
 

The study provides a description of electroencephalography 

(EEG)advancements and their application in diagnosing and assessing 

variousneurological diseases over the previous five years. The paper covers 

how EEGis used to examine epilepsy, sleep disorders, movement disorders, 

cognitivefunction, and brain damage. In epilepsy, EEG remains critical for 

seizurediagnosis, categorization, and localization of epileptogenic zones. 

Recentenhancements include the integration of machine learning techniques 

withhigh-density EEG equipment. In terms of sleep disorders, aberrant 

patternssuggestiveofillnessessuchassleepapneaornarcolepsymaybediagnosedb

yasleeparchitecturestudyutilizingEEGs,whichcanalsobeusedtotracktherapyresp

onse. Cortical involvement occurs in Parkinson’s disease and 

Huntington’sdisease, as well as other areas of the brain stem or basal ganglia. 

It 

helpsresearcherslearnmoreaboutthecorticaldamageproducedbythesedisorders,

whichcontributesgreatlytounderstandingtheirpathophysiology.Asidefromthat,cogni

tive evaluation based on EEG has evolved via the creation of 

quantifiablebiomarkers for early identification and monitoring of deterioration in 

Alzheimer’sdisease,amongothers.Traumaticinjuriescandamagebrainfunctioning,

henceknowledgeregardingseveritypredictedoutcomescanbeacquiredbyTraumati

cBrain Injury evaluation utilizing EEG. 

EEGInnovationsinNeurologicalDisorderDiagnostics:A 

Five-YearReview 
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1 Introduction 

Electroencephalography, or EEG [1], is a technique used to measure and record electrical activityin 

the brain.In order to identify and amplify the tiny electrical impulses that are generated by brain 

neurons,severalelectrodesareappliedtothescalp.Thebrainexperienceselectricalactivitydueto 

neuronalcommunication,whichuseselectricalimpulsestotransmitinformation[2]. Theseelectrical 

impulses may be detected by electrodes applied to the scalp; the resulting data is referred to as an 

EEGrecording.Typicallyformedofconductivegelorpaste,electrodesaretinymetaldiscsorsensors 

thatareplacedonthescalp[3][4]. Thestructureofhumanbrainispresentedinfigure1aand10-20 

electrodesystemispresentedinFigure1b. ThefundamentalEEGacquisitionprocedureisdepicted in 

Figure 2. 

 

(a)HumanBrainStructure (b)10-20ElectrodePlacementScheme 

Figure1:HumanBrainStructure&10-20ElectrodePlacementScheme 
 

 

Figure2:EEGAcquisitionProcess 

 
ThecharacteristicsofEEGsignalsincludetheirfrequency,amplitude,andmorphology,whichcan 

changebasedonneurologicaldisorders,age,andbrainstate.Whenthebrainiscalm,awake,andthe 

eyesareclosed,alphawaves,whichareoscillationsinthe8–13Hzrange,aremostnoticeable. They 

areconnectedtoacalmandrelaxedconditionandareusuallyseenacrosstheposteriorpartsofthe brain[5]. 

Thehigherfrequencyrangeof14to30Hzisoccupiedbybetawaves,whicharefrequently 

seenduringalertness,mentalactivity,andactiveattention.Theytypicallycoverthefrontalandcentral areas 

of the brain, and during times of stress or worry, their amplitude may rise.Theta waves, which have 

a frequency range of 4 to 7 Hz, are frequently seen during light sleep, REM (rapid eye 

movement),andsleepiness[6]. Theycouldalsobepresentwhileinveryrelaxedormeditativestates. 

Slowoscillationswithafrequencyrangeof0.5to4Hz,knownasdeltawaves,arecommonlyseenin 



 

 
deepsleepphaseslikeslow-wavesleep(SWS).Additionally,theyarelinkedtoneurologicalconditions and 

other brain illnesses such brain injuries.The high-frequency range of 30 to 100 Hz is attributed 

togammawaves,whicharelinkedtocognitivefunctionsincludingperception,memory,andattention. 

Theyarebelievedtobeinvolvedininformationprocessingandneuralnetworksynchronizationsince 

theyareseenintask-relatedcorticalactivity[7].Figure3showsthedifferenttypeofEEGSignals[8]. 

