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Abstract 16 

The efforts to eradicate the wild poliovirus since 1988 have successfully reduced its global prevalence 17 

by 99%. However, as of 2023, Pakistan and Afghanistan remain the only two endemic countries facing 18 

continual virus transmission. In this study, an ordinary differential equations-based deterministic 19 

model was developed to assess the persistence of wild poliovirus type 1 (WPV1) in Pakistan. The 20 

model considered both human-human and environment-human virus transmission through sewage 21 

contamination represented by time-dependent transmission rates. The model was calibrated by fitting 22 

the reported data of WPV1 cases from 2017 to 2022 in Pakistan. Our analysis identified the 23 

unvaccinated asymptomatic population to be the major contributor to disease persistence and the 24 

estimated value of the basic reproduction number through the next-generation matrix method was 1.61 25 

while the effective reproduction number of 0.12 indicated the efficacy of current intervention 26 

strategies. The model showed a better predictive ability than the usual constant transmission rate 27 

models. The results suggest that endemic virus transmission will continue in Pakistan subject to the 28 

current higher vaccination rates. The numerical simulations considering the reduction in the virus-29 

shedding rate by the asymptomatic infectious population through targeted vaccinations indicated an 30 

85% reduction in the number of future cases in Pakistan. The model can be further utilized to guide 31 

eradication efforts for the targeted allocation of preemptive measures through the incorporation of 32 

spatial data of routine surveillance and vaccination coverage in the country. 33 

Keywords: Dynamic modeling, polio eradication, transmission ecology, risk analysis, 34 

biomathematics, vaccination, environmental surveillance   35 
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Introduction 36 

 Poliomyelitis (Polio) is a highly contagious, potentially debilitating, and incurable disease 37 

caused by the poliovirus. The virus primarily affects children under the age of five years and can invade 38 

the central nervous system, resulting in permanent paralysis [1]. Transmission occurs through either 39 

the fecal-oral or oral-oral route [2]. In the early 20th century, polio was the most feared pathogen in 40 

industrialized nations until the development of a vaccine in the 1950s [3]. Since the launch of the 41 

Global Polio Eradication Initiative (GPEI) by the World Health Organization (WHO) in 1988, wild 42 

poliovirus infections have reduced significantly across the globe. Mass immunization against the virus 43 

has led to the complete eradication of poliovirus serotypes 2 and 3, leaving only two endemic countries, 44 

Pakistan and Afghanistan, still affected by wild poliovirus type 1 (WPV1) transmission [4,5]. This 45 

ongoing circulation of the virus not only poses a threat to the health of residents in these countries but 46 

also hinders vaccination efforts in polio-free regions [6].  47 

 Intensified immunization efforts have reduced the incidence of wild poliovirus cases in 48 

Pakistan; however, the country faces several challenges in effectively implementing eradication 49 

policies. These challenges include geopolitical instability, government negligence, lack of efficient 50 

public health infrastructure, and general misconceptions regarding polio vaccines [7]. Moreover, the 51 

neighboring country; Afghanistan is also battling constant virus transmission which also poses an 52 

immense threat to eradication efforts in Pakistan as the two countries are considered to be one 53 

epidemiological block due to the highly porous border and extensive population migrations [8]. Thus, 54 

it has been considered that if Pakistan achieves eradication Afghanistan will soon follow and the world 55 

will eventually achieve a milestone of global polio eradication.  56 

 Mathematical models have long assisted policymakers in identifying improved vaccination 57 

strategies and optimizing surveillance [9]. In this study, we developed a deterministic mathematical 58 

model based on ordinary differential equations (ODEs) to evaluate wild poliovirus transmission in 59 

Pakistan. This model considers both human-human and environment-human transmission of the virus 60 

through the primary fecal-oral route owing to sewage water contamination [10]. This route is also the 61 

focus of environmental surveillance efforts to detect the silent circulation of the virus [11]. Another 62 

significant aspect of this study is the incorporation of different types of time-dependent transmission 63 

rates to reflect the epidemiological characteristics of polio infections in the country. These 64 

transmission rates change in response to various intervention measures and human behavior during 65 

different periods. By incorporating these features, our model can improve its predictive accuracy and 66 
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enhance our understanding of the periodic polio outbreaks in Pakistan. Thus it will lead to an effective 67 

