availability. It estimates a 
target probability distribution through the identification of the probability distribution with 
maximum entropy. This corresponds to the distribution that is most common for species. 
This is achieved by considering a set of constraints that represent the limited information 
available regarding the target distribution [17,46,47]. Maxent has several advantages and 
drawbacks compared to other modeling methods. Some of these benefits include leveraging 
presence data and environmental information across the entire study area, eliminating the 
need for absence data, and the ability to handle both continuous and categorical data, 
allowing for the consideration of the relationships among various variables. The presence of 
effective deterministic algorithms ensures convergence to the optimal probability distribution 
with maximum entropy. The Maxentprobability distribution is defined concisely, simplifying 
analysis and interpretation [16], [17]. 
 

2. MATERIALS AND METHODS 
 
2 METHODOLOGY 

2.1 Site Description 
 
The Gum Arabic belt in the middle of Sudan extends from the western border of Sudan to 
the eastern border of Sudan and covers an area of approximately 520,000 km2. The Gum 
Arabic belt in Sudan is located between 10°N and 14°N, covering 1/5 of the total area of 
Sudan (Eltohami, 2018). Sandy soils are predominant in the western (Darfur stats) and 
central (Kordofan's stats) regions with pockets of clay soil (vertisol) in these areas, while clay 
soils are commonly found in the eastern (Al-Gadarif stat) and (Blue Nile stat) regions in the 
southern region [18], [19]. The mean annual rainfall in this region ranges between 100 and 
800 mm [20]. Specifically, the study area has diverse tree species dominated by many 
families, such as Fabaceae, Apocynaceae, Poaceae, and Balanitaceae[21]–[23]. The natural 
vegetation is woodland savannah dominated by various species, for instance, Dichrosta. 
Cortolaria senegalensis (Al-Safari Plant) Acacia seyal, Sorghum (Adar), A. polyacanthaWild., 
and Combretum spp. [24]. Additionally, in this region, common vegetation cover can include 
poor rangeland and scattered woody plants dominated by Acacia species and Leptadena 
pyrotechnica [25].Recently, in the areas to the north of west Darfur, Woodland Savanna 
forest, which forms vegetation cover, has been dominated by low rainfall. Herbal species 
include different species, such asChloris gayana, Cassia obtusifolia, and Tribulus terrestris, 
in addition to Acacia being the dominant tree species, whereas formerly, Savanna woodland 
species predominated in the area [26]. The southern geographical area holds a diverse array 
ofspecies, encompassing fruit-bearing trees such as Adansonia digitata, Balanites 
aegyptiaca, and Diospyros mespiliformis, as well as gum-producing species such as Acacia 
species and Boswellia papyrifera. Additionally, it features various other useful species, such 
as Combretum aculeatum and Ficus sycomorus, and is utilized locally for medicinal, fodder, 
and construction purposes, as well as for fuelwood production [27]. 
 



 

 

 
 

Fig. 1. Occurrence of Acacia senegal in Sudan 

 

2.2 Data collection 
 
The input datasets were obtained from occurrence points and satellite images collected in 
Sudan. A total of 164 geospatial coordinates (longitude and latitude) were obtained from 
fieldwork, the National Research Center, and previous research carried out in Sudan (Figure 
5). Bioclimate data were extracted for current data (1985-2000) and future data (2021-2100) 
from the Coupled Model Intercomparison Project Phase 6 (CMIP6) WorldClim version 2.1. 
For future climate data for different periods, general distribution models (GCMs) were used, 
and a clustering approach was adopted to reduce model uncertainty. These datasets were 
also used to predict the distribution of Acacia senegal under current and projected climate 
conditions using the maximum entropy model. (Maxent 3.4) 

