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ABSTRACT 6 

Soil salinity, a pervasive issue exacerbated by factors like irrigation and climate 7 

change, poses a significant threat to global food security. The accumulation of salts not only 8 

hampers crop growth and yield but also jeopardizes the livelihoods of millions who depend 9 

on agriculture for sustenance. Elevated salt levels in saline soils induce osmotic, ionic, 10 

oxidative, and water stress in plants. Implementing biological solutions offers the most 11 

dependable and sustainable method to safeguard food security while reducing reliance on 12 

agrochemicals which hampers various physiological and metabolic processes in plants.To 13 

ensure optimal plant growth under such changing conditions,Implementing biological 14 

solutions (Rhizobacteria) offers the most dependable and sustainable method to safeguard 15 

food security while reducing reliance on agrochemicals must be integrated into agricultural 16 

practices.This chapter concisely explores the mechanisms and utilization of beneficial 17 

microorganisms in both plants and soil to mitigate salt stress. It also addresses the current 18 

limitations and suggests potential areas for improvement in future research. 19 
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INTRODUCTION 23 

The population of Earth reached 8.1 billion people in 2010; if growth continues at its current 24 

rate, that number is predicted to reach 9.7 billion people by 2050 (Projections of population 25 

growth). Additionally, water, air and soil pollution are responsible for about 40% of deaths 26 

globally and environmental deterioration like this, together with population growth, are 27 

thought to be important factors in the rapid rise in human disease worldwide. Various abiotic 28 

factors such as temperature, salinity, drought, pesticide and fertilizer usage, soil pH, and 29 



heavy metal contamination can impede crop productivity (Yadav et al., 2020;Kumar 30 

2020;Ahmad et al., 2011).  Out of all of these, soil salinity's worldwide effect on crop 31 

productivity has emerged as a major barrier. Human activity has increased the development 32 

of soil salinization during the last few decades (Lambers 2003; Bargaz et al. 2018;Sultana et 33 

al. 2020).Important soil activities like respiration, residue breakdown, nitrification, 34 

denitrification, soil biodiversity, and microbial activity are all impacted by the extreme soil 35 

salinization (Schirawski & Perlin, 2018). ―Increased soil salinity and decreased crop output 36 

are also observed in areas with excessive fertiliser application‖(Rütting et al., 2018). ―The 37 

technique of removing salt from saline soil is labor-intensive and expensive‖(Qadir et al., 38 

2014). ―For quite some time, the rehabilitation of saline soils has primarily relied on physical 39 

and chemical techniques. Within the realm of physical processes, soluble salts within the root 40 

zone are extracted through methods such as scraping, flushing, and leaching‖(Ayyam et al., 41 

2019). ―Nevertheless, chemical methods often involve the utilization of gypsum and lime as 42 

neutralizing agents to mitigate saline soil conditions‖(Keren, 2005),―However, these methods 43 

are deemed unsustainable and are considered inefficient, particularly when the salt 44 

concentration reaches excessively high levels,The common practice of cultivating salt-45 

tolerant crop varieties, such as barley and canola, on saline soils is widespread‖(Fita et al., 46 

2015). ―Nevertheless, due to their limited salt tolerance profile, these crops have a restricted 47 

global distribution and cannot be effectively utilized in soils with moderate to high electrical 48 

conductivity (EC) levels also highlighted that despite vigorous efforts from the research 49 

community, only few salt tolerance genes have been identified having real applications in 50 

improving productivity of saline soils‖.(Morton et al., 2019) 51 

―Therefore, achieving viable crop yields in saline soils is imperative. In addition to utilizing 52 

salt-tolerant varieties or chemical neutralization methods, it's essential to incorporate 53 

sustainable approaches. In the last few years, research showed that the use of salt-tolerant 54 

plant growth promoting rhizobacteria (ST-PGPR) and halotolerant rhizobacteria (HT-55 

rhizobactria)  in saline agriculture can be harnessed for enhancing productivity and improving 56 

soil fertility as well‖ (Grover et al., 2011).As they significantly impact biogeochemical 57 

cycles, soil fertility, and plant health, they play a crucial role in influencing plant growth and 58 

the uptake of nutrients.This review critically examines the role of salt-tolerant plant growth-59 

promoting rhizobacteria (ST-PGPR) and halo tolerant rhizobacteria (HT-rhizobacteria) in 60 

responding to salt-affected soil and their beneficial effects on key crops. It delves into their 61 

mechanisms for remediating salt-affected soil under diverse environmental conditions.The 62 



present review focuses on the enhancement of productivity under stressed conditions and 63 

increased resistance of plants against salinity stress by application of plant growth promoting 64 

microorganisms. 65 

The utilization of Plant Growth-Promoting Rhizobacteria (PGPR) has been expanded to 66 

remediate contaminated soils in conjunction with plants. Therefore, there is a pressing 67 

necessity to augment the effectiveness of limited external inputs by optimizing the 68 

combinations of beneficial bacteria within sustainable agricultural production systems. This 69 

review delves into the significance of soil-beneficial bacteria and their contributions to 70 

promoting plant growth through both direct and indirect mechanisms. A deeper 71 

understanding of these varied mechanisms will contribute to establishing these bacteria as 72 

invaluable allies in the future of agriculture. 73 

1. MECHANISIM OF CROP SALINE STRESS TOLERANCE BY SOIL 74 

BENEFICIAL BACTERIA 75 

Soil salinity poses a significant challenge for irrigated agriculture. In hot and arid 76 

regions across the globe, soils often exhibit high salinity levels, resulting in limited 77 

agricultural productivity. It's worth noting that all soils inherently contain some amount of 78 

water-soluble salts(Shrivastava & Kumar, 2015). Soluble salts are a form of essential 79 

nutrients that plants absorb; nevertheless, an overabundance of them can seriously impede 80 

plant growth. Global natural resources have suffered greatly as a result of land degradation 81 

processes over the past century, whether they are physical, chemical, or biological. 82 

Compacted soil, contamination from both organic and inorganic sources, and a decrease in 83 

microbial variety and activity are a few of these problems Patel and Dave 2011).(Bidalia et 84 

al., 2019)(S. Singh & Singh, 2022). ―Salinity destructively interrupts the physical and 85 

chemical properties of soil as well as affects crop growth to a higher extent‖(K. Singh, 2016). 86 

To address this issue, beneficial microorganisms called plant growth-promoting 87 

rhizobacteria (PGPR) could serve a vital function. These rhizospheric bacteria have the 88 

ability to efficiently colonize plant roots, thereby contributing to soil fertility maintenance. 89 