resource allocation to interrupt the transmission and achieve eradication. 68 

Methods 69 

A mathematical model is adapted to understand the transmission dynamics of WPV1 in Pakistan. Our 70 

modelling strategy is inspired by the approach used by  Yang and Wang (2021) to model COVID-19 71 

transmission in Hamilton County, Tennessee, United States. In our model, the target population is 72 

divided into four classes: susceptible individuals 'S', exposed individuals 'E', reported wild poliovirus 73 

cases 'I', and recovered individuals 'R', while compartment 'W' represents the poliovirus in sewage 74 

water. The original model divided the host population into five classes, including hospitalized 75 

individuals, with the sixth compartment representing the concentration of coronavirus aerosols in the 76 

environment. Furthermore, the model assumed that the entire target population was susceptible to 77 

COVID-19, as the vaccine had not yet been introduced. Therefore, because the entire target population 78 

is susceptible, no scaling of the disease data was necessary. In contrast, our model includes children 79 

up to the age of five years who did not receive OPV during the annual National Immunization Days 80 

(NIDs) from 2017-2022 as the susceptible population [13]. Figure 2 shows the NIDs conducted in 81 

Pakistan during this period along with the percentage of children who were missed by each campaign. 82 

This percentage was increasing till 2019 which led to a surge in cases see Figure 1 and with the 83 

reduction of these missed children the reported cases dropped to a single case in the year 2021. The 'E' 84 

compartment represents the number of asymptomatic infections. We assumed that 70% of poliovirus 85 

infections would be asymptomatic [1]. The total number of WPV1 cases reported in the country during 86 

the targeted years is shown in Figure 1. Data scaling was performed to provide the model with a more 87 

balanced landscape for training, leading to improved efficiency and predictive ability [14]. 88 
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Fig 1. Reported WPV1 cases in Pakistan from 2017-2022. 90 

 91 

Fig 2.  National Immunization Activities occurred from 2017-2022 in Pakistan. The number of 92 

columns are representing the number of campaigns of every year and their height is indicating the 93 

proportion of missed children by each campaign [15–19] 94 

The following set of ordinary differential equations represents our model: 95 

dS

dt
 = Ʌ-βE (I, t) SE – βI (I, t) SI – βW (I, t) SW – μS 96 

dE

dt
 = βE (I, t) SE + βI (I, t) SI + βW (I, t) SW – (α + γ1 + μ) E 97 

dI

dt
 = α (1-p) E – (q + γ2 + μ) I 98 

dR

dt
 = γ1E + γ2I – μR 99 

dW

dt
 = ξ1E + ξ2I – σW 100 

Where the ‘Ʌ’ is a parameter for population inflow, μ = death rate, α = average incubation period of 101 

poliovirus, ‘p’ represents the proportion of asymptomatic population who develop paralysis, q = rate 102 

of infected persons who develop paralysis, σ is the removal rate of poliovirus from the environment; 103 

γ1 and γ2 are the rates of recovery of asymptomatic and symptomatic persons and ξ1 and ξ2 are the rates 104 

of contributing virus to the environment by the exposed and infected population respectively. These 105 

parameter values were obtained from a literature search and are listed in Table 1. The schematic 106 

representation of the model is given in Figure 3.  107 

Table 1. Model parameter values for poliomyelitis 108 
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Incubation period(α) 12 days [20] 

Population size(N) 40000000 [18] 

Natural Birth & Death rate(μ)  160 [21] 

Environmental Removal Rate of virus(σ) 0.12/d [22] 

Virus shedding rate by infected persons(ξ2) 0.025/ml/person/day [23] 

Virus shedding rate by exposed persons(ξ1) 0.45/ml/person/day [24] 

Recovery rate of exposed individuals(γ1) 1/10/d [20] 

Recovery rate of infected individuals(γ2) 1/14/d [25] 

Rate of paralysis in exposed individuals(p) 1.5% [26] 

Rate of paralysis in infected individuals(q) <1% [26] 

The incubation period of the poliovirus was considered to range from 3-21 days, in this study, 109 

the average value of 1/α = 12 days is considered [20]. The recovery period from polio depends on 110 

different factors, including the severity of infection and immune status of infected individual. The 111 

model includes the recovery period of the exposed and infected population. In cases of recovery from 112 

an asymptomatic state, the population usually shows no symptoms. The time period for this recovery 113 

was considered to be 7-14 days and in this model, an average recovery period of 10 days is considered 114 

for those 70% of infections that go unnoticed, which gives γ1 = 1/10 per day [20]. Because it is a 115 

paralytic disease, in such cases, there is no recovery, but rather a permanent disability or death. 116 