This research utilized version 3.4.4 of the Maxent Model, an ecological niche modeling 
method, to predict the potential distribution of Acacia senegal under current and projected 
climatic conditions. Future climate data were obtained from three general circulation models 
(GCMs) covering the 2021-2040, 2041-2060, and 2061-2080 time periods. An ensemble of 
climate models was employed, including the Goddard Institute for Space Studies (GISS-EC-
1G), Max Planck Institute Earth System Model 1-2-High Resolution (MPI-ESM1-2-HR), and 
Institute Pierre-Simon Laplace (IPSL) GCMs. These models were chosen for ensemble 
integration based on their demonstrated efficacy in previous research conducted in Sudan: 
GISS-EC-1G, MPI-ESM1-2-HR, and IPSL-CM6A-LR, which, like other East African countries 
such as Sudan, lack a calibrated general circulation model (GCM). Different models were 
applied in [28], [29]. 
 
Table 1. Variables contributing to prediction 

Code Bioclimatic variables Code Bioclimatic variables 

Bio01 Annual Mean Temperature Bio13 Precipitation of Wettest Month 

Bio02 Mean Diurnal Range Bio14 Precipitation of Driest Month 



 

 

Bio03 Isothermality Bio15 Precipitation Seasonality 

Bio04 Temperature Seasonality Bio16 Precipitation of Wettest Quarter 

Bio05 Max Temperature of Warmest Month Bio17 Precipitation of Driest Quarter 

Bio06 Min Temperature of Coldest Month Bio18 Precipitation of Warmest 
Quarter 

Bio07 Temperature Annual Range Bio19 Precipitation of Coldest Quarter 

Bio08 Mean Temperature of Wettest Quarter Altitude Elevation 

Bio09 Mean Temperature of Driest Quarter   

Bio10 Mean Temperature of Warmest 
Quarter 

  

Bio11 Mean Temperature of Coldest Quarter   

Bio12 Annual Precipitation   

 
 
This ensemble of four global climate models was used to process the limitations, 
unsureness, that are related to the use of one global climate model for strictly predicting 
future climate trends [30]. Several studies have reported that the remarkable development of 
utilizing the multimodel group technique has emerged as the foremost strategy for reducing 
model uncertainty [31].To combine GCMs with equal weights, ArcGIS was used, and 
arithmetic mean arithmetic was commonly applied to combine multiple models. Regarding 
the arithmetic average, the arithmetic mean has been commonly applied to utilize multiple 
models, such as ArcGIS, which is an ensemble that incorporates general circulation models 
(GCMs) with uniform weighting [10]. 

The current climatic data were obtained from WorldClim version 2.1. This dataset comprises 
climate information spanning the temporal range from 1970 to 2000, while future projections 
extend from 2021 to 2100[32]. The datasets for both the present and future climatic 
conditions were acquired with a spatial resolution of 30 seconds, equivalent to approximately 
(km)2, and were accessed from the WorldClim database. Future climate data were sourced 
from CMIP6, demonstrating both qualitative and quantitative advancements over prior 
phases such as CMIP5. These improvements encompass a more precise representation of 
physical phenomena, simulated variables, and enhanced spatial granularity [10]. 
Furthermore, comparative analyses with CMIP5 indicate superior performance in terms of 
resolution in CMIP6 [33]. The refined resolution in CMIP6 contributes to more substantial 
scientific insights [34]. 

The CMIP6 utilizes scenarios based on shared socioeconomic pathways (SSPs), which can 
be broadly classified into two categories: challenges to mitigation efforts and barriers to 
adaptation initiatives. SSP1 exhibits minimal impediments to both mitigation and adaptation, 
emphasizing policies focused on improving human welfare, promoting the advancement of 
clean energy technologies, and safeguarding natural ecosystems. Conversely, regional 
rivalry (SSP3) is marked by significant challenges to both mitigation and adaptation, 
prioritizing nationalist policies that address local and regional concerns over global priorities. 
Inequality (SSP4) is characterized by considerable challenges to adaptation but fewer 
hurdles to mitigation, whereas fossil fuel development (SSP5) faces substantial challenges 
in mitigation but fewer obstacles in adaptation efforts. [35]. 