 

 

Figure3:TypesofEEGSignal 
 

 
Epilepsy is frequently diagnosed and tracked by EEG. During seizures, it can identify aberrant 

electricalactivityinthebrain.CertainEEGpatternscanbeusedtoidentifythekindofepilepsy 

andinformtreatmentchoices[9].Inordertoidentifysleepdisorderssuchnarcolepsy,parasomnias, and 

sleep apnea,sleep medicine uses EEG. Identification of sleep phases and irregularities inbrain 

activity while sleeping is aided by it [10].Movement disorders including Parkinson’s disease 

andHuntington’sdiseasecanbediagnosedandtreatedwithEEG.AlthoughEEGresultsinthese 

diseasesarefrequentlyambiguous,theycanbeaugmentedtotheresultsofotherdiagnostictests[11].Asse

ssingbrainfunctionafterastrokeorTraumaticBrainInjury(TBI)mightbeaided 

byEEG.Itcanassistdirectrehabilitationeffortsbyidentifyingirregularitiesinelectricalactivitythat 

cansuggest thedegree ofbrain injury[12].Althoughattention-deficit/hyperactivity disorder (ADHD) 

andautismspectrumdisorder(ASD)areneurodevelopmentalillnessesforwhichEEGisnotusually the 

primary diagnostic technique, it can be utilized in research settings to look at underlying brain 

abnormalities [13]. 

In the last five years, EEG has become a vital diagnostic tool for a wide range of neurological 

disorders, providing information about both normal and abnormal brain activity [14].Recent studies 

havedemonstratedtheeffectivenessofEEGinpreciselydefiningneurophysiologicalpatternslinked to 

many illnesses, including epilepsy [15], movement abnormalities [16], and cognitive deficits [17]. 

This article summarizes the most recent developments in EEG-based diagnostics, illuminating how 

thisfieldisdevelopingintermsofcomprehendingandtreatingneurologicaldisorders. Thestructure of the 

manuscript is as follows:Section 2 discusses the current trends in epilepsy diagnosis using 

EEG.ThesleepdisorderdiagnosisrelatedtechniquesarepresentedinSection3.Advancements in 

movementdisorderdiagnosisusingEEGarepresentedinSection4. Approachesrelatedtocognitive 

assessment is represented in the Section 5.Brain injury diagnosis procedures are conveyed in 

Section 6.A overall discussion on the various advancement in neurological diagnosis using EEG is 

expressedinSection7. Section8andSection9holdstheconcludingremarksandfuturedirectives. 



 

2 EpilepsyDiagnosis 

Epilepsy is a neurological illness that is complicated and marked by recurring seizures.It is a major 

worldwide health concern.Abnormal electrical activity in the brain causes these seizures, whichcan 

cause a wide range of symptoms, from momentary consciousness lapses to convulsions.Even 

thoughepilepsyiscommon,itisneverthelessstigmatizedandsurroundedbymyths,whichnegatively 

affectsmillionsofpeople’squalityoflifeglobally.Whileantiepilepticmedicationscontinuetobe the 

mainstay of epilepsy care, patients with drug-resistant epilepsy may find success with surgical 

procedures and neuromodulation methods.Even with these developments, managing epilepsy still 

presentssomedifficulties,suchasgettingapromptdiagnosis,havingaccesstospecialisttreatment, and 

managing the psychological components of the illness.Improving results and people’s quality 

ofliferequiresamultidisciplinaryapproachincludingresearchers,communitysupportnetworks,and 

healthcare professionals. 

Anensembleofpyramidalone-dimensionalCNNmodelsforEEGseizuredetectionisintroduced by 

Ullah et al. [9], outperforming state-of-the-art techniques and attaining 99.1% accuracy on the 

University of Bonn dataset.Their method performs better on binary and ternary classification 

problems,withmeanaccuraciesrangingfrom97.4%to100%whenemployingsingleandensemble 

models. 

According to Jaiswal et al. [18], SpPCA and SubXPCA combined with SVM are proposed for 

EEG seizure detection, and on benchmark datasets, they achieve 100% accuracy in differentiating 

between normal and epileptic signals.By using cross-subpattern correlation and subpattern-based 

PCA for feature extraction and classification, their approaches beat those of other researchers. 

