
 

 

ENHANCING CROP SALINE STRESS TOLERANCE AND SOIL REMEDIATION 

WITH PHYTOBENEFICIAL BACTERIA: DIVERSE APPROACHES FOR 

IMPROVEMENT 

 

ABSTRACT 

Soil salinity, a pervasive issue exacerbated by factors like irrigation and climate 

change, poses a significant threat to global food security. The accumulation of salts not only 

hampers crop growth and yield but also jeopardizes the livelihoods of millions who depend 

on agriculture for sustenance. Elevated salt levels in saline soils induce osmotic, ionic, 

oxidative, and water stress in plants. Implementing biological solutions offers the most 

dependable and sustainable method to safeguard food security while reducing reliance on 

agrochemicals which hampers various physiological and metabolic processes in plants.To 

ensure optimal plant growth under such changing conditions,Implementing biological 

solutions (Rhizobacteria) offers the most dependable and sustainable method to safeguard 

food security while reducing reliance on agrochemicals must be integrated into agricultural 

practices.This chapter concisely explores the mechanisms and utilization of beneficial 

microorganisms in both plants and soil to mitigate salt stress. It also addresses the current 

limitations and suggests potential areas for improvement in future research. 

Keywords: Saline soil, Rhizobacteria, Remediation, Pseudomonas spp. 

 

INTRODUCTION 

The population of Earth reached 8.1 billion people in 2010; if growth continues at its current 

rate, that number is predicted to reach 9.7 billion people by 2050 (Projections of population 

growth). Additionally, water, air and soil pollution are responsible for about 40% of deaths 

globally and environmental deterioration like this, together with population growth, are 

thought to be important factors in the rapid rise in human disease worldwide. Various abiotic 

factors such as temperature, salinity, drought, pesticide and fertilizer usage, soil pH, and 

heavy metal contamination can impede crop productivity (Yadav et al., 2020;Kumar 

2020;Ahmad et al., 2011).  Out of all of these, soil salinity's worldwide effect on crop 

productivity has emerged as a major barrier. Human activity has increased the development 



 

 

of soil salinization during the last few decades (Lambers 2003; Bargaz et al. 2018;Sultana et 

al. 2020).Important soil activities like respiration, residue breakdown, nitrification, 

denitrification, soil biodiversity, and microbial activity are all impacted by the extreme soil 

salinization (Schirawski & Perlin, 2018). Increased soil salinity and decreased crop output are 

also observed in areas with excessive fertiliser application (Rütting et al., 2018). The 

technique of removing salt from saline soil is labor-intensive and expensive (Qadir et al., 

2014). For quite some time, the rehabilitation of saline soils has primarily relied on physical 

and chemical techniques. Within the realm of physical processes, soluble salts within the root 

zone are extracted through methods such as scraping, flushing, and leaching (Ayyam et al., 

2019). Nevertheless, chemical methods often involve the utilization of gypsum and lime as 

neutralizing agents to mitigate saline soil conditions(Keren, 2005),However, these methods 

are deemed unsustainable and are considered inefficient, particularly when the salt 

concentration reaches excessively high levels,The common practice of cultivating salt-

tolerant crop varieties, such as barley and canola, on saline soils is widespread(Fita et al., 

2015). Nevertheless, due to their limited salt tolerance profile, these crops have a restricted 

global distribution and cannot be effectively utilized in soils with moderate to high electrical 

conductivity (EC) levels (Morton et al., 2019) also highlighted that despite vigorous efforts 

from the research community, only few salt tolerance genes have been identified having real 

applications in improving productivity of saline soils. 

Therefore, achieving viable crop yields in saline soils is imperative. In addition to utilizing 

salt-tolerant varieties or chemical neutralization methods, it's essential to incorporate 

sustainable approaches. In the last few years, research showed that the use of salt-tolerant 

plant growth promoting rhizobacteria (ST-PGPR) and halotolerant rhizobacteria (HT-

rhizobactria)  in saline agriculture can be harnessed for enhancing productivity and improving 

soil fertility as well (Grover et al., 2011).As they significantly impact biogeochemical cycles, 

soil fertility, and plant health, they play a crucial role in influencing plant growth and the 

uptake of nutrients.This review critically examines the role of salt-tolerant plant growth-

promoting rhizobacteria (ST-PGPR) and halo tolerant rhizobacteria (HT-rhizobacteria) in 

responding to salt-affected soil and their beneficial effects on key crops. It delves into their 

mechanisms for remediating salt-affected soil under diverse environmental conditions.The 

present review focuses on the enhancement of productivity under stressed conditions and 

increased resistance of plants against salinity stress by application of plant growth promoting 

microorganisms. 



 

 

The utilization of Plant Growth-Promoting Rhizobacteria (PGPR) has been expanded to 

remediate contaminated soils in conjunction with plants. Therefore, there is a pressing 

necessity to augment the effectiveness of limited external inputs by optimizing the 

combinations of beneficial bacteria within sustainable agricultural production systems. This 

review delves into the significance of soil-beneficial bacteria and their contributions to 

promoting plant growth through both direct and indirect mechanisms. A deeper 

understanding of these varied mechanisms will contribute to establishing these bacteria as 

invaluable allies in the future of agriculture. 

1. MECHANISIM OF CROP SALINE STRESS TOLERANCE BY SOIL 

BENEFICIAL BACTERIA 

Soil salinity poses a significant challenge for irrigated agriculture. In hot and arid 

regions across the globe, soils often exhibit high salinity levels, resulting in limited 

agricultural productivity. It's worth noting that all soils inherently contain some amount of 

water-soluble salts(Shrivastava & Kumar, 2015). Soluble salts are a form of essential 

nutrients that plants absorb; nevertheless, an overabundance of them can seriously impede 

plant growth. Global natural resources have suffered greatly as a result of land degradation 

processes over the past century, whether they are physical, chemical, or biological. 

Compacted soil, contamination from both organic and inorganic sources, and a decrease in 

microbial variety and activity are a few of these problems Patel and Dave 2011).(Bidalia et 

al., 2019)(S. Singh & Singh, 2022). Salinity destructively interrupts the physical and 

chemical properties of soil as well as affects crop growth to a higher extent (K. Singh, 2016). 