In particular, SSP2 (middle of the road) delineates a situation characterized by moderate 
hurdles concerning both mitigation and adaptation efforts; for trend analysis, two SSPs were 
chosen for scrutiny: SSP2-4.5 and SSP5-8.5 [36][36]. These scenarios were chosen to 
simulate the distribution patterns of the three species under the expected future climate 
conditions. The choice of these SSPs was informed by their depiction of both moderate and 
extreme emission trajectories, along with a range of mitigation and adaptation approaches. 



 

 

This intentional selection enables the analysis of a "Middle of the Road" scenario and a 
"Fossil-fueled Development" scenario, covering a broad spectrum of extremes in contrast to 
existing adaptation and mitigation efforts [11]. 

2.3 Data analysis 
Previous studies stated that the decision to utilize the Maxent model for the analysis was 
driven by its strong ability to establish relationships between environmental variables and 
species presence records, as demonstrated previously[15]. Machine learning methods 
employ species presence data and environmental factors to estimate species distributions 
[37], which is particularly suited for presence-only records [16]. Maxent has shown superior 
predictive efficacy in comparison to alternative structured decision-making models [13]. 

An important advantage of Maxent is its ability to mitigate collinearity issues during model 
training; highly correlated predictor variables are removed, which has negligible effects on its 
performance [38]. Maxent adeptly manages complexity by downplaying the significance of 
redundant variables, effectively addressing collinearity issues [15], [16]. Maxent achieves an 
optimal balance between model fitting and complexity through regularization techniques [15], 
indicating that the extent of collinearity among predictors is unlikely to notably influence the 
outcomes of Maxent. 

3 RESULTS 

3.1 Model accuracy 

The Maxent model exhibited excellent performance, and the outcome of the model was 
acceptable because the outcome reflected excellent performance in accurately delineating 
the distributional profile of Acacia senegal, with mean training and test AUC metrics of 0.905 
(Figure 4). Run for Aciaca senegal generated an AUC greater than 0.9, indicating great 
accuracy. 

 
Fig. 2 Jackknife plot of the regularized training gain for Acacia senegal 



 

 

 
 

Fig.3 Cross-validated AUC (area under the receiver operating characteristic curve) 
 

 

 

3.2 Thresholds and suitability 

The study established suitability thresholds for Acacia senegal, indicating that it is suitable 
when 0.36 < P < 0.54, unsuitable when 0 < P < 0.18, and extremely suitable when 0.72 < P 
< 1. These thresholds demonstrated statistical significance for species distribution 
classification at a significance level of P < 0.05.By utilizing the tenth percentile of training 
presence, the study evaluated suitability percentages and their effects on habitat suitability 
throughout the entire research area, covering 520,000 km². Additionally, a notable 
discrepancy (p < 0.05) was noted in the suitability values between the present and future 
time frames under both SSP scenarios (Table 2). The average suitability value under SSP2-
4.5 exhibited a reduced magnitude compared to the present value. In contrast, the average 
suitability value for SSP5-8.5 showed a significantly greater magnitude in the future, 
surpassing current suitability thresholds. 

Table 2. Distribution Threshold Magnitudes across Various Time Slices and SSPs. 