They provide a promising alternative to traditional inorganic fertilizers and pesticides(Majeed 90 

et al., 2015). Previous reports have highlighted the efficacy of PGPR in enhancing the growth 91 

of different crops under conditions of salt stress(Cardinale et al., 2015); (Soldan et al., 92 

2019).The initial selection of locally-isolated salt-tolerant PGPR for addressing salinity is 93 



essential to guarantee their effectiveness. Studies have shown that indigenous strains are 94 

more proficient in enhancing plant resistance to salinity stress compared to PGPR from non-95 

saline ecosystems(Etesami & Beattie, 2017); (Egamberdieva & Kucharova, 2009).These 96 

beneficial microbes employ various mechanisms to mitigate salt stress, such as regulating the 97 

Na+/K+ ratio by secreting extracellular polymeric substances known as exopolysaccharides 98 

(EPS), this mechanism enhances their survival in unfavorable soil conditions(R. P. Singh & 99 

Jha, 2016)(Vurukonda et al., 2016). 100 

―The previous findings have reported that several bacterial genera, 101 

including Pseudomonas, Bacillus, Burkholderia, Enterobacter, Microbacterium, Planococcus102 

, Halomonas could produce EPS (Exopolysaccharides) in salt stress condition‖(Upadhyay et 103 

al., 2011)(Qurashi & Sabri, 2012).The exopolysaccharides play a vital role in bacterial 104 

aggregation or flocculation, chelates the various cations including Na+ (Watanabe et al., 105 

2003)(Nunkaew et al., 2015), facilitating the production of yield, this process involves the 106 

specific adsorption of the polymeric segment and polymer bridging between cells(Tenney & 107 

Stumm, 1965)(M. Arora et al., 2010). Additionally, EPS are highly beneficial in the 108 

formation of bacterial biofilms and enhancing bacterial colonization on plant root surfaces(Y. 109 

Chen et al., 2013).―Exopolysaccharides are able to lessen the hostile effect of osmotic-stress 110 

by augmenting fresh weight, dry weight and water content in plants were analysed 111 

statiscally‖(Ghosh et al., 2019). ―In addition to that, PGPR are able to produce multiple plant 112 

growth-promoting properties such as indole acetic acid production, biological nitrogen 113 

fixation, solubilization of soil phosphorus (P) and potassium (K), and production of 114 

siderophores and hydrolyzing enzymes under salt stress condition‖(Kang et al., 115 

2009)(Richardson et al., 2009).(Yousef, 2018)(Goswami et al., 2014; Majeed et al., 116 

2015)).―Plants treated with Exo-poly saccharides (EPS) producing bacteria display increased 117 

resistance to water and salinity stress due to improved soil structure‖(Sandhya et al., 2009). 118 

EPS can also bind to cations including Na+ thus making it unavailable to plants under saline 119 

conditions.  120 

―The SEM observations supported all these salt-tolerance attributes, revealing the 121 

bacterial capacity to produce EPS, facilitate flocculation, and form biofilms when subjected 122 

to saline conditions compared to non-saline environments. Bacterial cells were observed to 123 

associate with the plant root system, notably enhancing moisture retention capacity and 124 

bolstering the defense system against various abiotic stresses. Previous research also noted a 125 



reduction in bacterial EPS and biofilm formation with increased NaCl concentration‖(Havasi 126 

et al., 2008).  ―The detrimental effects of salinity can be mitigated through the application of 127 

salt-tolerant PGPR, as demonstrated in this greenhouse trial. This intervention notably 128 

enhanced the photosynthesis of all three rice varieties, resulting in increased grain yield under 129 

saline conditions‖(Shultana et al., 2020)(Tewari & Arora, 2014).―Soils experiencing salt 130 

stress are recognized for their ability to inhibit plant growth‖(Paul, 2012). ―In their natural 131 

habitat, plants are colonized by both endocellular and intracellular microorganisms‖(Gray & 132 

Smith, 2005). ―The rhizosphere microorganisms, especially beneficial bacteria and fungi, 133 

have the potential to enhance plant performance in stressful environments, thereby directly 134 

and indirectly improving yields, Certain PGPR can directly stimulate plant growth and 135 

development by supplying fixed nitrogen, phytohormones, iron sequestered by bacterial 136 

siderophores, and soluble phosphate‖.(Dimkpa et al., 2009)―Others indirectly benefit plants 137 

by protecting them against soil-borne diseases, primarily caused by pathogenic 138 

fungi‖(Lugtenberg & Kamilova, 2009).―Soil salinization presents a significant challenge to 139 

agricultural productivity worldwide. Crops cultivated in saline soils face issues such as high 140 

osmotic stress, nutritional imbalances and toxicities, poor soil structure, and decreased crop 141 

yields. Studies has confirmed that salt-tolerant plant growth-promoting rhizobacteria (ST-142 

PGPR) are capable of producing various phytohormones, including auxins, gibberellins, and 143 

cytokinins‖(Dodd et al., 2010). Additionally, they synthesize ACC deaminase (Glick, 2004), 144 

secondary compounds such as exopolysaccharides (Upadhyay et al., 2011;Timmusk et al., 145 

2014) and osmolytes (proline, trehalose, and glycine betaines) (Bano and Fatima, 2009; 146 

(Upadhyay & Singh, 2015)―Furthermore, these bacteria play a role in regulating plant 147 

defense systems and activating the plant's antioxidative enzymes under salt stress‖(Hashem et 148 

al., 2016;Ali et al., 2022). 149 

Numerous studies have highlighted potential mechanisms of salt tolerance in PGPR, 150 

particularly when they function as endophytes. However, it's important to note that only a 151 

small portion of these beneficial bacteria are able to penetrate the root cell, and the interaction 152 

between plants and microbes primarily takes place within the 5mm rhizosphere zone 153 