Inordertoimproveefficiencyandrepeatability,Haoetal.[19]presentDeepIED,asemi-automatic 

epileptic discharge detector for EEG-fMRI recordings based on deep learning.After testing 37 

patients, the results showed a median sensitivity of 84.2% and a false positive rate of 5 events/min. 

This is much higher than the median sensitivity of 50.0% that was obtained using template-based 

approaches. 

AdeeplearningframeworkforEEG-basedepilepsydetectionispresentedbyAbbasietal.[14]. It uses 

LSTM architecture and achieves up to 98% accuracy for binary classification and up to 95% 

accuracy for multi-class classification of pre-ictal, inter-ictal, and ictal signals.They achieve great 

accuracieswiththeirdouble-layeredLSTMtechnique,outperformingSVMperformanceandproving 

useful in epilepsy detection by utilizing characteristics like Hurst Exponent and ARMA. 

Following DWT preprocessing, Aliyu et al. [20] present an RNN for classifying epileptic EEG 

signalsthatachieves99%accuracywithoptimumsettings. With99%accuracy,theirRNNbeatsLR, 

SVM,KNN,RF,andDT.DTcomesinsecondwith98%accuracy,andRFhasthelowestaccuracyat 75%. 

Bydetectingcertainsub-bands(1.5-2Hzand11-12.5Hz),Burenteretal.[21]provideaspectral 

analysis-based technique for epilepsy diagnosis using seizure-free EEG recordings, reaching 99% 

accuracyandoutperformingneurologistbenchmarks(70-95%). Researchonhealthcareinformation 

systems may benefit from this approach, which provides a reliable, quick, and affordable diagnostic 

substitute. 

Using DWT and arithmetic coding,Amin et al. [22] provide a CAD approach that achieves 

100%accuracyinseparatingepilepticseizuresignalsfromnormalEEGdata. Perfectsensitivityand 

specificityareshownbytheapproachinseveraldatasets, indicatingthatitmaybeausefuladdition to 

clinical epilepsy diagnosis. 

In order to detect epileptic seizures, Chatzichristos et al. [23] present a multi-view fusion model 

thatusesattention-gatedU-netsandLSTM.ThismodeloutperformsprevioustechniquesontheTUH 

EEGseizuredatasetandreceivesthehighestTAESscoreintheNeureka2020EpilepsyChallenge. Even 

with a large number of false alarms every day, the sensitivity stays below 25%. 

Inordertotrainamulti-classclassifier,Xuetal.[24]provideaself-supervisedlearningmethodfor 

EEGanomalydetectionusingscaledtransformationsonregularEEGdata.WithanAUCof0.943,the 



 

 
approachbeatsconventionalanomalydetectiontechniquesandshowsresilienceincross-validation 

testing with respect to different classifier architectures and hyper-parameters. 

Using artificial neural networks (ANN) and other classifiers, Mardini et al. [25] provide an EEG- 

basedseizuredetectionframeworkthatachievesahighaccuracyof97.82%indifferentiatingbetween 

epilepticandnormalsignalsacross14datasetcombinations.Theirapproachoffersausefultoolfor 

identifying brain abnormalities and may find use in medical diagnostics and neuroscience research. 

Athoroughtechniquefordetectingepilepticseizuresincludingpreprocessing,featureextraction, and 

classification.It is implemented in MATLAB and TensorFlow 2/scikit-learn by Malekzadeh etal. 

[26].By utilizing 10-fold cross-validation, the technique attains 99.5% accuracy, indicating potential for 

improving the quality of life for those with epilepsy. 

InordertodiagnoseepilepsybasedonscalpEEGs,Thangaveletal.[27]presentadeeplearning 

method that uses 1D ConvNets.This method achieves a false detection rate of 0.23/min at 90% 

sensitivity.With mean EEG classification BAC of 78.1% (AUC 0.839) in LOIO cross-validation and 

79.5%(AUC0.856)inLOSOCV,thetechniqueshowspromisingperformanceandmaybeusefulin lowering 

the amount of human labour required for epilepsy diagnosis. 