However, those who experience milder symptoms can recover within 1-2 weeks, so a complete 117 

recovery period of 14 days is considered, which gives γ1 = 1/14 per day [25]. Evaluation of the 118 

poliovirus removal rate from the environment showed a time period of 3 hours which led to 90% 119 

removal of the virus from the environment. Therefore, the virus removal rate from the environment is 120 

taken as σ = 0.12 per day [22]. Population immigration and emigration rates across the country are 121 

considered equivalent; thus, the rate of influx of the at-risk population was Λ = μN, where N is the 122 

magnitude of the target population. The natural birth and death rates of the population are considered 123 

equal to μ [12]. The shedding rate of wild poliovirus by the asymptomatic population [24] and infected 124 

individuals [23] is taken from the literature. The rate of paralysis in asymptomatic infections is p = 125 

1.5% and that among infected individuals is q = 1% [26] 126 
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 127 

Figure 3. A SEIRW model adapted for poliovirus transmission in Pakistan incorporating the 128 

effect of a virus-contaminated environment on the spread of the disease. 129 

 130 

The model incorporates multiple transmission routes each of which is associated with non-linear 131 

incidence. The functions βE(I, t) and βI(I, t) indicate the direct, human-human transmission rates 132 

between asymptomatic and susceptible populations and between infected and susceptible populations, 133 

respectively. The βW(I, t) function depicts the environment-human transmission rate. The model 134 

considers the chance of the infected (both latent and clinical) population coming into contact with other 135 

individuals which could lead to the shedding of the poliovirus into the environment by those 136 

individuals. Our assumption is based on the fact that in densely populated areas with poor sanitation 137 

facilities and an under-immunized or zero-dose population, the presence of poliovirus in the 138 

environment can pose a significant threat to the susceptible population [27]. The values of the 139 

transmission rate parameters are obtained by fitting the model to the reported data. The considered 140 

time domain is divided into two 3-year time periods. These have distinct time intervals: [T1, T2] and 141 

[T2, T] and for some positive constants, T1 < T2 < T. The first period from 2017 to 2019 is considered 142 

the period of increased vaccine resistance Figure 2, which eventually led to a surge in polio cases in 143 

Pakistan in 2019. We assumed that the disease transmission rate increased monotonically during the 144 

first period. The second period from 2020-2022, on the other hand, was a period of increment in 145 

vaccination rates Figure 2 and reduced exposure of the susceptible population to infectious individuals 146 

due to the nationwide lockdown to contain the COVID-19 pandemic. Thus, the transmission saw a 147 

major decline during this period and is assumed to no longer increase monotonically. The separate 148 

transmission rates for each of these periods are then developed to represent their unique properties.  149 

 Period 1: Here, we considered that all the transmission rates are increasing with the time ‘t’ during 150 

this transitional interval and are described as  151 
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βE (I, t) = βE0 f (t),   βI(I, t) = βI0 f (t),  βW(I, t) = βW0 f (t) 152 

f (t) = 1+d (t-T1) with T1 < t < T2.  153 

Each transmission rate initiates from the minimum t = T1 and grows monotonically relative to t 154 

with a constant rate d. Parameter d was estimated through model fitting to the disease data. 155 

 Period 2: In this period, the transmission rates no longer increase monotonically but take the form  156 

 βE (I, t) = βE0 f (T2) g (I),   βI(I, t) = βI0 f (T2) g (I),  βW(I, t) = βW0 f (T2) g (I), 157 

 Here, f (t) = 1+d (T2-T1), and g (I) = 1 −
2

𝜋
tan-1 (c· (I (t) - I (T2))) 158 

Where T2 < t < T and function g(I) represents the variation in transmission rates in relation to I. This 159 

variation was due to increased vaccination and reduced exposure rates. The infection prevalence at the 160 

beginning of this period, t = T2, was represented by I(T2). The constant 'c' is used to adjust the 161 

magnitude of the difference, and its value is determined through data fitting. In addition, an inverse 162 

tangent is used to transfer this difference to a standard interval.  163 

 Our modelling strategy considers the time-dependent transmission rates of wild poliovirus in 164 