(Shultana et al., 2020).Salt-tolerant bacterial strains have demonstrated elevated nitrogenase 154 

activity in saline environments and possess the capability to synthesize osmolytes. These 155 

osmolytes help maintain cell turgidity and support metabolism in adverse conditions. (Yan et 156 

al., 2015)(H. Kumar et al., 1999). 157 



Salinity-induced nutritional imbalance poses a challenge to plant growth and 158 

productivity, particularly affecting phosphorus (P) uptake and transport. To address P 159 

deficiency in salt-affected soils, P fertilizers are commonly recommended. However, 160 

employing salt-tolerant P-solubilizing rhizobacteria can significantly enhance P availability 161 

in saline soils (Salwan et al., 2019). In recent studies, plant growth-promoting (PGP) bacteria 162 

have been discovered to boost plant tolerance to salinity, particularly those bacteria that are 163 

associated with plants(Glick, 2004). Endophytic actinomycetes are particularly intriguing due 164 

to their dual role. Not only do they produce various bioactive secondary metabolites, 165 

safeguarding plants against infectious diseases (Misk & Franco, 2011), but they also exhibit 166 

the capacity to enhance plant growth. They carry several plant growth-promoting (PGP) 167 

traits, including the production of siderophores for iron acquisition, synthesis of plant 168 

hormones like auxins and cytokinins, and the solubilization of phosphate and other minerals 169 

to provide nutrients(Kruasuwan and Thamchaipenet 2016;Rungin et al. 2012)Furthermore, 170 

they assist in plant growth under stressful conditions induced by drought, heavy metals, 171 

flooding and high salinity by alleviating stress associated with ethylene through the 172 

production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase.Chen et al. 2007 173 

correlated the role of proline accumulation with drought and salt tolerance in plants, Through 174 

these studies, we gain insight into the role of released hormones, enzymes, and other 175 

metabolic substances in alleviating salt stress conditions with the assistance of numerous 176 

rhizobacteria. 177 

2. BACTERIAL MICROBES: SALT STRESS ALLEVIATION TOOL IN 178 

IMPORTANT CROPS 179 

―Several strategies have been developed in order to decrease the toxic effects caused 180 

by high salinity on plant growth, including plant genetic engineering, and recently the use of 181 

plant growth-promoting bacteria (PGPB)‖(W. Wang et al., 2003 and Dimkpa et al., 2009). 182 

―The role of microorganisms in plant growth promotion, nutrient management and disease 183 

control is well known and well established. These beneficial microorganisms colonize the 184 

rhizosphere/endorhizosphere of plants and promote growth of the plants through various 185 

direct and indirect mechanisms‖(Nia et al. 2012;Ramadoss et al. 2013). Previous studies 186 

suggest that utilization of PGPB has become a promising alternative to alleviate plant stress 187 

caused by salinity (Yao et al., 2010a)and the role of microbes in the management of biotic 188 

and abiotic stresses is gaining importance. 189 



2.1 CEREAL CROPS  190 

Cereal crops serve as the primary sources of energy and protein in the human diet, 191 

cultivated in significantly larger quantities worldwide compared to other crops. Major cereal 192 

crops include wheat, maize, rice, barley, oats, sorghum, and millet. Despite their importance, 193 

only a few of these crops exhibit salt tolerance. Traditional methods such as conventional 194 

breeding, marker-assisted selection, and genetic engineering have been successful in 195 

enhancing yields in saline soils, but primarily for wheat and rice over the past decades. 196 

(Shahbaz & Ashraf, 2013); (Roy et al., 2014). It has been observed that the application of 197 

Salt-Tolerant Plant Growth-Promoting Rhizobacteria (ST-PGPR) in saline soil not only aids 198 

in crop survival but also enhances yields across a diverse array of cereal crops(R. P. Singh & 199 

Jha, 2016). 200 

Similarly, Jha and Subramanian (2014) noted that the combination of Pseudomonas 201 

pseudoalcaligenes, an endophytic bacterium, with Bacillus pumilus in the rhizosphere of 202 

paddy plants was more effective in protecting the plants from abiotic stress during early 203 

growth stages. This combination induced the production of osmoprotectant and antioxidant 204 

proteins, surpassing the effects of either rhizospheric or endophytic bacteria alone. The plants 205 

inoculated with the endophytic bacterium P. pseudoalcaligenes exhibited notably elevated 206 

levels of glycine betaine-like quaternary compounds and increased shoot biomass, 207 

particularly evident at lower salinity levels. This study demonstrates that the detrimental 208 

effects of salinity stress can be mitigated through the application of salt-tolerant Plant 209 

Growth-Promoting Rhizobacteria (PGPR). In a glasshouse trial, this approach significantly 210 

enhanced the photosynthetic activity of all three rice varieties, resulting in higher grain yields 211 

under saline conditions(Shultana et al., 2020)(Tewari & Arora, 2014).The inoculation of 212 

endophytic Streptomyces sp. GMKU 336, which produces 1-aminocyclopropane-1-213 

carboxylate deaminase (ACCD), into rice plants leads to improved growth and enhanced salt 214 

tolerance. This is accomplished by using ACCD activity to lower ethylene levels, which aids 215 

in the plants' ability to scavenge reactive oxygen species (ROS), maintain a balanced ion 216 

content, and control osmotic pressure (Jaemsaeng et al., 2018). The research conducted by (Ji 217 

et al., 2020)highlights the significant role of Glutamicibacter spp. YD01 in mitigating the 218 

detrimental effects of salt stress on the growth and development of rice plants. This is 219 

achieved through the regulation of phytohormone (ethylene) levels and the accumulation of 220 



reactive oxygen species (ROS), as well as maintaining ion balance, enhancing photosynthetic 221 

capacity, and promoting the expression of stress-responsive genes. 222 

Similarly, the inoculation of endophytic Methylobacterium oryzae CBMB20 into salt-223 

stressed rice plants, as observed in the study by Chatterjee et al. (2019), enhances 224 

photosynthesis and reduces emissions of stress-related volatiles. This is attributed to the 225 

modulation of ethylene-dependent responses and the activation of vacuolar H⁺ -226 

ATPase.Certain strains of Rhodopseudomonas palustris, such as TN114, show promise in 227 

facilitating the easier and more affordable growth of rice in saline soil conditions. This is 228 

attributed to the presence of 5-aminolevulinic acid (ALA) in the examined supernatants, 229 

which has a positive effect on rice growth under such challenging conditions(Nunkaew et al., 230 

2014). The studies byDamodaran et al. 2019 investigated the impact of various Salt-Tolerant 231 

Plant Growth-Promoting Rhizobacteria (ST-PGPR) on enhancing the productivity of salt-232 

tolerant rice and wheat grown on sodic soils. Their findings revealed that Lysinibacillus sp. 233 

was particularly effective in mitigating the adverse effects of salinity.Similarly, Misra and 234 

Chauhan 2020  discovered the several Bacillus sp. as a ST-PGPR with ACC deaminase 235 

activity were the most dominant in alleviating salt stress and enhancing the biomass of rice 236 

across different agro-climatic zones. Furthermore, the siderophore-producing ability of 237 

microorganisms under stressful conditions presents a promising alternative to chemical 238 

fertilizers, potentially aiding in managing salt stress and iron limitations in salt-affected soils. 239 