Period                         Mean±SD                         Maximum 

Current 0.095 ± 0.164 0.903 

2021-2040 SSP2-4.5 0.17 ± 0.25 0.988 



 

 

2021-2040SSP5-8.5 0.22 ± 0.29 0.983 

2041-2060SSP2-4.5 0.25 ± 0.33 0.997 

2041-2060SSP5-8.5 0.29 ± 0.35 0.994 

2061-2080SSP2-4.5 0.21 ± 0.30 0.993 

2061-2080SSP5-8.5 0.27 ± 0.34 0.997 

2081-2100SSP2-4.5 0.22  ± 0.30 0.995 

2081-2100SSP5-8.5 0.26 ± 0.34 0.98 

 

3.3 Contribution of variables 

The majorpredictors that made excellent contributions to the species distribution were 
precipitation of wettest quarter (bio 16),with a percentage contribution of 56.3%;the second 
predictor was the maximum temperature of warmest month (bio5), with a percentage of 
10.5%; and the following predictors,with a percentage less than 10%, were the temperature 
annual range (bio7), mean temperature of driest quarter (bio 9), precipitation of coldest 
quarter (bio 19), and temperature seasonality (bio 4) (Table 3). The environmental variable 
with the greatest increase when used in isolation was bio16, which therefore appears to 
have the most useful information by itself. The environmental variable that decreases the 
gain the most when it is omitted is bio4, which therefore appears to have the most 
information that is not present in the other variables. The values shown are averages over 
replicate runs. 

 

 

Table 3 Variable contributions and permutation importance 

Variable Definition Percent     
contribution (%) 

Permutation 
importance (%) 

bio16 Precipitation of Wettest Quarter 56.3 3.4 

Bio 5 Max Temperature of Warmest Month 10.5 3.2 

Bio 7 Temperature Annual Range 9.5 1.5 

Bio 19 Precipitation of Coldest Quarter 5.2 3.5 

Bio 4 Temperature Seasonality 4.7 13.3 

Bio13 Precipitation of Wettest Month 2.3 24.2 

Bio 8 Mean Temperature of Wettest Quarter 2.2 12.2 

Bio6 Min Temperature of Coldest Month 2.1 20.8 



 

 

Bio15 Precipitation Seasonality 1.9 2.8 

Bio1 Annual Mean Temperature 1.8 0.6 

Bio3 Isothermality 1.2 0.6 

Bio17 Precipitation of Driest Quarter 0.5 0.6 

Bio18 Precipitation of Warmest Quarter 0.5 0.6 

Bio10 Mean Temperature of Warmest Quarter 0.3 0 

Bio12 Annual Precipitation 0.3 7.3 

Bio11 Mean Temperature of Coldest Quarter 0.2 4.2 

Bio 2 Mean Diurnal Range 0.2 1.3 

Bio 9 Mean Temperature of Driest Quarter 0.2 0.1 

Bio14 Precipitation of Driest Month 0 0 

 

3.4 Response of Acacia senegal to bioclimatic predictors 

The precipitation in Acacia senegalsignificantly differed from that in the Wettest Quarter,with 
a peak in its occurrence probability in areas with precipitation between 200 and 300 mm 
(Fig.4 A). According to Bioclimatic variable 5 (Bio5), the occurrence probability of the species 
was greatest at 44 °C (Fig.4 B). Generally, the suitability of the species increased with the 
annual temperature range (Fig. 4 C). However, it decreased with the precipitation of the 
coldest quarter (Fig. 4 D). 
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Fig 4. Response curves of Acacia senegal to bioclimatic predictors in habitat 
suitability modeling 

Logistic output.A- Precipitation of the wettest quarter (bio16, mm);B- Maximum temperature 
of the warmest month (bio5, °C);C- Annual temperature range (bio7, mm);D- Precipitation of 
the coldest quarter (bio19,mm). 

3.5 DISTRIBUTION OF A. SENEGAL SPECIES AND SUITABLE AREA ACROSS 
PRESENT AND FUTURE CONDITIONS 

The Acacia Senegalese plant has been discovered across various regions in central Sudan 
within the Gum Arabic Belt, spanning from the most extreme west to the most extreme east, 
and has been identified in all the study areas. This presence accounts for approximately 
one-fifth of Sudan's total area, encompassing both ongoing and prospective projects. The 
observed expansion in geographic distribution is attributed to the plant's adaptation to a 
more favorable climate, characterized by increased rainfall during wetter quarters (bio 16). 
Notably, the impacts of climate change have played a significant role, with Acacia 
Senegalese exhibiting pronounced shifts in distribution due to these effects (bio 16). 