Pakistan. Typically, infectious disease models for poliovirus transmission in one of the last reservoirs 165 

of the virus consider only constant transmission scenarios [9]. By considering time-dependent 166 

transmission rates, we can enhance the accuracy of model predictions for future disease trajectories in 167 

the country. This will also help us develop effective intervention strategies to control viral 168 

transmission. 169 

Results 170 

A SEIRW model is developed to study the transmission and spread of WPV1 in Pakistan. The disease 171 

pattern was observed during two periods: 2017-2019 and 2020-2022. In the first period, there was a 172 

rapid increase in the number of new cases, which can be attributed to a reduction in vaccination rates 173 

Figures 1 & 2. However, from 2020 to 2022, the number of cases decreased owing to increased 174 

vaccination rates and reduced exposure rates resulting from stay-at-home orders implemented to 175 

contain the transmission of COVID-19. Transmission rates were formulated for each of these periods, 176 

as previously described, to conduct data fitting and model simulations. 177 

Model fitting to WPV1 cases in Pakistan during 2017-2019 178 

Initially, data fitting is conducted for the period of 2017 to 2019 to estimate the values of the 179 

three transmission parameters, with two parameters representing human-human transmission and the 180 
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other representing environment-human transmission. Based on the demographic and reported data, the 181 

initial conditions for this time period were set as (S, E, I, R, W) = (1200000, 0.12, 0.05, 0, 22). The 182 

value of poliovirus concentration in the sewage water was obtained as 22 virions/ml [10]. Because our 183 

model did not consider developed immunity, the recovered individuals are considered to be equal to 184 

zero as an initial value for model calibration Figure 4. Data fitting was performed using the estimated 185 

parameter values listed in Table 2.   186 

187 

Figure 4. Model fitting results for the reported cases of Polio in Pakistan from 2017-2022. 188 

These results confirmed our assumption that a decrease in vaccination rates led to an increased 189 

transmission rate. The estimated parameter values show that asymptomatic individuals pose a 190 

significant threat to the susceptible population. Parameter d represents the rate of transmission 191 

increment during this time period as a function of t, and its estimated value is presented in Table 3. 192 

This increase was consistent and steadily rising, so instead of a decline in the epidemic curve, we 193 

observed a sharp surge in virus transmission and an increase in cases.  194 

 195 
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Table 2. WPV1 model parameter values estimated through model calibration.   200 

                                Estimated 

Parameters 

Values 95% Confidence 

Interval 

 

 

Human-Human 

transmission rates 

Transmission rate 

from exposed to 

susceptible 

population (βE) 

 

Transmission rate 

from infected to 

susceptible 

population (βI) 

3x10−6 𝑝𝑒𝑟𝑠𝑜𝑛−1𝑦𝑒𝑎𝑟−1 

 
 
 
 
 
 
 

2x10−6𝑝𝑒𝑟𝑠𝑜𝑛−1𝑦𝑒𝑎𝑟−1 

2.05x10-6 – 3.99x10-6 

 
 
 
 
 
 
 
1.07x10-6 – 3.92 x10-6 

Environment-

Human transmission 

rate 

Transmission rate 

from environment to 

susceptible 

population (βW) 

1.5x10−6𝑝𝑒𝑟𝑠𝑜𝑛−1𝑦𝑒𝑎𝑟−1 1.04x10-6 – 2.94x10-6 

 201 

During this period, the transmission of the system was non-autonomous because it depended on the 202 

time. In mathematical terms, a system of ordinary differential equations that relies on time as its 203 

independent variable is referred to as a non-autonomous system. The rate of transmission, represented 204 

by the parameter d increased over time, denoted by t. Because we assume that the increase in 205 

transmission during this period was due to a decrease in vaccination rates, the system can be classified 206 

as non-autonomous. Consequently, the basic reproduction number (R0) for this time domain cannot be 207 

calculated [28]. For a non-autonomous system where there is no delay between exposure and the 208 

appearance of clinical cases, the reproduction number can be calculated by excluding the latent 209 

infection period [29]. However, this approach cannot be applied to polio infections. 210 