Sultana et al. 2021, recently reported that salt-tolerant siderophore-producing PGPR 240 

supported rice growthand increase in protein content is associated with improved 241 

photosynthesis, which is indicative of higher chlorophyll levels. 242 

Similarly, numerous studies have investigated the enhancement of saline tolerance in maize 243 

through various mechanisms employed by rhizobacteria to promote the growth and yield of 244 

the crop. The coinoculation of Rhizobium and Pseudomonas in Zea mays led to increased 245 

proline production, reduced electrolyte leakage, maintenance of leaf relative water content, 246 

and selective uptake of potassium ions, resulting in enhanced salt tolerance (Bano & Fatima, 247 

2009).The Nadeem et al. 2007discovered that inoculating salt-stressed maize with P. 248 

syringae(Zerrouk et al., 2016), Enterobacter aerogenes and P. fluorescens containing ACC 249 

deaminase, Azospirillum(Hamdia et al., 2004) resulted in higher K+/Na+ ratios. This 250 

combination also led to elevated relative water content, chlorophyll levels, and reduced 251 

proline content (Vardharajula et al., 2011), indicating enhanced salt tolerance mediated by 252 



various mechanisms. ―The role of trehalose as an osmoprotectant under salt stress is well-253 

documented, with numerous ST-PGPR discovered to possess genes for trehalose biosynthetic 254 

pathways‖(Qin et al. 2018; Orozco-Mosqueda et al. 2019; Shim et al. 2019.Aslam and Ali 255 

(2018) also reported that ―ACC deaminase activity in halotolerant bacterial genera such as 256 

Arthrobacter, Bacillus, Brevibacterium, Gracilibacillus, Virgibacillus, Salinicoccus, and 257 

Pseudomonas, as well as Exiguobacterium isolated from the rhizosphere and phylloplane of 258 

Suaeda fruticosa (L.) Forssk, stimulated the growth of maize under saline conditions‖. 259 

 260 

 261 

―The effect of ST-PGPR S. sciuri SAT-17 strain on anti-oxidative defense mechanisms and 262 

modulation of maize growth under salt stress was studied by‖(Akram et al., 2016). ―They 263 

reported that inoculation of maize with SAT-17 improved plant growth and decreased the 264 

ROS levels by increasing the cellular antioxidant enzyme activities (CAT, POD, and proline) 265 

under salinity treatments (75 and 150 mM NaCl).Likewise Upadhyay et al. 2012studied the 266 

impact of PGPR inoculation on growth and antioxidant status of wheat under saline 267 

conditions and reported that co-inoculation with B. subtilis and Arthrobacter sp. could 268 

alleviate the adverse effects of soil salinity on wheat growth with an increase in dry biomass, 269 

total soluble sugars and proline content‖. [40]Nia et al. 2012studied ―the effect of inoculation 270 

of Azospirillum strains isolated from saline or non-saline soil on yield and yield components 271 

of wheat in salinity and they observed that inoculation with the two isolates increased salinity 272 

tolerance of wheat plants; the saline-adapted isolate significantly increased shoot dry weight 273 

and grain yield under severe water salinity‖.Similarly,Sadeghi et al. 2012studied ―the plant 274 

growth promoting activity of an auxin and siderophore producing isolate of Streptomyces 275 

under saline soil conditions and reported increases in growth and development of wheat plant. 276 

They observed significant increases in germination rate, percentage and uniformity, shoot 277 

length and dry weight compared to the control. Applying the bacterial inocula increased the 278 

concentration of N, P, Fe and Mn in wheat shoots grown in normal and saline soil and thus 279 

concluded that Streptomyces isolate has potential to be utilized as biofertilizers in saline 280 

soils‖. More recently (Ramadoss et al., 2013)studied ―the effect of five plant growth 281 

promoting halotolerant bacteria on wheat growth and found that inoculation of those 282 

halotolerant bacterial strains to ameliorate salt stress (80, 160 and 320 mM) in wheat 283 

seedlings produced an increase in root length of 71.7% in comparison with uninoculated 284 



positive controls. In particular, Hallobacillus sp. and B. halodenitrificans showed more than 285 

90% increase in root elongation and 17.4% increase in dry weight when compared to 286 

uninoculated wheat seedlings at 320 mM NaCl stress indicating a significant reduction of the 287 

deleterious effects of NaCl. These results indicate that halotolerant bacteria isolated from 288 

saline environments have potential to enhance plant growth under saline stress through direct 289 

or indirect mechanisms and would be most appropriate as bioinoculants under such 290 

conditions. The isolation of indigenous microorganisms from the stress affected soils and 291 

screening on the basis of their stress tolerance and PGP traits may be useful in the rapid 292 

selection of efficient strains that could be used as bioinoculants for stressed crops‖. 293 

 294 

Similarly, Upadhyay et al. (2012) investigated ―co-inoculation with B. subtilis and 295 

Arthrobacter sp. could alleviate the adverse effects of soil salinity on wheat growth, leading 296 

to an increase in dry biomass, total soluble sugars, and proline content. Nia et al. (2012) they 297 

observed that inoculation with these isolates of Azospirillum strains isolated from saline or 298 

non-saline soil increased the salinity tolerance of wheat plants, with the saline-adapted isolate 299 

significantly enhancing shoot dry weight and grain yield under severe water salinity‖. The 300 

Sadeghi et al. (2012) explored ―the plant growth-promoting activity of an auxin and 301 

siderophore-producing isolate of Streptomyces under saline soil conditions, including 302 

significant improvements in germination rate, shoot length, and dry weight in wheat, also 303 

increased the concentration of nitrogen, phosphorus, iron, and manganese in wheat shoots 304 

grown in normal and saline soil, indicating the potential of the Streptomyces isolate as a 305 

biofertilizer in saline soils‖. 306 

More recently, Ramadoss et al. (2013) investigated the effect of five halotolerant 307 

bacteria (Hallobacillus sp. and B. halodenitrificans) inoculation in wheatwhich mitigated salt 308 

stress in wheat seedlings, resulting in a significant increase in root length compared to 309 

uninoculated controls. These findings suggest that halotolerant bacteria isolated from saline 310 

environments have the potential to enhance plant growth under saline stress conditions 311 

through direct or indirect mechanisms. Utilizing indigenous microorganisms from stress-312 

affected soils and screening them based on their stress tolerance and Plant Growth-Promoting 313 

(PGP) traits could expedite the selection of efficient strains for use as bioinoculants in 314 

stressed crops 315 

 316 



2.2 LEGUMES AND OIL YIELDING CROPS 317 

―Along with cereals, legumes maintain their significance as vital sources of protein in 318 

the human diet. Salinity poses challenges to the production of grain and food legumes in 319 

various regions worldwide. In legumes, salt stress negatively impacts root-nodule formation, 320 

symbiotic relationships, and ultimately, nitrogen fixation capacity‖(Manchanda and Garg 321 