To address this issue, beneficial microorganisms called plant growth-promoting 

rhizobacteria (PGPR) could serve a vital function. These rhizospheric bacteria have the 

ability to efficiently colonize plant roots, thereby contributing to soil fertility maintenance. 

They provide a promising alternative to traditional inorganic fertilizers and pesticides(Majeed 

et al., 2015). Previous reports have highlighted the efficacy of PGPR in enhancing the growth 

of different crops under conditions of salt stress(Cardinale et al., 2015); (Soldan et al., 

2019).The initial selection of locally-isolated salt-tolerant PGPR for addressing salinity is 

essential to guarantee their effectiveness. Studies have shown that indigenous strains are 

more proficient in enhancing plant resistance to salinity stress compared to PGPR from non-

saline ecosystems(Etesami & Beattie, 2017); (Egamberdieva & Kucharova, 2009).These 

beneficial microbes employ various mechanisms to mitigate salt stress, such as regulating the 



 

 

Na+/K+ ratio by secreting extracellular polymeric substances known as exopolysaccharides 

(EPS), this mechanism enhances their survival in unfavorable soil conditions(R. P. Singh & 

Jha, 2016)(Vurukonda et al., 2016). 

The previous findings have reported that several bacterial genera, 

including Pseudomonas, Bacillus, Burkholderia, Enterobacter, Microbacterium, Planococcus

, Halomonas could produce EPS (Exopolysaccharides) in salt stress condition (Upadhyay et 

al., 2011)(Qurashi & Sabri, 2012).The exopolysaccharides play a vital role in bacterial 

aggregation or flocculation, chelates the various cations including Na+ (Watanabe et al., 

2003)(Nunkaew et al., 2015), facilitating the production of yield, this process involves the 

specific adsorption of the polymeric segment and polymer bridging between cells(Tenney & 

Stumm, 1965)(M. Arora et al., 2010). Additionally, EPS are highly beneficial in the 

formation of bacterial biofilms and enhancing bacterial colonization on plant root surfaces(Y. 

Chen et al., 2013).Exopolysaccharides are able to lessen the hostile effect of osmotic-stress 

by augmenting fresh weight, dry weight and water content in plants (Ghosh et al., 2019).  In 

addition to that, PGPR are able to produce multiple plant growth-promoting properties such 

as indole acetic acid production, biological nitrogen fixation, solubilization of soil 

phosphorus (P) and potassium (K), and production of siderophores and hydrolyzing enzymes 

under salt stress condition (Kang et al., 2009)(Richardson et al., 2009).(Yousef, 

2018)(Goswami et al., 2014).Plants treated with Exo-poly saccharides (EPS) producing 

bacteria display increased resistance to water and salinity stress due to improved soil 

structure (Sandhya et al., 2009). EPS can also bind to cations including Na+ thus making it 

unavailable to plants under saline conditions.  

 The SEM observations supported all these salt-tolerance attributes, revealing the 

bacterial capacity to produce EPS, facilitate flocculation, and form biofilms when subjected 

to saline conditions compared to non-saline environments. Bacterial cells were observed to 

associate with the plant root system, notably enhancing moisture retention capacity and 

bolstering the defense system against various abiotic stresses. Previous research also noted a 

reduction in bacterial EPS and biofilm formation with increased NaCl concentration (Havasi 

et al., 2008).  The detrimental effects of salinity can be mitigated through the application of 

salt-tolerant PGPR, as demonstrated in this greenhouse trial. This intervention notably 

enhanced the photosynthesis of all three rice varieties, resulting in increased grain yield under 

saline conditions (Shultana et al., 2020)(Tewari & Arora, 2014).Soils experiencing salt stress 



 

 

are recognized for their ability to inhibit plant growth (Paul, 2012). In their natural habitat, 

plants are colonized by both endocellular and intracellular microorganisms(Gray & Smith, 

2005). The rhizosphere microorganisms, especially beneficial bacteria and fungi, have the 

potential to enhance plant performance in stressful environments, thereby directly and 

indirectly improving yields(Dimkpa et al., 2009), Certain PGPR can directly stimulate plant 

growth and development by supplying fixed nitrogen, phytohormones, iron sequestered by 

bacterial siderophores, and soluble phosphate. Others indirectly benefit plants by protecting 

them against soil-borne diseases, primarily caused by pathogenic fungi (Lugtenberg & 

Kamilova, 2009). Soil salinization presents a significant challenge to agricultural productivity 

worldwide. Crops cultivated in saline soils face issues such as high osmotic stress, nutritional 

imbalances and toxicities, poor soil structure, and decreased crop yields. Studies has 

confirmed that salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) are capable of 

producing various phytohormones, including auxins, gibberellins, and cytokinins(Dodd et al., 

2010). Additionally, they synthesize ACC deaminase (Glick, 2004), secondary compounds 

such as exopolysaccharides (Upadhyay et al., 2011;Timmusk et al., 2014) and osmolytes 

(proline, trehalose, and glycine betaines) (Bano and Fatima, 2009; (Upadhyay & Singh, 

2015)Furthermore, these bacteria play a role in regulating plant defense systems and 

activating the plant's antioxidative enzymes under salt stress(Hashem et al., 2016;Ali et al., 

2022). 

Numerous studies have highlighted potential mechanisms of salt tolerance in PGPR, 

particularly when they function as endophytes. However, it's important to note that only a 

small portion of these beneficial bacteria are able to penetrate the root cell, and the interaction 

between plants and microbes primarily takes place within the 5mm rhizosphere zone 

(Shultana et al., 2020).Salt-tolerant bacterial strains have demonstrated elevated nitrogenase 

activity in saline environments and possess the capability to synthesize osmolytes. These 

osmolytes help maintain cell turgidity and support metabolism in adverse conditions. (Yan et 

al., 2015Kumar et al., 1999). 