 

Table 4 Acacia senegal distribution in SSP2-4.5 (% and km
2
) as a proportion of the total 

study area (520000 km
2
) 

 

Period 

Potential distribution SSP2-4.5 New suitable area  SSP2-4.5 

Area (Km
2
)               Area (%) Area (Km

2
)             Area(%) 

Current 132219.6 25.4 ------ ------ 

2020-2040 456001.6 87.7 323782 62.3 

2041-2069 208998.0 40.2 76778.4 14.8 

2061-2080 188166.6 36.2 55947 10.8 

2081-2100 195271.6 37.6 63052 12.3 

C D 



 

 

 

The current extent of the Acacia senegal distribution encompasses 132219.6 km2 within a 
total area of 520000 km2. Projections indicate an expansion of its range to 456001.6 km2, 
encompassing a span of 25.4% to 87.7% under SSP2-4.5 for the 2021–2100 period (Table 
4). This expansion could result in a potential increase in the suitable area ranging from 46% 
to 62.3%. Conversely, under SSP5-8.5 conditions for the same period, the potential 
distribution may expand to a range of 25.4% - 42.5%, with prospective new suitable areas 
ranging between 13.5% - 17.1% (Table 5). 

 

Table 5 Distribution ofAcacia senegal in SSP5-8.5 (% and km
2
) as a proportion of the 

total study area (369 km
2
) 

 

The model's predictive maps displayed significant shifts in the anticipated distribution of 
Acacia sensgalfrom the current distribution to the future. This study highlights a notable 
significant increase (p<0.05) in the distribution of Acacia sengal under projected future 
climatic conditions, which is particularly evident in the SSP2-4.5 scenario, in comparison to 
their current extent. (Fig.5). 

 

Period 

Potential distribution SSP5-8.5 New suitable area  SSP5-8.5 

Area (Km
2
)               Area (%) Area (Km

2
)             Area (%) 

Current 132219.6 25.4 ------ ------ 

2020-2040 202098.8 38.9 69879.2 13.5 

2041-2069 220322.4 42.4 88102.8 17 

2061-2080 220921.6 42.5 88702 17.1 

2081-2100 216306.74 41.6 84087.14 16.2 



 

 

 

 
 

 



 

 

 
 

 

 
 



 

 

 

 

 
 

Fig. 5 Distribution of (1) current, (2) 2020-2040 SSP2-4.5, (3) 2020-2040 SSP5-8.5, (4) 
2041-2060 SSP2-4.5, (5) 2041-2060 SSP5-8.5, (6) 2061-2080 SSP2-4.5, (7) 2061-2080 
SSP5-8.5, (8) 2081-2100 SSP2-4.5, and (9) 2081-2100 SSP5-8.5 in Acacia senegal. 

 



 

 

4 DISCUSSION andCONCLUSION 

4.1 Discussion 

Previous studies have shown that biotic and abiotic factors have impacts on potential 
species distributions, and climate change plays a crucial role in determining these patterns 
[39]. There is ample evidence suggesting that climate change will significantly affect the 
distributions of numerous species [40]. Species distribution modeling (SDM) is extensively 
employed to assess habitat suitability patterns on a broad spatial scale. These models 
generate detailed maps that are invaluable for pinpointing areas where conservation efforts 
are particularly crucial or likely to be effective. 

In general, species distribution modeling (SDM) techniques utilize data on habitat 
requirements obtained from known occurrence sites to forecast the potential habitat of 
species under existing or potential future conditions. While these models may not precisely 
indicate the realized niche, they do offer pertinent information on habitat suitability for a 
particular species. This information can be instrumental in guiding the development of 
sustainable management plans [16]. 