In order to achieve high accuracy (sensitivity:98.09%,specificity:98.69%,false detection 

rate:0.24/h) in automated epileptic seizure detection from EEG signals, Zubair et al. [28] use 

dimensionality reduction strategies and machine learning models.Their approach outperforms 

earlier state-of-the-art studies and shows promise for improving seizure detection accuracy and 

efficiency, which will help people with epilepsy and medical professionals. 

In their article Shankar et al. [15], describe a deep learning method that uses CNNs to identify 

epileptic seizures from EEG signals.This method produces RP-based 2D pictures for certain brain 

rhythmsandachievesupto93%accuracyondatabasesfromBonnUniversityandCHB-MIT.Theδ 

rhythmisshowntobetheappropriatebrainrhythmforseizureanalysis,andglobalstatisticalmetrics and 

entropy are used to assess the quality of RP images. 

A CNN-LSTM hybrid model is presented by Jiwani et al. [29] for the identification of epileptic 

seizuresfromEEGrecordings. Itusesbothspatialandtemporalinformationandhasfewertrainable 

parameters. Themodel’sapplicabilityforreal-timeprocessingapplicationsisdemonstratedbyitsup to 

100% accuracy in differentiating between healthy persons and seizure sufferers when tested on the 

University of Bonn dataset. 

Christou et al. [30] use the University of Bonn dataset to test the effects of different window 

sizesontheclassificationofEEGsignalsusingBFGS,multistart,modifiedGA,andK-NNclassifiers. 

According to the study, the multistart technique outperforms BFGS, modified GA, and K-NN, with a 

20–21 second window obtaining the maximum accuracy (81.59%). 

 

 

3 SleepDisordersDiagnosis 

Thediagnosisofsleepproblemsisacomplextaskbecauseofthewiderangeofsymptomsandtheir 

influenceongeneralhealthandwell-being.Fromnarcolepsyandparasomniastoinsomniaandsleep 

apnea,sleepdisorderscoverawiderangeofdisruptions,eachwithitsownclinicalpresentationsand 

underlyingcauses.Athoroughevaluationthatincludesafullmedicalhistory, aclinicalassessment, and 

objective sleep investigations like actigraphy and polysomnography is frequently necessary for an 

accuratediagnosis. Byevaluatingnocturnalactivities,respiratorydata,andsleeparchitecture,these 

diagnostic techniques help determine the kind and severity of sleep disorders.Furthermore, new 

technologies and sleep monitoring gadgets for use at home present chances for remote monitoring 

and diagnosis, improving patient accessibility and convenience.To maximize diagnostic accuracy 

and treatment success, multidisciplinary teamwork and patient-centered care methods are crucial. 

Nevertheless, difficulties still exist in the prompt identification and management of sleep disorders. 

Without the need of spectrograms or manually created features, Chambon et al. [10] offer a 

deeplearningtechniquefortemporalsleepstagecategorizationutilizingmultivariatetimeseriesdata. 



 

 
The model leverages PSG inputs, such as EEG, EOG, and EMG, and uses linear spatial filters and 

softmaxclassifierstoachievestate-of-the-artperformanceinidentifyingsleepphases. Itshowsthat 

recognizing W stage has a high specificity (almost 1) and sensitivity (0.85). 

Using a time-distributed 1-D convolutional neural network trained on the Sleep-EDF dataset, 

Koushiketal.[31]presentareal-timesleepstagingsystemthatusesdeeplearningonasmartphone with a 

wearable EEG, achieving 83.5% accuracy in five-class sleep stage categorization.The traditional 

gold standard for sleep staging, polysomnography (PSG), is simplified and automated using this 

method. 

The Random Forest classifier outperformed other classifiers with an accuracy of 75.29% when 

usedinTzimourtaetal.[32]’sapproachforsleepstagingutilizingEEGdatafromPSGrecordings. In 

additiontopossiblyimprovingtheidentificationofsleepproblems,thismethodpresentsaviablepath for a 

quick and affordable sleep examination. 

Using obstructive sleep apnea (OSA) detection as a focal point, Korkalainen et al. [33] providea 

deep learning approach for sleep stage division.With EEG+EOG, the model achieved 83.9% 

accuracyforsleepstaging,withaccuracydecreasingwithOSAseverity.Thismodelwassuccessful in both 

healthy persons and patients with suspected OSA. 