Salinity-induced nutritional imbalance poses a challenge to plant growth and 

productivity, particularly affecting phosphorus (P) uptake and transport. To address P 

deficiency in salt-affected soils, P fertilizers are commonly recommended. However, 

employing salt-tolerant P-solubilizing rhizobacteria can significantly enhance P availability 

in saline soils (Salwan et al., 2019). In recent studies, plant growth-promoting (PGP) bacteria 



 

 

have been discovered to boost plant tolerance to salinity, particularly those bacteria that are 

associated with plants(Glick, 2004). Endophytic actinomycetes are particularly intriguing due 

to their dual role. Not only do they produce various bioactive secondary metabolites, 

safeguarding plants against infectious diseases (Misk & Franco, 2011), but they also exhibit 

the capacity to enhance plant growth. They carry several plant growth-promoting (PGP) 

traits, including the production of siderophores for iron acquisition, synthesis of plant 

hormones like auxins and cytokinins, and the solubilization of phosphate and other minerals 

to provide nutrients(Kruasuwan and Thamchaipenet 2016;Rungin et al. 2012)Furthermore, 

they assist in plant growth under stressful conditions induced by drought, heavy metals, 

flooding and high salinity by alleviating stress associated with ethylene through the 

production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase.Chen et al. 2007 

correlated the role of proline accumulation with drought and salt tolerance in plants, Through 

these studies, we gain insight into the role of released hormones, enzymes, and other 

metabolic substances in alleviating salt stress conditions with the assistance of numerous 

rhizobacteria. 

2. BACTERIAL MICROBES: SALT STRESS ALLEVIATION TOOL IN 

IMPORTANT CROPS 

Several strategies have been developed in order to decrease the toxic effects caused 

by high salinity on plant growth, including plant genetic engineering (W. Wang et al., 2003), 

and recently the use of plant growth-promoting bacteria (PGPB)(Dimkpa et al., 2009). The 

role of microorganisms in plant growth promotion, nutrient management and disease control 

is well known and well established. These beneficial microorganisms colonize the 

rhizosphere/endorhizosphere of plants and promote growth of the plants through various 

direct and indirect mechanisms (Nia et al. 2012;Ramadoss et al. 2013). Previous studies 

suggest that utilization of PGPB has become a promising alternative to alleviate plant stress 

caused by salinity (Yao et al., 2010a)and the role of microbes in the management of biotic 

and abiotic stresses is gaining importance. 

2.1 CEREAL CROPS  

Cereal crops serve as the primary sources of energy and protein in the human diet, 

cultivated in significantly larger quantities worldwide compared to other crops. Major cereal 

crops include wheat, maize, rice, barley, oats, sorghum, and millet. Despite their importance, 

only a few of these crops exhibit salt tolerance. Traditional methods such as conventional 



 

 

breeding, marker-assisted selection, and genetic engineering have been successful in 

enhancing yields in saline soils, but primarily for wheat and rice over the past decades. 

(Shahbaz & Ashraf, 2013); (Roy et al., 2014). It has been observed that the application of 

Salt-Tolerant Plant Growth-Promoting Rhizobacteria (ST-PGPR) in saline soil not only aids 

in crop survival but also enhances yields across a diverse array of cereal crops(R. P. Singh & 

Jha, 2016). 

Similarly, Jha and Subramanian (2014) noted that the combination of Pseudomonas 

pseudoalcaligenes, an endophytic bacterium, with Bacillus pumilus in the rhizosphere of 

paddy plants was more effective in protecting the plants from abiotic stress during early 

growth stages. This combination induced the production of osmoprotectant and antioxidant 

proteins, surpassing the effects of either rhizospheric or endophytic bacteria alone. The plants 

inoculated with the endophytic bacterium P.pseudoalcaligenes exhibited notably elevated 

levels of glycine betaine-like quaternary compounds and increased shoot biomass, 

particularly evident at lower salinity levels. This study demonstrates that the detrimental 

effects of salinity stress can be mitigated through the application of salt-tolerant Plant 

Growth-Promoting Rhizobacteria (PGPR). In a glasshouse trial, this approach significantly 

enhanced the photosynthetic activity of all three rice varieties, resulting in higher grain yields 

under saline conditions(Shultana et al., 2020)(Tewari & Arora, 2014).The inoculation of 

endophytic Streptomyces sp. GMKU 336, which produces 1-aminocyclopropane-1-

carboxylate deaminase (ACCD), into rice plants leads to improved growth and enhanced salt 

tolerance. This is accomplished by using ACCD activity to lower ethylene levels, which aids 

in the plants' ability to scavenge reactive oxygen species (ROS), maintain a balanced ion 

content, and control osmotic pressure (Jaemsaeng et al., 2018). The research conducted by (Ji 

et al., 2020)highlights the significant role of Glutamicibacter spp. YD01 in mitigating the 

detrimental effects of salt stress on the growth and development of rice plants. This is 

achieved through the regulation of phytohormone (ethylene) levels and the accumulation of 

reactive oxygen species (ROS), as well as maintaining ion balance, enhancing photosynthetic 

capacity, and promoting the expression of stress-responsive genes. 

Similarly, the inoculation of endophytic Methylobacterium oryzae CBMB20 into salt-

stressed rice plants, as observed in the study by Chatterjee et al. (2019), enhances 

photosynthesis and reduces emissions of stress-related volatiles. This is attributed to the 

modulation of ethylene-dependent responses and the activation of vacuolar H⁺ -



 

 

ATPase.Certain strains of Rhodopseudomonas palustris, such as TN114, show promise in 

facilitating the easier and more affordable growth of rice in saline soil conditions. This is 

attributed to the presence of 5-aminolevulinic acid (ALA) in the examined supernatants, 

which has a positive effect on rice growth under such challenging conditions(Nunkaew et al., 

2014). The studies byDamodaran et al. 2019 investigated the impact of various Salt-Tolerant 

Plant Growth-Promoting Rhizobacteria (ST-PGPR) on enhancing the productivity of salt-

tolerant rice and wheat grown on sodic soils. Their findings revealed that Lysinibacillus sp. 

was particularly effective in mitigating the adverse effects of salinity.Similarly, Misra and 

Chauhan 2020  discovered the several Bacillus sp. as a ST-PGPR with ACC deaminase 

activity were the most dominant in alleviating salt stress and enhancing the biomass of rice 

across different agro-climatic zones. Furthermore, the siderophore-producing ability of 

microorganisms under stressful conditions presents a promising alternative to chemical 

fertilizers, potentially aiding in managing salt stress and iron limitations in salt-affected soils. 