2008). ―The symbiotic association of rhizobia with legumes under salinity stress remains a 322 

focal area of research‖(Zahran 1991; Zahran 1999;Graham 1992).―Many studies suggest that 323 

the application of salt-tolerant rhizobia offers a sustainable solution for enhancing the 324 

productivity of legume crops grown under salinity stress‖(Abiala et al., 2018). ―Several 325 

researchers have demonstrated that the adverse effects of salinity on legumes such as 326 

soybean, pigeon pea, common bean, mung bean, groundnut, and even tree legumes can be 327 

mitigated by the application of salt-tolerant rhizobial strains‖(Bashan and Holguin 1997; 328 

Kumar et al. 1999; Dobbelaere et al. 2001; Bashan et al. 2004; Dardanelli et al. 2008; Meena 329 

et al. 2017;Yasin et al. 2018). ―The role of ACC deaminase produced by Salt-Tolerant Plant 330 

Growth-Promoting Rhizobacteria (ST-PGPR) in nodule formation in legume crops is also 331 

well-documented‖(Ahmad et al. 2011; Barnawal et al. 2014). ―During the nodulation process, 332 

ACC deaminase is crucial for enhancing the persistence of infection threads, which are 333 

negatively impacted by ethylene levels. Thus, ACC deaminase aids in nodule formation 334 

under saline conditions‖(Nascimento et al., 2016). 335 

―In chickpea (Cicer arietinum L.), delayed flowering has been directly associated 336 

with higher concentrations of Na+ in the laminae of fully expanded leaves‖(Pushpavalli et al., 337 

2016). ―The inoculation of chickpea plants with P. putida (MSC1) or P. pseudoalcaligens 338 

(MSC4) isolates demonstrated an enhancement in various parameters such as phosphate 339 

solubilization, siderophore production, and IAA (indole-3-acetic acid) production, which are 340 

indicative of improved plant growth under salt stress conditions compared to uninoculated 341 

controls‖(D. Patel et al., 2012).Research by (Yilmaz & Kulaz, 2019)on chickpea highlighted 342 

the significant role of Plant Growth Promoting Rhizobacteria (PGPRs) in regulating growth 343 

under salt stress. Increased concentrations of proline, malondialdehyde (MDA), as well as 344 

enhanced activities of antioxidant enzymes such as ascorbate peroxidase (APX), superoxide 345 

dismutase (SOD), and catalase (CAT) were observed under saline conditions, suggesting that 346 

inoculated PGPR strains can mitigate salinity stress by enhancing salt tolerance. 347 



A study by (Panwar, Tewari, Gulati, et al., 2016)suggested, for the first time, the 348 

potential use of native Pantoea dispersa strain PSB3 as a biofertilizer to mitigate the adverse 349 

effects of salt stress on chickpea plants. P. dispersa exhibited notable production of IAA 350 

(218.3 µg/ml), siderophores (60.33% SU), phosphate solubilization (3.64 µg/ml), and ACC 351 

(1-aminocyclopropane-1-carboxylate) deaminase activity (207.45 nmol/mg/h) even in the 352 

presence of 150 mM NaCl under laboratory conditions.The coinoculation of ACC+ 353 

Mesorhizobium and rhizobacterial isolates showed more stimulatory effect on nodulation and 354 

plant biomass under normal and salt amended treatments. Results revealed that positive 355 

response of PGPR on productivity of chickpea but more enunciated response about grain 356 

yield was observed with the combined application of SA and PGPR compared to control. 357 

Growth parameters i.e root length, root mass, number of nodules and shoot mass were highly 358 

affected where SA was applied along with PGPR. From the study, it is proposed that under 359 

salt stress the combination of SA + PGPR can be a suitable practice for more production of 360 

chickpean Pakistan 361 

Similarly the coinoculation of 1-aminocyclopropane-1-carboxylate (ACC)-utilizing 362 

Mesorhizobium and rhizobacterial isolates demonstrated a more pronounced stimulatory 363 

effect on nodulation and plant biomass under both normal and salt-amended conditions 364 

(Chaudhary & Sindhu, 2017). The results underscored the positive impact of Plant Growth 365 

Promoting Rhizobacteria (PGPR) on chickpea productivity, with a particularly enhanced 366 

effect on grain yield observed when salicylic acid (SA) was combined with PGPR compared 367 

to control treatments. Notably, growth parameters such as root length, root mass, nodulation, 368 

and shoot mass were significantly influenced by the application of SA in conjunction with 369 

PGPR. This study suggests that the combined application of SA and PGPR could be a 370 

promising approach for enhancing chickpea production, especially in salt-stressed conditions, 371 

offering potential benefits for chickpea cultivation in (Aneela et al. 2019;Zahir et al. 372 

2011Zahir et al. 2010;Ahmad et al. 2011;Ahmad et al. 2013). 373 

―The enhanced mung bean growth under saline conditions, due to bacterial 374 

inoculation, might be attributed to bacterial IAA activity, which has a tremendous effect on 375 

root growth, and water and nutrient absorption from a greater soil volume‖(Príncipe et al., 376 

2007).―Inoculation/co-inoculation with rhizobia and plant growth promoting rhizobacteria 377 

(PGPR) containing 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase improve the 378 

plant growth by reducing the stress induced ethylene production through ACC-deaminase 379 

activity‖(Aamir et al., 2013). ―Cronobacter (two isolates) and Enterobacter (two 380 



isolates)Inoculation of PGP bacteria under 2 and 10% salinity stress showed enhanced plant 381 

growth parameters in Vigna radiata compared to both salinity and non-salinity control 382 

plants‖(Desai et al. 2023;Panwar et al. 2016b).―Soil salinity poses a significant threat to plant 383 

health, impacting various aspects of their growth and development. Salinity disrupts the 384 

flowering and fruiting patterns of plants, leading to abnormalities in reproductive physiology, 385 

ultimately resulting in decreased crop yields and biomass. In the case of pigeon pea, salinity 386 

can cause a reduction in flowering by as much as 50%(Cajanus cajan L. Mill)‖(Garg & 387 

Manchanda, 2008).  388 

2.3 OTHER CROPS  389 

Salt stress profoundly impacts plant both vegetative and reproductive physiology. According 390 

to Ghanem et al. 2009, in tomato plants, exposure to salinity stress leads to the accumulation 391 

of Na+ in various reproductive organs such as the style, ovaries, and anther intermediate 392 

layers. This accumulation contributes to an increase in flower abortion rates, a decrease in 393 

pollen number, and a reduction in pollen viability. Additionally, high salt stress levels, such 394 

as 150 mM NaCl, can delay flowering transition and hinder the growth of shoots and roots in 395 

tomato plants (Ghanem et al., 2009). 396 

The Tank and Saraf 2010demonstrated that certain Plant Growth Promoting Rhizobacteria 397 