Model fitting to WPV1 cases in Pakistan during 2020-2022 211 

During the period 2020-2022, there was a more stable spread of infection as transmission no longer 212 

increased monotonically. This was a result of higher vaccination rates and decreased exposure of 213 
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vulnerable populations to infectious individuals due to stay-at-home orders issued during the COVID-214 

19 pandemic. The data fitting results are shown in Figure 4 and Table 3 displays the estimated value 215 

of parameter c for this specific time frame. This parameter was used to add an extra dimension and 216 

transform the previous system of non-autonomous ODEs into an autonomous system. As a result, the 217 

transmission rates of poliovirus during this period were no longer dependent on time, but instead on 218 

the prevalence of polio infections in the population. The system is assumed to be time-independent. 219 

Transmission now varies based on the contact rates between susceptible and infectious populations, as 220 

well as the number of individuals in both groups. Model calibration during this time period revealed 221 

that transmission was significantly reduced due to a decrease in contacts and the number of at-risk 222 

individuals as immunization rates increased. 223 

Table 3. WPV1 model Parameter values estimated through model calibrations 224 

Parameters Values 95% Confidence 

Interval 

Rate of increase in transmission rate during 

the period of 2017-2019 (d) (Period 1) 

0.385/year 0.304 – 0.495 

Adjustment Parameter (c) (Period 2) 0.8/person 

 

0.02 – 0.97 

Here, in-sample validation is used for the re-substitution validation method, where the 225 

goodness of fit is measured and compared using the root mean square error (RMSE) for our assumption 226 

of time-dependent transmission rates while for the model of COVID-19 transmission, normalized root 227 

mean square error (NRMSE) was used [12]. The formula for RMSE has been given as  228 

RMSE = √
∑ (Predictedi− Actuali)2N

i=1

N
 229 

The ‘N’ represents the number of total data points in the data set. The RMSE value is 0.05, 230 

indicating good model accuracy and validating our assumption of time-dependent transmission rates 231 

compared with other models that consider constant transmission scenarios. Yang and Wang, (2021) 232 

also tested the validity of the constant transmission rate scenario for COVID-19 transmission and 233 

found it to be less accurate than the assumption of a time-dependent transmission rate. On the other 234 

hand, we did not consider the model fitting results for the constant transmission rate for the entire 235 

period of 2017-2022. However, upon testing the validity of this assumption using the RMSE, the 236 
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obtained value is 0.44. This makes the constant transmission rate scenario less fitting than the time-237 

dependent transmission rates for the two time periods.   238 

Reproduction number (R0) 239 

 The basic reproduction number (R0) is the average number of secondary infections caused by 240 

an initially infected person over their lifetime when the entire population is susceptible. If R0 ≤ 1, the 241 

pathogen will be cleared from the population. However, if R0 > 1, the pathogen can spread throughout 242 

a susceptible population. R0 is a crucial parameter for estimating the ability of a pathogen to spread 243 

and cause an outbreak. This provides valuable insights into the efforts required to control the disease, 244 

such as prompt case identification, quarantine measures, and physical distancing to prevent contact 245 

between susceptible and infected individuals.  246 

In our developed model, the first time period is a non-autonomous time-dependent system, making it 247 

challenging to define the reproduction number for this period. The argument here is that non-248 

autonomous disease dynamic systems consider the periodicity of infection occurrences. Therefore, the 249 

reproduction number becomes a function of time which can be calculated either by disregarding the 250 

recruitment of susceptible individuals in the model, or by overlooking the latent stage of infection.  251 

However, the reproduction numbers of time-averaged systems (autonomous systems) are sufficient to 252 

explain the mitigation policies that need to be implemented. Thus, in the second instance, our model 253 

is an autonomous dynamic system in which the rate of disease transmission is solely a function of 254 

prevalence (I). The reproduction number (R0) for this period can be calculated as follows. 255 

βE (I, t) = βE (I),   βI (I, t) = βI (I) and βW (I, t) = βW (I) for T2 < t < T.  256 

Here, the standard method for calculating the basic reproduction number, which is the next-257 

generation matrix technique was used   258 

Apparently, the ODE system of equations has a condition for the absence of the disease referred to as 259 

the disease-free equilibrium (DFE) at 260 

X0 = (S0, E0, I0, R0, W0) = (
Λ

𝜇
 , 0, 0, 0, 0) 261 

Here, E, I and W are considered as the infectious elements. Matrices F and V represent new infections 262 

and transitions between different disease stages, respectively.  263 

 264 
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F =    βE0 (0) S0   βI0 (0) S0   βW0 (0) S0             V =           u1                          0         0 265 