Sultana et al. 2021, recently reported that salt-tolerant siderophore-producing PGPR 

supported rice growthand increase in protein content is associated with improved 

photosynthesis, which is indicative of higher chlorophyll levels. 

Similarly, numerous studies have investigated the enhancement of saline tolerance in maize 

through various mechanisms employed by rhizobacteria to promote the growth and yield of 

the crop. The coinoculation of Rhizobium and Pseudomonas in Zea mays led to increased 

proline production, reduced electrolyte leakage, maintenance of leaf relative water content, 

and selective uptake of potassium ions, resulting in enhanced salt tolerance (Bano & Fatima, 

2009).The Nadeem et al. 2007discovered that inoculating salt-stressed maize with 

P.syringae(Zerrouk et al., 2016), Enterobacter aerogenes and P. fluorescens containing ACC 

deaminase, Azospirillum(Hamdia et al., 2004) resulted in higher K+/Na+ ratios. This 

combination also led to elevated relative water content, chlorophyll levels, and reduced 

proline content (Vardharajula et al., 2011), indicating enhanced salt tolerance mediated by 

various mechanisms. The role of trehalose as an osmoprotectant under salt stress is well-

documented, with numerous ST-PGPR discovered to possess genes for trehalose biosynthetic 

pathways (Qin et al. 2018; Orozco-Mosqueda et al. 2019; Shim et al. 2019.Aslam and Ali 

(2018) also reported that ACC deaminase activity in halotolerant bacterial genera such as 

Arthrobacter, Bacillus, Brevibacterium, Gracilibacillus, Virgibacillus, Salinicoccus, and 

Pseudomonas, as well as Exiguobacterium isolated from the rhizosphere and phylloplane of 

Suaedafruticosa (L.) Forssk, stimulated the growth of maize under saline conditions. 



 

 

 

 

The effect of ST-PGPR S. sciuri SAT-17 strain on anti-oxidative defense mechanisms and 

modulation of maize growth under salt stress was studied by (Akram et al., 2016). They 

reported that inoculation of maize with SAT-17 improved plant growth and decreased the 

ROS levels by increasing the cellular antioxidant enzyme activities (CAT, POD, and proline) 

under salinity treatments (75 and 150 mM NaCl).Likewise Upadhyay et al. 2012studied the 

impact of PGPR inoculation on growth and antioxidant status of wheat under saline 

conditions and reported that co-inoculation with B. subtilis and Arthrobacter sp. could 

alleviate the adverse effects of soil salinity on wheat growth with an increase in dry biomass, 

total soluble sugars and proline content.Nia et al. 2012studied the effect of inoculation of 

Azospirillum strains isolated from saline or non-saline soil on yield and yield components of 

wheat in salinity and they observed that inoculation with the two isolates increased salinity 

tolerance of wheat plants; the saline-adapted isolate significantly increased shoot dry weight 

and grain yield under severe water salinity.Similarly,Sadeghi et al. 2012studied the plant 

growth promoting activity of an auxin and siderophore producing isolate of Streptomyces 

under saline soil conditions and reported increases in growth and development of wheat plant. 

They observed significant increases in germination rate, percentage and uniformity, shoot 

length and dry weight compared to the control. Applying the bacterial inocula increased the 

concentration of N, P, Fe and Mn in wheat shoots grown in normal and saline soil and thus 

concluded that Streptomyces isolate has potential to be utilized as biofertilizers in saline soils. 

More recently (Ramadoss et al., 2013)studied the effect of five plant growth promoting 

halotolerant bacteria on wheat growth and found that inoculation of those halotolerant 

bacterial strains to ameliorate salt stress (80, 160 and 320 mM) in wheat seedlings produced 

an increase in root length of 71.7% in comparison with uninoculated positive controls. In 

particular, Hallobacillus sp. and B. halodenitrificans showed more than 90% increase in root 

elongation and 17.4% increase in dry weight when compared to uninoculated wheat seedlings 

at 320 mM NaCl stress indicating a significant reduction of the deleterious effects of NaCl. 

These results indicate that halotolerant bacteria isolated from saline environments have 

potential to enhance plant growth under saline stress through direct or indirect mechanisms 

and would be most appropriate as bioinoculants under such conditions. The isolation of 

indigenous microorganisms from the stress affected soils and screening on the basis of their 



 

 

stress tolerance and PGP traits may be useful in the rapid selection of efficient strains that 

could be used as bioinoculants for stressed crops. 

 

Similarly, Upadhyay et al. (2012) investigated co-inoculation with B. subtilis and 

Arthrobacter sp. could alleviate the adverse effects of soil salinity on wheat growth, leading 

to an increase in dry biomass, total soluble sugars, and proline content. Nia et al. (2012) they 

observed that inoculation with these isolates of Azospirillum strains isolated from saline or 

non-saline soil increased the salinity tolerance of wheat plants, with the saline-adapted isolate 

significantly enhancing shoot dry weight and grain yield under severe water salinity. The 

Sadeghi et al. (2012) explored the plant growth-promoting activity of an auxin and 

siderophore-producing isolate of Streptomyces under saline soil conditions, including 

significant improvements in germination rate, shoot length, and dry weight in wheat, also 

increased the concentration of nitrogen, phosphorus, iron, and manganese in wheat shoots 

grown in normal and saline soil, indicating the potential of the Streptomyces isolate as a 

biofertilizer in saline soils. 