(PGPR) capable of phosphate solubilization, phytohormone production, and siderophore 398 

secretion can enhance the growth of tomato plants under 2% NaCl stress conditions. 399 

Moreover, (Masmoudi et al., 2021) found that Bacillus velezensis FMH2, which produces 400 

indole-3-acetic acid (IAA), significantly promotes root length and lateral root production, 401 

thereby enhancing tomato plant growth under salt stress. These findings align with the results 402 

of studies by (Habib et al. 2016; Shultana et al. 2020) which demonstrated that PGPR 403 

inoculation increases the activities of reactive oxygen species (ROS)-scavenging antioxidant 404 

enzymes in okra and tomato plants under salt stress conditions. 405 

 Similarly Yao et al. 2010b demonstrated that inoculation with P. putida Rs 198 406 

promotes cotton growth and germination even under conditions of salt stress. In Arabidopsis, 407 

the impact of salinity was investigated in a hydroponic solution, revealing various symptoms 408 

such as reduced fertility, decreased fruit length, transient wilting, and fruits predominantly 409 

containing aborted ovules and embryos, which were narrower and smaller in size (Sun et al., 410 

2004). Similarly, salt stress affects early flowering and the male gametophyte of canola 411 

(Brassica napus), resulting in a reduction in pollen grain numbers and abnormal growth of 412 



anthers, ultimately leading to decreased crop yield (Mahmoodzadeh & Bemani, 2008). (Khan 413 

et al., 2012) found that under saline conditions, the growth, yield, and biomass of pearl millet 414 

are adversely affected, including reductions in germination percentage, plant height, leaf area, 415 

total biomass, and grain yield per plant.Pea plants also suffer from the adverse effects of 416 

salinity on growth, yield, and biomass (Wolde & Adamu, 2018). (Farooq et al., 2017) 417 

reviewed the impact of salt stress on grain legumes, noting that salinity can reduce crop yield 418 

by 12–100% in various legume species. (Faravani et al., 2013)investigated the salt tolerance 419 

of black cumin (Nigella sativa L.) and found that increasing salinity levels from 0.3 to 9 dS 420 

m−1 resulted in reduced average seed and biological yield. 421 

Similarly, Alam et al. 2015studied the effect of different salinity levels on the weed plant 422 

Portulaca oleracea L., which holds nutritional importance and is utilized similarly to spinach 423 

and lettuce in many countries. They observed reductions in biomass and yield, as well as 424 

changes in physiological attributes and alterations in stem and root structure. 425 

3.SOIL REMEDIATION WITH PHYTOBENEFICIAL BACTERIA 426 

The industrialization of the past century has led to a significant increase in the release 427 

of anthropogenic chemicals, such as Polychlorinated biphenyls (PCBs) and persistent organic 428 

pollutants (POPs), into the environment. This has resulted in detrimental effects on human 429 

health and soil ecosystems, as highlighted by Vergani et al. 2017. Soil degradation further 430 

exacerbates these issues, stemming from factors like continuous cropping, excessive use of 431 

chemical fertilizers and pesticides, and contamination by heavy metals.Microorganisms, 432 

being the predominant biota in soil, play a crucial role in restoring land ecosystems. The 433 

microecology of the rhizosphere directly or indirectly influences the growth, development, 434 

metabolic regulation, and accumulation of active ingredients in medicinal plants (MPs). 435 

Wang et al. 2022 they suggestedthat, the use of microbial resources as a promising alternative 436 

to traditional fertilizers and pesticides due to their economic efficiency, environmental safety, 437 

and non-toxic nature. 438 

The deterioration of soil quality is accelerated by emissions from industrial waste, 439 

widespread fertilizer and pesticide use, and sewage irrigation, leading to issues like soil 440 

hardening, salinization, and accumulation of heavy metals and organic contaminants (Sharma 441 

et al., 2021Geng et al. 2019). A national survey in China revealed that 16.1% of soil sites 442 

investigated had excessive levels of pollutants, including both inorganic and organic 443 

contaminants (Mee & Mnr, 2014).Despite attempts at soil amelioration through chemical and 444 



physical methods, these approaches are often inefficient, complex, and costly (Swamy et al., 445 

2019). Therefore, there is a growing need for more effective, economical, and 446 

environmentally friendly methods and technologies to remediate degraded soils and promote 447 

sustainable ecological and agricultural development. 448 

Rhizoremediation has emerged as a promising strategy for in situ removal of organic 449 

contaminants, facilitated by various processes performed by different species of soil bacteria. 450 

Write your own words 451 

 452 

 453 

 454 

3.1 SOIL REMEDIATION FROM SALINE STRESS THROUGH RHIZOBACTERIA 455 

―The presence of an excess amount of salt in soil shows cumulative and far- reaching 456 

effects on crops. Salt stress triggers ionic imbalance in plants, causes nutrient deficiency, 457 

perturbations in carbon (C) and nitrogen (N) assimilatory pathways, lowered rate of 458 

photosynthesis, generation of reactive oxygen species (ROS), osmotic and oxidative stress, 459 

thereby retarding growth and yield of crops‖(Bulgari et al. 2019;Mishra and Arora 2018). 460 

Salt stress also poses negative impacts on soil processes, pH, decomposition rate, 461 

nutrient composition, microbial biodiversity and water availability, leading to the prevalence 462 

of drought-like conditions. According to Attia et al. 2020―in several agro-ecosystems, 463 

particularly in arid and semi-arid regions, drought and salinity occur simultaneously resulting 464 

in overlapping symptoms of both the stresses in the plants‖. ―Physical methods of treatment 465 

of saline soils, that include flushing, leaching, scraping and chemical amendments e.g. 466 

addition of gypsum and lime, are not sustainable‖(Egamberdieva et al., 2019). ―These 467 

methods are time-consuming, costly and above all, cause genetic erosion of indigenous 468 

species‖(Chakraborty et al. 2018;Anderson et al. 2019).―Application of plant growth 469 

promoting rhizobacteria (PGPR) has the potential of alleviating salt stress in plants through 470 

elicitation of several physiological and molecular mechanisms. This includes modification in 471 

root systems, inducing antioxidant machinery, production of exopolysaccharides (useful in 472 

soil aggregate formation, humification, increase in water retention, quorum sensing, 473 

nodulation and establishing microbial diversity in saline soils) and siderophores, modulation 474 



of phytohormones, synthesis of osmolytes, uptake of minerals and control of 475 

phytopathogens‖(Shahzad et al., 2017)(El-Esawi et al., 2018)(N. K. Arora et al., 2018)). 476 