A deep learning model called DOSED is introduced by Chambon et al. [34] to automate the 

detectionofmicro-architectureeventsinEEGdata.Whenitcomestopreciseeventlocation,duration, 

andtypeprediction—allofwhicharecriticalforidentifyingsleepdisorders—DOSEDexceedsexisting 

state-of-the-art methods. 

Usingadecisiontree-basedmulti-classsupportvectormachineclassifier,Ravanetal.[35]offer an 

EEG-based machine learning strategy that achieves 94.2% classification accuracy across three 

sleepcategoriesforquantifyingsleepquality.Evenwithuntesteddatasets,theapproachhelps 

physiciansdiagnosesleepproblemsbyprovidingareliableandaccurateassessmentofsleepquality. 

Intheirstudy,Buettneretal.[36]provideafastandprecisemachinelearningtechniquefor 

identifyingsleepdisorders,namelyREMsleepbehaviourdisorder.Theysurpasspreviousstandards, 

obtaining over 90% accuracy using a mere 10-minute EEG recording clip.The speed and precision 

ofidentifyingsleepdisorders—whichisvitalforpreventingsecondaryillnesseslikeParkinson’sor 

dementia—canbegreatlyimprovedwiththismethod. 

Usingdeeplearningonphotoplethysmography(PPG)data,Korkalainenetal.[37]correctly 

estimatetotalsleeptimeandtheapnea-hypopneaindex(AHI)withaccuracyratesof80.1%,68.5%, 

and64.1%forthree,four,andfive-stagesleepclassifications,respectively.Thistechniquemaymake 

iteasierandmoreaffordabletodiagnosesleepproblems,particularlyobstructivesleepapnea(OSA). 

Inordertoidentifypatientgroupswithsleep-relatedillnesses,Jarchietal.[38]provideabio-signal 

processing and deep learning approach that outperforms state-of-the-art classifiers and 

achieves72%accuracy.ByintegratingECGandEMGdata,theirsuggesteddeepneuralnetworkdesign 

providesthoroughanalysisforthediagnosisofdisordersincludingrestlesslegssyndrome(RLS)and 

obstructivesleepapnea(OSA). 

With high accuracies ranging from 91.3% to 99.2% using ensemble boosted trees classifier, 

Sharmaetal.[39]proposeanEEG-basedmethodforautomatedidentificationofsixsleepdisorders, 

providing a quick and easy way to diagnose sleep disorders in homes and clinics. 

Athirty-layerCNNmodelusingEEGsignalsisintroducedbySudhakaretal.[40]forthedetection of 

sleep disorders.AlexNet outperforms GoogleNet with an accuracy of 93.33%, showing promise 

even with a small dataset size. 

An automated sleep stage classification system employing EEG signals and supervised 

classifiers is presented by Sharma et al. [41]; for balanced datasets, it achieves up to 92.8% 

accuracy and 0.915 Cohen’s Kappa coefficient.For diagnostic reasons, the approach may be used 

in sleep labs and provides a dependable means of evaluating the quality of sleep in individuals 

suffering from different types of sleep disorders. 

UsingbidirectionalrecurrentneuralnetworksforsleepEEGsignals,Fuetal.[42]createadeep 

learningmodelthatachieves70–85%classificationaccuracyforeachcategoryontheSleep-EDF 



 

 
dataset. Theirapproachoutperformspreviousmodelsintermsofaccuracy,indicatingitsefficacyand 

potential for real-world use in sleep study. 

Usingdeeplearningmodelstrainedon135EEGsignalsacquiredwithAES,Leinoetal.[43]offer 

anaccurateautomatedsleepstagingapproachbasedonambulatoryforeheadEEG,attainingupto 89.1% 

accuracy.The model shows good ability to discriminate between different stages of sleep, especially 

when using the Fp1/Fp2 EEG channel combination. 