          
    0
    0
    0

                
0
0
0

             
0
0
0

                                 
−α (1 − p)

−αp
−ξ1

       

   u2

−q
−ξ2

        
0
0
σ

  266 

Here u1 = α + γ1 + μ and u2 = q + γ2 + μ. Then, R0 of the given model will be the spectral radius of the 267 

next generation matrix FV-1 which is  268 

R0 = ρ (FV-1) = RE + RI + RW 269 

Where 270 

RE = 
βE (0)𝑆0

u1
    = 1.33 271 

RI = 
α (1−p) βI (0)S0

u1u2
  = 0.15 272 

RW =  
βW (0)S0

σu1
 (ξ1 +

ξ2α (1−p)

u2
 ) = 0.13 273 

 It estimates the disease risk during the second period. The first two terms, RE and RI represent 274 

the role of human-to-human transmission routes from non-clinical and clinical infectious populations 275 

respectively. The third term, RW characterizes the impact of the environment on the human 276 

transmission pathway through sewage contamination. Thus, we proceed as follows: 277 

R0 = 1.33 + 0.15 + 0.13 = 1.61 278 

The values indicate that exposure to asymptomatic infectious population makes the highest 279 

contribution, followed by the infected population, and then the environment makes the lowest 280 

contribution. All of these values combined make R0 almost equal to unity, indicating the persistence 281 

of the disease. Although the environment was found to play the least role in virus transmission, the 282 

rates were close enough to the rates of infected to susceptible populations, indicating that with low 283 

vaccination coverage and poor WASH infrastructure, the wild poliovirus contaminated environment 284 

can impact disease propagation.  285 

Another important measurement is the effective reproduction number (Reff or Rt), which is the expected 286 

number of new infections caused by infectious individuals, to which some individuals in the target 287 

population may no longer be susceptible. It is important to reduce this number to below one to control 288 

the spread of infection. In our case, our whole population was not susceptible; therefore, we calculated 289 
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the effective reproduction number for the second time period using the derived value of the basic 290 

reproduction number. 291 

Reff = R0 (
S

N
) 292 

As a result, a value of 0.12 for the effective reproduction number is obtained, indicating the 293 

effectiveness of current intervention strategies in reducing the number of susceptible populations in 294 

the country. This is because the value of Reff is directly proportional to the magnitude of susceptible 295 

individuals in a target population, and when the number of at-risk individuals is high, the value of Reff 296 

is greater than 1. When the susceptible population is lower, the value of Reff is closer to 0, and the 297 

disease is contained.  298 

Using the estimated values of the parameters through the model calibration, predictions for the 299 

occurrence of future polio cases in Pakistan could be made in the near future. We simulated the 300 

developed model considering that the transmission rate no longer increases monotonically. Following 301 

the current vaccination scenario and assuming that vaccination rates can keep missing children at the 302 

current proportion of nearly 1% every year, the prediction of future transmission scenarios Figures 5 303 

and 6 indicated that the transmission will remain endemic and that the number of reported cases will 304 

be lower than that previous years. The graph depicts that the model has the better predictive ability 305 

with the expected polio cases for the year 2023 to be five with the maintained vaccination rate. On the 306 

other hand, the vaccination rate dropped in 2023 and reported cases were almost six in the same year 307 

closer to the model predictions [30,31]. However, the number of asymptomatic infections remains a 308 

problem, as the graph indicates a continuous rise in latent infections as the susceptible population 309 

accumulates over the years. 310 
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 311 

Figure 5. The expected number of polio cases from 2023-2025 with the ongoing immunization rates 312 

and when the incubation period reaches 21 days. The green line depicts the decreasing incidence rate 313 

with the reduction in the virus shedding rate of the asymptomatic population.  314 