Several species of halotolerant soil bacteria such as Arthrobacter, Azospirillum, Alcaligenes 477 

Bacillus, Burkholderia, Enterobactor, Flavobacterium, Pseudomonas and Rhizobium, have 478 

been reported to ameliorate salt stress in crops (Egamberdiyeva 2005;Shahzad et al. 2017; El-479 

Esawi et al. 2018;Arora et al. 2018 ;Saghafi et al. 2019). 480 

The mitigation of salt stress by halotolerant plant growth-promoting rhizobacteria (HT-481 

PGPR) likely involves a three-tiered association: the survival of bacteria under hyperosmotic 482 

conditions, the induction of salt tolerance mechanisms in plants, and the improvement of soil 483 

quality through various mechanisms. EPS, in particular, contribute significantly to these 484 

processes by enhancing soil structure, moisture retention, and microbial interactions 485 

3.2 HT-PGPR AS SOIL AMELIORATORS 486 

―The involvement of microbial mechanisms in addressing saline soil through 487 

enhancements in structure and composition is equally significant. The presence of HT-PGPR 488 

in saline soil greatly influences soil quality and fertility parameters. Studies have confirmed 489 

that HTPGPR improve nutrient status, soil structure, organic matter, pH, EC, and deposition 490 

of ionic salts in soil‖(Arora and Vanza 2017;(I. Mishra & Arora, 2019). ―HT-PGPR mitigate 491 

ionic toxicity through cation bridging, hydrogen bonding, and anion adsorption. There are 492 

reports where application of HT-PGPR has improved salt index of saline soil Mitigating the 493 

nutrient status, HT-PGPR improve N, C, P, Fe and Zn content of saline soils, thereby 494 

reviving the lost vegetative index and accelerating the agricultural sustainability. Under saline 495 

conditions the N content and population of nitrogen fixers are found to be decreasing. Thus, 496 

acting as an efficient reclamation strategy, the symbiotic and asymbiotic biological nitrogen 497 

fixation by salt tolerant microbes enhances the N content as well as improves fertility of soil 498 

The enrichment of saline soil using nitrogen fixing PGPR Pseudomonas aeruginosa, along 499 

with N compost stimulated the level of nitrogen as compared with un-inoculated 500 

control‖(Arif et al., 2017). ―Revival of arid and saline soil by utlizing salt-tolerant rhizobia 501 

can help in improving the fertility and productivity of these stressed agro-502 

ecosystems‖(Zahran, 1999). (Hassan et al., 2018)utilized ―root powder of a halophyte 503 

Cenchrus ciliaris as carrier to develop inoculant from HT-PGPR B. cereus, P. moraviensis 504 

and Stenotrophomonasmaltophilia. The developed bioinoculant when applied in field 505 

improved growth of wheat and simultaneously resulted in better texture, EC, pH and organic 506 



matter of saline-sodic soil. Along with N, HT-PGPR can stimulate the P, Zn and Fe content 507 

of saline soils. P. moraviensis reclaimed saline sodic soil by improving P, nitrate (NO3 –), N 508 

and K content by almost 18– 35%‖. 509 

Microbial mechanisms play a crucial role in addressing saline soil issues by enhancing both 510 

its structure and composition. The presence of halotolerant plant growth-promoting 511 

rhizobacteria (HT-PGPR) significantly influences soil quality and fertility parametersand 512 

various aspects of soil health, including nutrient status, soil structure, organic matter content, 513 

pH levels, electrical conductivity (EC), and the deposition of ionic salts. HT-PGPR mitigate 514 

ionic toxicity through mechanisms like cation bridging, hydrogen bonding, and anion 515 

adsorption, as indicated by research conducted by (Sandhya & Ali, 2015). Additionally, 516 

applications of HT-PGPR have been shown to enhance the salt index of saline soil, as 517 

demonstrated by (S. Arora et al., 2016). 518 

By improving the nutrient status, HT-PGPR enhance the levels of nitrogen (N), carbon (C), 519 

phosphorus (P), iron (Fe), and zinc (Zn) in saline soils, thus revitalizing the vegetative index 520 

and promoting agricultural sustainability. In saline conditions, the nitrogen content and 521 

populations of nitrogen-fixing organisms tend to decrease. Efficient reclamation strategies 522 

involving symbiotic and asymbiotic biological nitrogen fixation by salt-tolerant microbes, as 523 

shown by (Rashid et al. 2016;Verma et al. 2019help enhance N content and improve soil 524 

fertility. 525 

Enriching saline soil with nitrogen-fixing PGPR, such as P. aeruginosa, along with 526 

nitrogen compost, as observed by (Arif et al., 2017)can stimulate nitrogen levels compared to 527 

un-inoculated controls. Innovative approaches like using root powder of halophytes as 528 

carriers for developing bioinoculants from HT-PGPR, as demonstrated by Hassan et al. 529 

(2018), show promise in improving soil conditions and crop growth. These bioinoculants 530 

have been shown to enhance wheat growth and improve soil texture, EC, pH, and organic 531 

matter content in saline-sodic soil. Furthermore, HT-PGPR can stimulate the levels of 532 

phosphorus, zinc, and iron in saline soils. For instance, P. moraviensis has been shown to 533 

reclaim saline sodic soil by improving P, nitrate (NO3 –), N, and K content by significant 534 

margins, as evidenced by (Ul Hassan & Bano, 2019).. 535 

The increase in P content of saline soil was observed by inoculation with phosphate 536 

solubilizing B. licheniformis MH48 strain. Reduction in soil pH, EC and enhanced 537 

availability of macro-nutrients (NPK), micronutrients (Fe, Zn, Mn and Cu) and organic 538 



matter was reported when saline soil was inoculated with HT-PGPR and phosphogypsum 539 

(Al-Enazy et al., 2018). ―Besides nutrition, aggregation is also an important soil quality 540 

which promotes water percolation, root penetration, aeration and micropore formation. The 541 

establishment of biofilm in soil aggregates or on root surface is characterized by high 542 

concentration of root exudates, signaling molecules, organic matter and water content. This 543 

complex acts as a dragging force in selecting and establishing microbial diversity. The 544 

primary content of biofilm (EPS) regulates the organic matter by serving as C source and 545 

coagulating soil particles thereby ensuring the formation of humic substances which are 546 

stable organic carbon form. Improvement of C cycling in saline soil is reported when 547 

inoculated with PGPR. Another mechanism of action reported byhighlights that bacterial 548 

inoculation increases the dehydrogenase activity which is suggested to be directly correlated 549 

with soil microbial biomass which described increase in microbial biomass carbon and 550 

dehydrogenase activity in saline soil upon inoculation with HT-PGPR B. cereus Pb25. 551 