 

4 MovementDisordersDiagnosis 

EEG-based movement disorder diagnosis is a developing field of study that aims to clarify the 

neurological underpinnings of motor dysfunction.EEG can offer important insights into cortical 

involvement and abnormal brain activity associated with illnesses including Parkinson’s disease, 

Huntington’s disease, and dystonia, even though it is not usually the primary diagnostic tool for 

movement disorders.Event-related potentials, aberrant oscillatory activity patterns, and cortical 

synchronizationcanallbeseeninEEGrecordings,whichcanprovidefurtherdataforneuroimaging 

research and clinical evaluations.EEG can also help distinguish movement disorders from other 

neurological illnesses that share symptoms, which can lead to a more precise diagnosis and better 

treatment planning.Even though EEG has great potential, issues like low spatial resolution and 

variability in EEG results among people with movement disorders highlight the need for more 

research and integration of EEG with other diagnostic modalities for a thorough assessment and 

treatment of these intricate conditions. 

ThedeepconvolutionalneuralnetworktechniquepresentedbyVrbancicetal.[11]outperformed 

conventionalapproaches,howeveritlaggedslightlybelowthestate-of-the-artapproachinterms of 

accuracy when it came to identifying motor impairment neurological diseases from EEG data. 

Nevertheless, it streamlines the diagnosis of neurological disorders by providing totally automated 

categorization devoid of human involvement. 

Mumtaz et al. [44] developed an automated diagnosis system for Major Depressive 

DisorderbasedonEEG-

derivedsynchronizationlikelihood(SL)features,withhighaccuracyratesof98%forSVM, 91.7% for LR, 

and 93.6% for NB classification. Their findings suggest a viable new 

approachfordiagnosingdepressionbydemonstratinghowEEG-

basedfeaturesmayconsistentlyidentifyMDDpatients from healthy controls. 

Byemployinganadditionaltreeclassifier,Vanegasetal.[45]achievevirtuallyflawless 
classification performance with an AUC of 0.99422 when proposing machine learning-based 

detectionofEEGbiomarkersinParkinson’sdiseaseduringvisualstimulation.Inadditiontooffering 

important insights into the neurophysiological hallmarks of the disease, their work emphasizes the 

potential of EEG spectral amplitude across various frequency bands for precise PD diagnosis. 

To diagnose and prognosticate idiopathic Rapid Eye Movement Behaviour Disorder (RBD), 

Ruffini et al. [46] present deep learning models based on eyes-closed resting EEG 

data.Usingbothdeepconvolutionalneuralnetworks(DCNN)anddeeprecurrentneuralnetworks(RNN), 

their method—which draws inspiration from audio or picture classification—achieves about 80% 

classification accuracy, demonstrating the promise of deep learning in EEG data for cognitive 

problem identification. 

ForthepurposeofclassifyingmotorimageryEEGsignals,Daietal.[47]presentauniquedeep learning 

framework that combines convolutional neural networks (CNN) with variational autoencoders 

(VAE).Thisapproachoutperformscurrentapproaches,demonstratinga3%improvementontheBCI 

Competition IV dataset 2b.With an average kappa value of 0.564, their method—which combines 

time, frequency, and channel information—achieves the greatest results and shows promise for motor 

imagery EEG categorization. 

Byusingautomatedmachinelearningapproaches,Kochetal.[48]areabletocategorize 

EEGsignalsinpatientswithParkinson’sdisease(PD)withan84.0%classificationaccuracyusing 



 

 
automated calculated features.Their method suggests novel biomarkers for Parkinson’s disease 

(PD) cognitive function and demonstrates that a greater accuracy of 91.0% may be achieved by 

combining automated and clinical aspects. 

Transferlearningofpre-trainedConvolutionalNeuralNetworks(CNNs)isusedbyShajiletal.[49] 

toclassifymotorimagery(MI)EEGsignals. Thehighestclassificationaccuracyof82.78±4.87%was 

achieved for the BCI Competition IV dataset 2a and 83.79±3.49% for an acquired dataset using 

InceptionV3CNN.Theirworkdemonstrateshowwellpre-trainedCNNmodels—especiallythosewith more 

layers and parameters—may be used to efficiently classify two-class MI EEG data. 

Bouallegue et al. [50] propose a dynamic filtering and deep learning-based technique 

fordetectingneurologicalillnessesbasedonEEGdata.ThismethodcombinesFIRandIIRfilterswith a 

Gated-Recurrent Unit (GRU) Recurrent Neural Network (RNN) for preprocessing. 