More recently, Ramadoss et al. (2013) investigated the effect of five halotolerant 

bacteria (Hallobacillus sp. and B.halodenitrificans) inoculation in wheatwhich mitigated salt 

stress in wheat seedlings, resulting in a significant increase in root length compared to 

uninoculated controls. These findings suggest that halotolerant bacteria isolated from saline 

environments have the potential to enhance plant growth under saline stress conditions 

through direct or indirect mechanisms. Utilizing indigenous microorganisms from stress-

affected soils and screening them based on their stress tolerance and Plant Growth-Promoting 

(PGP) traits could expedite the selection of efficient strains for use as bioinoculants in 

stressed crops 

 

2.2 LEGUMES AND OIL YIELDING CROPS 

Along with cereals, legumes maintain their significance as vital sources of protein in 

the human diet. Salinity poses challenges to the production of grain and food legumes in 

various regions worldwide. In legumes, salt stress negatively impacts root-nodule formation, 

symbiotic relationships, and ultimately, nitrogen fixation capacity (Manchanda and Garg 

2008). The symbiotic association of rhizobia with legumes under salinity stress remains a 



 

 

focal area of research (Zahran 1991; Zahran 1999;Graham 1992).Many studies suggest that 

the application of salt-tolerant rhizobia offers a sustainable solution for enhancing the 

productivity of legume crops grown under salinity stress (Abiala et al., 2018). Several 

researchers have demonstrated that the adverse effects of salinity on legumes such as 

soybean, pigeon pea, common bean, mung bean, groundnut, and even tree legumes can be 

mitigated by the application of salt-tolerant rhizobial strains (Bashan and Holguin 1997; 

Kumar et al. 1999; Dobbelaere et al. 2001; Bashan et al. 2004; Dardanelli et al. 2008; Meena 

et al. 2017;Yasin et al. 2018). The role of ACC deaminase produced by Salt-Tolerant Plant 

Growth-Promoting Rhizobacteria (ST-PGPR) in nodule formation in legume crops is also 

well-documented (Ahmad et al. 2011; Barnawal et al. 2014). During the nodulation process, 

ACC deaminase is crucial for enhancing the persistence of infection threads, which are 

negatively impacted by ethylene levels. Thus, ACC deaminase aids in nodule formation 

under saline conditions (Nascimento et al., 2016). 

In chickpea (Cicer arietinum L.), delayed flowering has been directly associated with 

higher concentrations of Na+ in the laminae of fully expanded leaves (Pushpavalli et al., 

2016). The inoculation of chickpea plants with P. putida (MSC1) or P.pseudoalcaligens 

(MSC4) isolates demonstrated an enhancement in various parameters such as phosphate 

solubilization, siderophore production, and IAA (indole-3-acetic acid) production, which are 

indicative of improved plant growth under salt stress conditions compared to uninoculated 

controls (D. Patel et al., 2012).Research by (Yilmaz & Kulaz, 2019)on chickpea highlighted 

the significant role of Plant Growth Promoting Rhizobacteria (PGPRs) in regulating growth 

under salt stress. Increased concentrations of proline, malondialdehyde (MDA), as well as 

enhanced activities of antioxidant enzymes such as ascorbate peroxidase (APX), superoxide 

dismutase (SOD), and catalase (CAT) were observed under saline conditions, suggesting that 

inoculated PGPR strains can mitigate salinity stress by enhancing salt tolerance. 

A study by (Panwar, Tewari, Gulati, et al., 2016)suggested, for the first time, the 

potential use of native Pantoeadispersa strain PSB3 as a biofertilizer to mitigate the adverse 

effects of salt stress on chickpea plants. P.dispersa exhibited notable production of IAA 

(218.3 µg/ml), siderophores (60.33% SU), phosphate solubilization (3.64 µg/ml), and ACC 

(1-aminocyclopropane-1-carboxylate) deaminase activity (207.45 nmol/mg/h) even in the 

presence of 150 mM NaCl under laboratory conditions.The coinoculation of ACC+ 

Mesorhizobium and rhizobacterial isolates showed more stimulatory effect on nodulation and 

plant biomass under normal and salt amended treatments. Results revealed that positive 



 

 

response of PGPR on productivity of chickpea but more enunciated response about grain 

yield was observed with the combined application of SA and PGPR compared to control. 

Growth parameters i.e root length, root mass, number of nodules and shoot mass were highly 

affected where SA was applied along with PGPR. From the study, it is proposed that under 

salt stress the combination of SA + PGPR can be a suitable practice for more production of 

chickpean Pakistan 

Similarly thecoinoculation of 1-aminocyclopropane-1-carboxylate (ACC)-utilizing 

Mesorhizobium and rhizobacterial isolates demonstrated a more pronounced stimulatory 

effect on nodulation and plant biomass under both normal and salt-amended conditions 

(Chaudhary & Sindhu, 2017). The results underscored the positive impact of Plant Growth 

Promoting Rhizobacteria (PGPR) on chickpea productivity, with a particularly enhanced 

effect on grain yield observed when salicylic acid (SA) was combined with PGPR compared 

to control treatments. Notably, growth parameters such as root length, root mass, nodulation, 

and shoot mass were significantly influenced by the application of SA in conjunction with 

PGPR. This study suggests that the combined application of SA and PGPR could be a 

promising approach for enhancing chickpea production, especially in salt-stressed conditions, 

offering potential benefits for chickpea cultivation in (Aneela et al. 2019;Zahir et al. 

2011Zahir et al. 2010;Ahmad et al. 2011;Ahmad et al. 2013). 

The enhanced mung bean growth under saline conditions, due to bacterial inoculation, 

might be attributed to bacterial IAA activity, which has a tremendous effect on root growth, 

and water and nutrient absorption from a greater soil volume (Príncipe et al., 2007).  

Inoculation/co-inoculation with rhizobia and plant growth promoting rhizobacteria (PGPR) 

containing 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase improve the plant 

growth by reducing the stress induced ethylene production through ACC-deaminase activity 

(Aamir et al., 2013). Cronobacter (two isolates) and Enterobacter (two isolates) Inoculation 

of PGP bacteria under 2 and 10% salinity stress showed enhanced plant growth parameters 

in Vigna radiata compared to both salinity and non-salinity control plants(Desai et al. 

2023;Panwar et al. 2016b).Soil salinity poses a significant threat to plant health, impacting 

various aspects of their growth and development. Salinity disrupts the flowering and fruiting 

patterns of plants, leading to abnormalities in reproductive physiology, ultimately resulting in 

decreased crop yields and biomass. In the case of pigeon pea, salinity can cause a reduction in 

flowering by as much as 50%(Cajanus cajan L. Mill)(Garg & Manchanda, 2008).  