These data from the derived distribution map are valuable for pinpointing suitable areas for 
cultivation and assessing the conservation status of target species within reserved forests. It 
aids in identifying appropriate locations for cultivation while also evaluating the conservation 
needs of specific species within protected forest areas. 

In this study, the maximum entropy algorithm (Maxent), a widely utilized species distribution 
modeling (SDM) technique, was employed to evaluate habitat suitability for both the 
cultivation and in situ conservation of Acacia senegal by different subpopulations under 
present and future (2100) climatic conditions. This study incorporated projections of future 
climate data obtained from three global climate models (GCMs), namely, GISS-EC-1G, MPI-
ESM1-2-HR, and IPSL, under SSPs 2-4.5 and 5-8.5. These climate models indicated 
notable changes anticipated in the study area (Table 4 and Table 5). 

The results revealed that bio 16 and bio 5 were the most significant predictors influencing 
the distribution of Acacia senegal, as shown in Table 3 (Pramani. 2021; Zhang et al. 2023). 

According to our findings, approximately 25.4% of Sudan's Gum Arabic area is potentially 
suitable for Acacia senegal, and for the period of 2021–2100, approximately 46% to 62% of 
the area is potentially suitable for SSP2-4.5, whereas the new suitable area ranges from 
13.5% to 17.1%. Significant increases were projected under future climatic 2100 scenarios, 
with several currently unsuitable areas becoming suitable under all the climatic models. 
These findings can be explained by the significant change projected for magnitude in the 
future, surpassing the existing suitability thresholds (Table 2). According to the climatic 
model used in this study, the precipitation of the wettest quarter with a peak in its occurrence 
probability in areas with precipitation between 200-300 mm and the maximum temperature 
of the warmest month and the occurrence probability of the species with the highest level at 
44 °C are projected to occur. The precipitation in Acacia senegal significantly differed from 
that in the Wettest Quarter, with a peak in its occurrence probability in areas with 
precipitation between 200 and 300 mm (Figure 4 A). According to the maximum temperature 
of the warmest month, the occurrence probability of the species was greatest at 44 °C 
(Figure 5). B) 

The impact of climate change is evident in various species, as they undergo alterations in 
cover, distribution, and genetic makeup within their respective climatic zones [43]. Research 



 

 

suggests that plants thrive predominantly in areas with suitable climatic conditions and 
subsequently adapt to changes in climate. This phenomenon implies that as climatic 
conditions continue to shift, species, including Acacia senegal, will likely experience more 
pronounced changes in distribution over time [44]. Global warming may magnify these 
changes, particularly in arid and semiarid regions, which are fragile ecosystems [45]. The 
study area, known as the GumArab belt, exhibits diverse climatic conditions conducive to 
plant species with high drought tolerance. Predominantly found in dry and semiarid regions, 
especially in sandy soils, Acacia senegal is a prime example of a species that is well 
adapted to such environments. In response to climatic changes, the distribution of this 
species may shift toward the western part of the Gum Arabic belt in search of suitable 
climatic conditions for adaptation. The current study of Acacia senegal, which is located 
mainly in the Gum Arabic belt, represents a significant area suitable for the future. 

4.2 Conclusion 

This study concluded that strategically planting and protecting these species is essential due 
to their significant environmental and economic contributions in both present and anticipated 
suitable areas. This study aimed to enhance ecosystem services and guarantee the 
continued survival of these species amidst changing climates. The study showed that under 
current climatic conditions, it is possible to grow the Acacia Senegalese plant and expand its 
cultivation in large areas of Sudan within the Gum Arabic Belt. In addition, suitable 
environmental conditions include a wide range of potentially favorable areas for this species 
in situ, and the future climate (2100) will increase the suitability of this habitat. With such a 
clear positive effect of climate on its suitable habitat, Acacia Senegal can be considered a 
good candidate for an ecosystem service and ecosystem-based adaptation approach to 
address climate change. 
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