UsingConvolutional Neural Networks (CNN), their system achieves remarkable accuracy in 

featureextraction and classification, with 100% accuracy in diagnosing epilepsy and 99.5% in 

diagnosingautism. 

Thethirteen-layerCNNarchitectureproposedbyOhetal.[51]achieves88.25%accuracy, 

84.71% sensitivity, and 91.77% specificity in the identification of Parkinson’s disease (PD) using 

EEG signals.This approach, which eliminates the requirement for traditional feature representation 

phases, shows promise asa dependable, long-term PD diagnosistool when verifiedusing stratified 

ten-fold cross-validation. 

Using machine learning methods and the Maximum Overlap Discrete Wavelet Transform 

(MODWT), Abdulwahab et al. [52] create an EEG Motor-Imagery BCI System.Achieving 98.81% 

average accuracy using SVM algorithm using MODWT for feature extraction, their work highlights 

the importance of EEG for severe motor disorders, rehabilitation, and communication. 

Using raw MRIs to identify microstructural neural network biomarkers, Bashir et al. [53] present 

DystoniaNet,adeeplearning-basedtechniqueforaideddiagnosisofmovementdisorders,especially 

isolated dystonia.With an overall accuracy of 98.8%, DystoniaNet outperforms shallow machine 

learningnetworks,demonstratingthepromiseofcomputationalintelligenceintheearlyidentification of 

movement disorders. 

Using resting state EEG data,Shaban et al. [16] provide a deep learning-based 

frameworkwith98%accuracy,97%sensitivity,and100%specificityforautomatedParkinson’sdisease 

(PD) screening and classification.This framework supports doctors in diagnosis and treatment 

recommendations by acting as an accurate and dependable computer-aided diagnostic tool. 

In comparison to traditional research, Urtnasan et al. [54] achieve a superior F1-score of 92% 

using deepPLM, a deep learning model for automated identification of periodic limb movement 

syndrome using ECG signals.With excellent accuracy in test, assessment, and training groups, it 

presents a viable substitute for PLMS screening, especially for home health care services. 

A deep neural network technique for automatically determining movement intention from EEG 

data is presented by Shahini et al. [55].High accuracy of 96.9% and 89.8%, respectively, are 

attainedfortwo-classandthree-classsituations. Thismethodoutperformspriorapproachesthatrely on 

manual feature extraction since it operates directly on raw EEG data without feature extraction. 

In order to diagnose Parkinson’s illness, Shaban et al. [56] describe a deep learning technique 

that applies a 20-layer CNN to the Wavelet domain of resting-state EEG. With a high specificity and 

sensitivityofabout99.9%,themethodissuccessfulincorrectlydividingpeopleintotwogroups:those with 

Parkinson’s disease (with and without treatment) and healthy controls. 

 

 

5 cognitiveAssessment 

EEG-based cognitive evaluation has become a useful technique for studying brain activity and 

evaluatingcognitivefunctions.EEG,anon-invasivewayofmonitoringbrainelectricalactivityin 



 

 
real time, provides insights into the neural dynamics associated with a variety of cognitive 

functionssuch as executive function, memory, and attention.Examining EEG data allows 

researchers toidentify neural signatures that signal cognitive states, task involvement, and cognitive 

load. Inaddition,event-relatedpotentials(ERPs)derivedfromEEGdatagiveprecisetemporalresolution 

andmaybeusedtoinvestigatecognitiveprocesseswithmillisecondaccuracy.Moreover,quantitative 

EEG(qEEG)analysisoffersquantifiablemeasurementsofbrainactivity,makingitpossibleto find 

biomarkers linked to neurodegenerative illnesses including Alzheimer’s disease and cognitive 

decline.Itispossibletodiagnosecognitivedeteriorationearly,trackthecourseofadisease,measure the 

effectiveness of treatment, and improve patient care and cognitive rehabilitation techniques by 

incorporating EEG-based cognitive evaluation into clinical practice. 