 

 

2.3 OTHER CROPS  

Salt stress profoundly impacts plant both vegetative and reproductive physiology. According 

to Ghanem et al. 2009, in tomato plants, exposure to salinity stress leads to the accumulation 

of Na+ in various reproductive organs such as the style, ovaries, and anther intermediate 

layers. This accumulation contributes to an increase in flower abortion rates, a decrease in 

pollen number, and a reduction in pollen viability. Additionally, high salt stress levels, such 

as 150 mM NaCl, can delay flowering transition and hinder the growth of shoots and roots in 

tomato plants (Ghanem et al., 2009). 

The Tank and Saraf 2010demonstrated that certain Plant Growth Promoting Rhizobacteria 

(PGPR) capable of phosphate solubilization, phytohormone production, and siderophore 

secretion can enhance the growth of tomato plants under 2% NaCl stress conditions. 

Moreover, (Masmoudi et al., 2021) found that Bacillus velezensis FMH2, which produces 

indole-3-acetic acid (IAA), significantly promotes root length and lateral root production, 

thereby enhancing tomato plant growth under salt stress. These findings align with the results 

of studies by (Habib et al. 2016; Shultana et al. 2020) which demonstrated that PGPR 

inoculation increases the activities of reactive oxygen species (ROS)-scavenging antioxidant 

enzymes in okra and tomato plants under salt stress conditions. 

 Similarly Yao et al. 2010b demonstrated that inoculation with P. putida Rs 198 

promotes cotton growth and germination even under conditions of salt stress. In Arabidopsis, 

the impact of salinity was investigated in a hydroponic solution, revealing various symptoms 

such as reduced fertility, decreased fruit length, transient wilting, and fruits predominantly 

containing aborted ovules and embryos, which were narrower and smaller in size (Sun et al., 

2004). Similarly, salt stress affects early flowering and the male gametophyte of canola 

(Brassica napus), resulting in a reduction in pollen grain numbers and abnormal growth of 

anthers, ultimately leading to decreased crop yield (Mahmoodzadeh & Bemani, 2008). (Khan 

et al., 2012) found that under saline conditions, the growth, yield, and biomass of pearl millet 

are adversely affected, including reductions in germination percentage, plant height, leaf area, 

total biomass, and grain yield per plant.Pea plants also suffer from the adverse effects of 

salinity on growth, yield, and biomass (Wolde & Adamu, 2018). (Farooq et al., 2017) 

reviewed the impact of salt stress on grain legumes, noting that salinity can reduce crop yield 

by 12–100% in various legume species. (Faravani et al., 2013)investigated the salt tolerance 



 

 

of black cumin (Nigella sativa L.) and found that increasing salinity levels from 0.3 to 9 dS 

m−1 resulted in reduced average seed and biological yield. 

Similarly, Alam et al. 2015studied the effect of different salinity levels on the weed plant 

Portulaca oleracea L., which holds nutritional importance and is utilized similarly to spinach 

and lettuce in many countries. They observed reductions in biomass and yield, as well as 

changes in physiological attributes and alterations in stem and root structure. 

3.SOIL REMEDIATION WITH PHYTOBENEFICIAL BACTERIA 

The industrialization of the past century has led to a significant increase in the release 

of anthropogenic chemicals, such as Polychlorinated biphenyls (PCBs) and persistent organic 

pollutants (POPs), into the environment. This has resulted in detrimental effects on human 

health and soil ecosystems, as highlighted by Vergani et al. 2017. Soil degradation further 

exacerbates these issues, stemming from factors like continuous cropping, excessive use of 

chemical fertilizers and pesticides, and contamination by heavy metals.Microorganisms, 

being the predominant biota in soil, play a crucial role in restoring land ecosystems. The 

microecology of the rhizosphere directly or indirectly influences the growth, development, 

metabolic regulation, and accumulation of active ingredients in medicinal plants (MPs). 

Wang et al. 2022 they suggestedthat, the use of microbial resources as a promising alternative 

to traditional fertilizers and pesticides due to their economic efficiency, environmental safety, 

and non-toxic nature. 

The deterioration of soil quality is accelerated by emissions from industrial waste, 

widespread fertilizer and pesticide use, and sewage irrigation, leading to issues like soil 

hardening, salinization, and accumulation of heavy metals and organic contaminants (Sharma 

et al., 2021Geng et al. 2019). A national survey in China revealed that 16.1% of soil sites 

investigated had excessive levels of pollutants, including both inorganic and organic 

contaminants (Mee & Mnr, 2014).Despite attempts at soil amelioration through chemical and 

physical methods, these approaches are often inefficient, complex, and costly (Swamy et al., 

2019). Therefore, there is a growing need for more effective, economical, and 

environmentally friendly methods and technologies to remediate degraded soils and promote 

sustainable ecological and agricultural development. 



 

 

Rhizoremediation has emerged as a promising strategy for in situ removal of organic 

contaminants, facilitated by various processes performed by different species of soil bacteria. 

Write your own words 

 

 

 

3.1 SOIL REMEDIATION FROM SALINE STRESS THROUGH RHIZOBACTERIA 

The presence of an excess amount of salt in soil shows cumulative and far- reaching 

effects on crops. Salt stress triggers ionic imbalance in plants, causes nutrient deficiency, 

perturbations in carbon (C) and nitrogen (N) assimilatory pathways, lowered rate of 

photosynthesis, generation of reactive oxygen species (ROS), osmotic and oxidative stress, 

thereby retarding growth and yield of crops (Bulgari et al. 2019;Mishra and Arora 2018). 

Salt stress also poses negative impacts on soil processes, pH, decomposition rate, 

nutrient composition, microbial biodiversity and water availability, leading to the prevalence 

of drought-like conditions. According to Attia et al. 2020in several agro-ecosystems, 

particularly in arid and semi-arid regions, drought and salinity occur simultaneously resulting 

in overlapping symptoms of both the stresses in the plants. Physical methods of treatment of 

saline soils, that include flushing, leaching, scraping and chemical amendments e.g. addition 

of gypsum and lime, are not sustainable (Egamberdieva et al., 2019). These methods are 

time-consuming, costly and above all, cause genetic erosion of indigenous 

species(Chakraborty et al. 2018;Anderson et al. 2019). Application of plant growth 

promoting rhizobacteria (PGPR) has the potential of alleviating salt stress in plants through 

elicitation of several physiological and molecular mechanisms. This includes modification in 

root systems, inducing antioxidant machinery, production of exopolysaccharides (useful in 

soil aggregate formation, humification, increase in water retention, quorum sensing, 

nodulation and establishing microbial diversity in saline soils) and siderophores, modulation 

of phytohormones, synthesis of osmolytes, uptake of minerals and control of phytopathogens 

(Shahzad et al., 2017)(El-Esawi et al., 2018)(N. K. Arora et al., 2018)). Several species of 

halotolerant soil bacteria such as Arthrobacter, Azospirillum, Alcaligenes Bacillus, 

Burkholderia, Enterobactor, Flavobacterium, Pseudomonas and Rhizobium, have been 



 

 

reported to ameliorate salt stress in crops (Egamberdiyeva 2005;Shahzad et al. 2017; El-

Esawi et al. 2018;Arora et al. 2018 ;Saghafi et al. 2019). 