Research thus clearly shows the role and possible utilization of HT-PGPR in improving the 552 

quality of soils impacted with abiotic stresses such as salinity‖ (Burns et al. 2013; Canfora et 553 

al. 2014; Lipińska et al. 2015; Islam et al. 2016Ramakrishnan et al., 2023). 554 

HT-PGPR play a crucial role in enhancing soil structure and aggregation by 555 

producing extracellular polymeric substances (EPS), particularly under stressful conditions. 556 

This process leads to the formation of microaggregates, facilitating water percolation, root 557 

penetration, aeration, and micropore formation, as highlighted by Rillig et al. 2017. The 558 

establishment of biofilms in soil aggregates or on root surfaces is characterized by a high 559 

concentration of root exudates, signaling molecules, organic matter, and water content. This 560 

complex acts as a driving force in selecting and establishing microbial diversity.  561 

Improving the productivity of saline soils holds the promise of not only bolstering food 562 

security but also enriching the content and quality of soil organic matter in these inherently 563 

nutrient-deficient agricultural systems. This endeavor offers multifaceted benefits in terms of  564 

Soil Organic Matter Enrichment, Nutrient Retention, Food Security, Soil Structure 565 

Improvement, Carbon Sequestration and achieving the sustainability. 566 

FUTURE PROSPECTS 567 

A deep study on appropriate measure for Effective way to overcome traditional 568 

phytoremediation limitations when it comes to PCB removal, taking advantage also of the 569 

degrading ability of soil microorganisms and its effiency in field application and  a crucial 570 



issue to evaluate the concrete feasibility of this technology. Further detailed studies on 571 

―omic‖ approaches might act as powerful tools to unveil taxonomic and functional diversity 572 

of microorganisms, overcoming their limited cultivability, allowing the identification of the 573 

best plant-microbe combination involved in the saline stressed soil remediation under 574 

different environmental conditions. 575 

An additional strategy to study salt tolerant bacteria is the exploitation of resuscitation 576 

promoting factor active on those bacteria that cannot be cultivated in vitro due to their 577 

occurrence in the soil in a viable but not culturable (VBNC) state in response to stress 578 

conditions, like high pollution levels. The resurgence promoting factor (Rpf, a cytokine from 579 

the bacterium Micrococcus luteus) was applied on an enrichment culture established from 580 

PCB-contaminated soil, supplying biphenyl as unique carbon source. stated that the 581 

understanding of regulatory networks of ST-PGPR in inducing salt tolerance in plants, could 582 

serve as a promising measure to alleviate salt stress and improve global food 583 

productionsuggested that identification of the dominant indigenous microflora from the 584 

highly saline soil and their possible adaptation mechanisms may provide a better 585 

understanding for exploring ecological and evolutionary responses in ecosystems. The role of 586 

metagenomic and metabolomic approaches becomes very important in case of harnessing and 587 

identifying novel ST-PGPR, along with the key genes and metabolites involved in salt 588 

tolerance. especially at field scale. In particular, the potential of plants and the application of 589 

PCB-degrading endophytic bacteria remains unexplored and constitutes a big challenge due 590 

to their hydrophobic and recalcitrant chemical nature (Vergani et al., 2017) which will be a in 591 

turn benefit the plant by assimilating nutrients and increasing survival/ adaption rate (Khan et 592 

al., 2019). 593 

An in-depth exploration into overcoming the traditional limitations of 594 

phytoremediation for PCB removal involves leveraging the degrading capacity of soil 595 

microorganisms, especially in field applications. A critical aspect to assess the feasibility of 596 

this approach is to delve into "omic" techniques, which can unravel the taxonomic and 597 

functional diversity of microorganisms, circumventing their restricted cultivability. These 598 

studies, as highlighted by (Vergani et al., 2017), aid in identifying optimal plant-microbe 599 

combinations for remediating saline-stressed soils across various environmental conditions. 600 

A complementary strategy involves investigating salt-tolerant bacteria, utilizing 601 

resuscitation-promoting factors to revive bacteria in a viable but non-culturable state induced 602 



by stressors like high pollution levels, as elucidated by (Ma et al., 2011). Understanding the 603 

regulatory networks of salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) in 604 

enhancing plant salt tolerance, as proposed by (Kim et al., 2019), offers promising avenues to 605 

mitigate salt stress and enhance global food production.Furthermore, uncovering the 606 

dominant indigenous microflora in highly saline soils and their adaptation mechanisms, as 607 

suggested by (Kim et al., 2019), provides insights into ecological and evolutionary responses 608 

in ecosystems. Metagenomic and metabolomic approaches play pivotal roles in identifying 609 

novel ST-PGPR, along with the key genes and metabolites involved in salt tolerance, 610 

particularly at the field scale. However, the potential of plants and PCB-degrading endophytic 611 

bacteria remains largely untapped due to the hydrophobic and recalcitrant nature of PCBs, as 612 

noted by (Vergani et al., 2017). Nonetheless, exploring this avenue presents opportunities for 613 

plants to assimilate nutrients, thereby enhancing their survival and adaptation rates under 614 

various climatic condition. 615 

CONCLUSIONS 616 

The study aimed to assess the positive impacts of locally isolated salt-tolerant plant 617 

growth-promoting rhizobacteria (PGPR) on various crop growth. These enhancements likely 618 

stem from the salt tolerance and growth-promoting attributes of the chosen bacterial strains. 619 

Consequently, this promising isolate could serve as a biofertilizer source, offering potential to 620 

enhance current rice cultivation methods and address salinity challenges in coastal salt-621 

affected regions. However, it's essential to complement this initial discovery with extensive 622 

field trials for future research, ensuring suitability for large-scale implementation.Moreover, 623 

comprehensive investigations focusing on gene expression and functional traits of salt-624 

tolerant PGPR involved in promoting plant growth under salinity stress are imperative. These 625 

studies will facilitate the development of tailored bioformulations for saline soil systems, 626 

which are increasingly prevalent worldwide. The adoption of such green biotechnology holds 627 

multifaceted positive implications for agro-ecosystems and rural 628 

environments.Revolutionizing agricultural resilience by harnessing the power of 629 

phytobeneficial bacteria to combat saline stress and restore degraded soils, offering 630 

sustainable solutions for food security and environmental conservation. 631 
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