 315 

Figure 6. The expected asymptomatic polio infections from 2023-2025 with the ongoing 316 

immunization strategies and when the incubation period reaches 21 days. The green line depicts the 317 

reduction in asymptomatic infections with reduced virus shedding.  318 

Simulations with varying parameters 319 

 The values of the model parameters can vary due to various factors, including environmental 320 

conditions, the evolution of population immunity, and changes in population movement patterns across 321 

the country. Here, the influence of the incubation period and virus-shedding rate of the asymptomatic 322 

population was estimated based on the proportion of reported cases. Figure 5 indicates that a higher 323 
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incubation period leads to a lower number of reported cases. It has been observed that the poliovirus 324 

incubation period can range from 7-21 days or even up to 35 days. It also indicates that with an increase 325 

in the virus incubation period, the number of latent infections will increase as the virus takes longer to 326 

reach the symptomatic phase. Thus, there will be more asymptomatic individuals, posing a threat to 327 

the susceptible population. Figure 6 presents the scenario when the poliovirus incubation period 328 

reaches 21 days and the number of latent infections is higher. This increases the threat of silent 329 

transmission of poliovirus in the community, as sub-clinical infections are a major source of silent 330 

circulation of the virus. The scenario can also be attributed to the failure of vaccination campaigns to 331 

achieve the target vaccination coverage [32]. The increase in virus incubation can be attributed to 332 

reduced or partial immunization. Incomplete vaccination due to various extrinsic and intrinsic factors 333 

can lead to infections with longer incubation periods. This increase in the incubation period and 334 

asymptomatic infections, along with the resultant decrease in the number of reported cases, presented 335 

a scenario of silent circulation increasing uncertainty in public health measures [33]. This is 336 

particularly important in the case of isolated under-vaccinated sub-populations which pose a threat to 337 

the entire community. This can also be detected through environmental surveillance. The presence of 338 

positive samples indicated silent transmission of poliovirus throughout the country. This situation 339 

suggests that more targeted intervention efforts are required to vaccinate under-vaccinated partitioned 340 

sub-populations.  341 

Another scenario of reducing the virus-shedding rate in asymptomatic individuals was tested by 342 

changing this parameter. A significant decline in the number of asymptomatic infections was observed. 343 

In addition, the curve for the proportion of the infected population flattens over time with the reduction 344 

of the virus-shedding rate by the sub-clinical infectious population. The shedding rates for the exposed 345 

and reported infections were considered equal. Figures 5 and 6 represent the expected reported cases 346 

and latent infections to occur in the next three years, respectively, when the virus-shedding rates of the 347 

infected and exposed are equal. This indicates the importance of higher vaccination coverage and the 348 

need to consider population movement patterns in targeted immunization campaigns. This will also 349 

help reduce the number of positive environmental samples with wild poliovirus in the entire country. 350 

The graph suggests that with a reduction in the virus-shedding rate of latent individuals, the number 351 

of reported cases of poliovirus will continue to decrease until consistent intervention strategies 352 

completely remove the infected individuals from the community. This will ultimately help eradicate 353 

the virus from the country. 354 

Discussion 355 
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In this study, an ordinary differential equation-based deterministic model was developed for poliovirus 356 

persistence in Pakistan. The model applies the concept of time-dependent transmission rates of polio 357 

infections. This assumption is usually considered for seasonal infections and takes into consideration 358 

the periodicity of the occurrence of a disease [34]. Moreover, the role of poliovirus-contaminated 359 

sewage water in the spread of infection was considered. In this model, both direct and indirect 360 

transmission routes, considering human-human and environment-human transmission, were 361 

incorporated. The period of 2017-2022 was considered for the numerical simulations and model 362 

validation. The considered time domain of 6 years was divided into two 3-year time periods: variable 363 

transmission rates that increase monotonically with time in Period 1, and variable transmission rates 364 

that are shaped by disease prevalence and human behavior in Period 2. The model was applied to the 365 

WPV1 case data from Pakistan. The results of the present data fitting approach based on different 366 

transmission rates in different time periods show a better performance than that based on the standard 367 

approach of using uniform, constant transmission rates throughout the entire time domain. 368 

  Martinez-Bakker et al. [35] previously conducted an analysis on the ecology of polio 369 

epidemics in the mid-20th century. The findings revealed that prior to the introduction of vaccination, 370 

only approximately 6% of infections were officially reported. The primary cause of these epidemics 371 

was the rise in birth rates. The study ultimately concluded that for vaccination campaigns to be more 372 

effective, it is crucial to consider population demographics and the seasonality of infections. 373 