The mitigation of salt stress by halotolerant plant growth-promoting rhizobacteria (HT-

PGPR) likely involves a three-tiered association: the survival of bacteria under hyperosmotic 

conditions, the induction of salt tolerance mechanisms in plants, and the improvement of soil 

quality through various mechanisms. EPS, in particular, contribute significantly to these 

processes by enhancing soil structure, moisture retention, and microbial interactions 

3.2 HT-PGPR AS SOIL AMELIORATORS 

The involvement of microbial mechanisms in addressing saline soil through 

enhancements in structure and composition is equally significant. The presence of HT-PGPR 

in saline soil greatly influences soil quality and fertility parameters. Studies have confirmed 

that HTPGPR improve nutrient status, soil structure, organic matter, pH, EC, and deposition 

of ionic salts in soil(Arora and Vanza 2017;(I. Mishra & Arora, 2019). HT-PGPR mitigate 

ionic toxicity through cation bridging, hydrogen bonding, and anion adsorption. There are 

reports where application of HT-PGPR has improved salt index of saline soil Mitigating the 

nutrient status, HT-PGPR improve N, C, P, Fe and Zn content of saline soils, thereby 

reviving the lost vegetative index and accelerating the agricultural sustainability. Under saline 

conditions the N content and population of nitrogen fixers are found to be decreasing. Thus, 

acting as an efficient reclamation strategy, the symbiotic and asymbiotic biological nitrogen 

fixation by salt tolerant microbes enhances the N content as well as improves fertility of soil 

The enrichment of saline soil using nitrogen fixing PGPR Pseudomonas aeruginosa, along 

with N compost stimulated the level of nitrogen as compared with un-inoculated control (Arif 

et al., 2017). Revival of arid and saline soil by utlizing salt-tolerant rhizobia can help in 

improving the fertility and productivity of these stressed agro-ecosystems (Zahran, 1999). 

(Hassan et al., 2018)utilized root powder of a halophyte Cenchrus ciliaris as carrier to 

develop inoculant from HT-PGPR B. cereus, P.moraviensis and 

Stenotrophomonasmaltophilia. The developed bioinoculant when applied in field improved 

growth of wheat and simultaneously resulted in better texture, EC, pH and organic matter of 

saline-sodic soil. Along with N, HT-PGPR can stimulate the P, Zn and Fe content of saline 

soils. P. moraviensis reclaimed saline sodic soil by improving P, nitrate (NO3 –), N and K 

content by almost 18– 35%. 



 

 

Microbial mechanisms play a crucial role in addressing saline soil issues by enhancing both 

its structure and composition. The presence of halotolerant plant growth-promoting 

rhizobacteria (HT-PGPR) significantly influences soil quality and fertility parametersand 

various aspects of soil health, including nutrient status, soil structure, organic matter content, 

pH levels, electrical conductivity (EC), and the deposition of ionic salts. HT-PGPR mitigate 

ionic toxicity through mechanisms like cation bridging, hydrogen bonding, and anion 

adsorption, as indicated by research conducted by (Sandhya & Ali, 2015). Additionally, 

applications of HT-PGPR have been shown to enhance the salt index of saline soil, as 

demonstrated by (S. Arora et al., 2016). 

By improving the nutrient status, HT-PGPR enhance the levels of nitrogen (N), carbon (C), 

phosphorus (P), iron (Fe), and zinc (Zn) in saline soils, thus revitalizing the vegetative index 

and promoting agricultural sustainability. In saline conditions, the nitrogen content and 

populations of nitrogen-fixing organisms tend to decrease. Efficient reclamation strategies 

involving symbiotic and asymbiotic biological nitrogen fixation by salt-tolerant microbes, as 

shown by (Rashid et al. 2016;Verma et al. 2019help enhance N content and improve soil 

fertility. 

Enriching saline soil with nitrogen-fixing PGPR, such as P. aeruginosa, along with 

nitrogen compost, as observed by (Arif et al., 2017)can stimulate nitrogen levels compared to 

un-inoculated controls. Innovative approaches like using root powder of halophytes as 

carriers for developing bioinoculants from HT-PGPR, as demonstrated by Hassan et al. 

(2018), show promise in improving soil conditions and crop growth. These bioinoculants 

have been shown to enhance wheat growth and improve soil texture, EC, pH, and organic 

matter content in saline-sodic soil. Furthermore, HT-PGPR can stimulate the levels of 

phosphorus, zinc, and iron in saline soils. For instance, P.moraviensishas been shown to 

reclaim saline sodic soil by improving P, nitrate (NO3 –), N, and K content by significant 

margins, as evidenced by (Ul Hassan & Bano, 2019).. 

The increase in P content of saline soil was observed by inoculation with phosphate 

solubilizing B. licheniformis MH48 strain. Reduction in soil pH, EC and enhanced 

availability of macro-nutrients (NPK), micronutrients (Fe, Zn, Mn and Cu) and organic 

matter was reported when saline soil was inoculated with HT-PGPR and phosphogypsum(Al-

Enazy et al., 2018). Besides nutrition, aggregation is also an important soil quality which 

promotes water percolation, root penetration, aeration and micropore formation. The 



 

 

establishment of biofilm in soil aggregates or on root surface is characterized by high 

concentration of root exudates, signaling molecules, organic matter and water content. This 

complex acts as a dragging force in selecting and establishing microbial diversity. The 

primary content of biofilm (EPS) regulates the organic matter by serving as C source and 

coagulating soil particles thereby ensuring the formation of humic substances which are 

stable organic carbon form. Improvement of C cycling in saline soil is reported when 

inoculated with PGPR. Another mechanism of action reported byhighlights that bacterial 

inoculation increases the dehydrogenase activity which is suggested to be directly correlated 

with soil microbial biomass which described increase in microbial biomass carbon and 

dehydrogenase activity in saline soil upon inoculation with HT-PGPR B. cereus Pb25. 