Conversely, our modelling results indicate that as we approach the era of polio eradication, population 374 

demographics play an increasingly significant role in the occurrence of polio infections in Pakistan. 375 

The authors acknowledge that subclinical infections are more prevalent today than in the pre-vaccine 376 

era, which aligns with our current findings. Our model simulations predicted that the virus will 377 

continue to transmit in the presence of immunocompromised children. Therefore, it is imperative to 378 

monitor the movement patterns of asymptomatic unvaccinated individuals capable of spreading 379 

infections throughout the country. The rates of pathogen transmission are determined by two critical 380 

factors: the frequency of contact between susceptible and infectious individuals and the duration of 381 

contact and immunity within the population [36].  382 

 Molodecky et al. [37] performed spatiotemporal analysis of routine surveillance data for wild 383 

poliovirus in Pakistan. The findings indicate that movement patterns are not as influential in predicting 384 

future polio cases in the country as the virus is mostly restricted to certain areas. However, our results 385 

revealed that movement patterns are major contributors to the constant expansion of the virus in 386 

Pakistan and can contribute significantly to accurate predictions of future polio cases. This is evident 387 
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from the reduction in the number of cases during the COVID-19 lockdown when movement was 388 

restricted and transmission was assumed to no longer increase monotonically. Moreover, in 2023 Sindh 389 

reported 2 of the total 6 polio cases in Pakistan after almost three years of being case-free suggesting 390 

the important role of population movement in the spread of the disease across the country [38].   391 

 Browne et al. [39] investigated the impact of routine and supplementary immunization 392 

activities, as well as seasonality and environmental transmission, on the effective reproduction number 393 

for poliomyelitis. The study concluded that migration rates can significantly affect the overall 394 

reproduction number and optimal vaccine strategies. This emphasizes the importance of synchronizing 395 

pulse (supplemental) vaccination strategies and suggests that supplementary immunization, 396 

considering complete indirect virus transmission through the environment, would be most effective in 397 

reducing the reproduction number. Our simulation-based calculation of the effective reproduction 398 

number supports the effectiveness of national immunization strategies against poliovirus in Pakistan 399 

as it shows a decreasing trend in the incidence of new cases. Furthermore, our study considered both 400 

direct and indirect routes of virus transmission and the calculated effective reproduction number 401 

suggests that persistent supplementary immunization campaigns, when combined with spatiotemporal 402 

analysis of routine surveillance data, will ultimately lead to virus eradication. 403 

 The proposed model can be further enhanced by incorporating spatial data on vaccination 404 

coverage and environmental surveillance results. This will enable the prediction of future polio 405 

infections and the allocation of timely resources across the country to stop the transmission of the 406 

virus. However, the study did not consider population demographics [24]. Therefore, the model can 407 

be modified to explicitly include the demographics of the entire vulnerable population in Pakistan. 408 

Moreover, the shedding rate of the virus in the target population may also be affected by the OPV 409 

vaccination status [40]. The model application did not consider the evolution of wild poliovirus in 410 

Pakistan over time. Consequently, it may not accurately reflect the infection prevalence in the distant 411 

future, as disease features can vary significantly over time. By including such dynamics associated 412 

with persistent virus transmission in the country, the modelling results can be improved and 413 

intervention strategies can be optimized to achieve eradication. 414 

Conclusion 415 

The transmission of wild poliovirus type 1 is expected to remain low in Pakistan which is 416 

subject to high vaccination coverage. The time-dependent transmission rates assumption for poliovirus 417 

spread in the country has a better predictive ability than the constant transmission rate models. Our 418 
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modelling framework can be further enhanced by incorporating spatial data on immunization and 419 

routine surveillance to predict future cases in Pakistan and allocate preemptive measures. Furthermore, 420 

the model concluded that indirect virus transmission through the fecal-oral route can impact the disease 421 

prevalence among under-immunized communities with poor WASH infrastructure across the country. 422 

The findings of this predictive model are important for eliminating the spread of wild poliovirus from 423 

the remaining endemic countries (Pakistan and Afghanistan) by enhancing the activity of the Global 424 

Polio Eradication Initiative.    425 



The data reported were derived from studies already published and quoted in the reference list. Those 438 
papers mentioned informed consent that, depending on the studies, was implied to participate in the 439 
study, verbal or written, or a combination of these variants during the follow-up.  440 
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