Research thus clearly shows the role and possible utilization of HT-PGPR in improving the 

quality of soils impacted with abiotic stresses such as salinity (Burns et al. 2013; Canfora et 

al. 2014; Lipińska et al. 2015; Islam et al. 2016). 

HT-PGPR play a crucial role in enhancing soil structure and aggregation by 

producing extracellular polymeric substances (EPS), particularly under stressful conditions. 

This process leads to the formation of microaggregates, facilitating water percolation, root 

penetration, aeration, and micropore formation, as highlighted by Rillig et al. 2017. The 

establishment of biofilms in soil aggregates or on root surfaces is characterized by a high 

concentration of root exudates, signaling molecules, organic matter, and water content. This 

complex acts as a driving force in selecting and establishing microbial diversity.  

Improving the productivity of saline soils holds the promise of not only bolstering food 

security but also enriching the content and quality of soil organic matter in these inherently 

nutrient-deficient agricultural systems. This endeavor offers multifaceted benefits in terms of  

Soil Organic Matter Enrichment, Nutrient Retention, Food Security, Soil Structure 

Improvement, Carbon Sequestration and achieving the sustainability. 

FUTURE PROSPECTS 

A deep study on appropriate measure for Effective way to overcome traditional 

phytoremediation limitations when it comes to PCB removal, taking advantage also of the 

degrading ability of soil microorganisms and its effiency in field application and  a crucial 

issue to evaluate the concrete feasibility of this technology. Further detailed studies on 

―omic‖ approaches might act as powerful tools to unveil taxonomic and functional diversity 

of microorganisms, overcoming their limited cultivability, allowing the identification of the 



 

 

best plant-microbe combination involved in the saline stressed soil remediation under 

different environmental conditions. 

An additional strategy to study salt tolerant bacteria is the exploitation of resuscitation 

promoting factor active on those bacteria that cannot be cultivated in vitro due to their 

occurrence in the soil in a viable but not culturable (VBNC) state in response to stress 

conditions, like high pollution levels. The resurgence promoting factor (Rpf, a cytokine from 

the bacterium Micrococcus luteus) was applied on an enrichment culture established from 

PCB-contaminated soil, supplying biphenyl as unique carbon source. stated that the 

understanding of regulatory networks of ST-PGPR in inducing salt tolerance in plants, could 

serve as a promising measure to alleviate salt stress and improve global food 

productionsuggested that identification of the dominant indigenous microflora from the 

highly saline soil and their possible adaptation mechanisms may provide a better 

understanding for exploring ecological and evolutionary responses in ecosystems. The role of 

metagenomic and metabolomic approaches becomes very important in case of harnessing and 

identifying novel ST-PGPR, along with the key genes and metabolites involved in salt 

tolerance. especially at field scale. In particular, the potential of plants and the application of 

PCB-degrading endophytic bacteria remains unexplored and constitutes a big challenge due 

to their hydrophobic and recalcitrant chemical nature (Vergani et al., 2017) which will be a in 

turn benefit the plant by assimilating nutrients and increasing survival/ adaption rate (Khan et 

al., 2019). 

An in-depth exploration into overcoming the traditional limitations of 

phytoremediation for PCB removal involves leveraging the degrading capacity of soil 

microorganisms, especially in field applications. A critical aspect to assess the feasibility of 

this approach is to delve into "omic" techniques, which can unravel the taxonomic and 

functional diversity of microorganisms, circumventing their restricted cultivability. These 

studies, as highlighted by (Vergani et al., 2017), aid in identifying optimal plant-microbe 

combinations for remediating saline-stressed soils across various environmental conditions. 

A complementary strategy involves investigating salt-tolerant bacteria, utilizing 

resuscitation-promoting factors to revive bacteria in a viable but non-culturable state induced 

by stressors like high pollution levels, as elucidated by (Ma et al., 2011). Understanding the 

regulatory networks of salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) in 

enhancing plant salt tolerance, as proposed by (Kim et al., 2019), offers promising avenues to 



 

 

mitigate salt stress and enhance global food production.Furthermore, uncovering the 

dominant indigenous microflora in highly saline soils and their adaptation mechanisms, as 

suggested by (Kim et al., 2019), provides insights into ecological and evolutionary responses 

in ecosystems. Metagenomic and metabolomic approaches play pivotal roles in identifying 

novel ST-PGPR, along with the key genes and metabolites involved in salt tolerance, 

particularly at the field scale. However, the potential of plants and PCB-degrading endophytic 

bacteria remains largely untapped due to the hydrophobic and recalcitrant nature of PCBs, as 

noted by (Vergani et al., 2017). Nonetheless, exploring this avenue presents opportunities for 

plants to assimilate nutrients, thereby enhancing their survival and adaptation rates under 

various climatic condition. 

CONCLUSIONS 

The study aimed to assess the positive impacts of locally isolated salt-tolerant plant 

growth-promoting rhizobacteria (PGPR) on various crop growth. These enhancements likely 

stem from the salt tolerance and growth-promoting attributes of the chosen bacterial strains. 

Consequently, this promising isolate could serve as a biofertilizer source, offering potential to 

enhance current rice cultivation methods and address salinity challenges in coastal salt-

affected regions. However, it's essential to complement this initial discovery with extensive 

field trials for future research, ensuring suitability for large-scale implementation.Moreover, 

comprehensive investigations focusing on gene expression and functional traits of salt-

tolerant PGPR involved in promoting plant growth under salinity stress are imperative. These 

studies will facilitate the development of tailored bioformulations for saline soil systems, 

which are increasingly prevalent worldwide. The adoption of such green biotechnology holds 

multifaceted positive implications for agro-ecosystems and rural environments. 
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