Anend-to-enddeepneuralnetworkmodelwascreatedbyAlmogbeletal.[13]todirectlypredict 

cognitive effort from raw EEG data.For a 150-second window, the model achieved an astounding 

95.31% accuracy.Their CNN-based method successfully recovers high-level characteristics from 

EEGdata,showingpromiseforprecisecognitivestrainassessmentwithmuchroomforimprovement. 

Usingcutting-edgemachinelearningtechniques,Liuetal.[57]provideanEEG-basedevaluation 

ofmentaltirednessacrossfourlevels.Theirworkemphasizesthetrade-offbetweenrecognitionrates 

andpracticality,stressingprospectsforfutureaccuracyincreasesinsubject-independenttechniques. 

They achieve an average accuracy of 93.45% in subject-dependent approaches and 39.80% in 

subject-independent approaches. 

In human-machine collaboration situations, Yang et al. [58] provide a deep learning-based 

method for quantifying cognitive mental effort using EEG signals.By utilizing subject-specific 

integrated deep learning committees, their ensemble classifier surpasses standard classifiers in 

accuracy, achieving 92%, but at the cost of greater computing complexity and parameter overhead. 

UsingEEGspectrumdataandtraditionalmachinelearning, Plechawskaetal.[59]offerasubject- 

independenttechnique forcognitiveworkloadestimation thatachievesup to91%accuracy usingkNN 

model validation and cross-validation.Selecting features improves classification accuracy, proving 

useful in task level estimate. 

A deep neural network is introduced by Almogbel et al. [60] to detect cognitive workload and 

driving context directly from raw EEG signals.The network achieves an average accuracy of 96% 

and can distinguish between driving on a city or highway with accuracy, indicating the effectiveness 

of deep CNNs in workload and context classification without the need for preprocessing. 

In comparison to traditional techniques, Sridhar et al. [61] achieve enhanced diagnosis of mild 

cognitive impairment (MCI) by introducing a subject-agnostic BLSTM network to assess cognitive 

functions based on brain signal characteristics.The work shows potential fir accuracy in detecting 

MCI by using gamma band power analysis and sensory-motor paradigms to determine cognitive 

deterioration. 

Inordertodistinguishbetweenwritingandtypingactivities,Quetal.[62]suggestanEEG-based 

techniquethatusesmachinelearninganddeeplearningalgorithmstoachieveaccuracylevelsabove 

chance.Accordingtotheirresearch,EEGindicatorsareabletoidentifyminutedifferencesincognitive tasks, 

even when the tasks’ communication and cognitive modes are equivalent. 

Amethodologyforseparatingmoderatecognitiveimpairment(MCI)patientsfromhealthycontrols using 

EEG data is put forth by Siuly et al. [63].By utilizing auto-regressive model features and 

Permutation Entropy in conjunction with contemporary machine learning techniques, they surpass 

previous approaches and offer a reliable biomarker for MCI identification, attaining a remarkable 

98.78% accuracy rate through the use of Extreme Learning Machine. 

InordertodifferentiateParkinson’sDiseasepatientsbasedoncognitivefunction,Geraedts et al. [64] 

present a completely automated machine learning pipeline that uses EEG signals and 

achievesameanaccuracyof92%. ThismethodshowspotentialforcognitiveprofilinginPDpatients 

undergoing Deep Brain Stimulation screening. 

To identify cognitive burden, Gupta et al. [65] suggest a technique that combines deep learning 

withEEG-basedfunctionalconnectivity,resultinginstate-of-the-artaccuracyof80.87%.Thestudy 



 

 
 
 
 

 
showshowfunctionalconnectivityinformationmaybeusedforworkloadcategorizationinrealtime. 

For the purpose of classifying EEG signals, Suchetha et al. [66] offer two unique deep learning 

architectures:SCN and MBCN. MBCN outperforms SCN and conventional approaches, reaching 

88.33% accuracy and displaying reduced computing complexity. 

An integrated EEG, eye tracking, and neuropsychological test low-cost screening paradigm for 

MCIispresentedbyJiangetal.[17]. Withpredictivepowerof84.5±4.43%and88.8±3.59%intwo 

cohorts,respectively,andAUCsof0.941and0.966,themodelhaspotentialforuseintheprediction of 

cognitive decline in the future. 

UsingEEGdataanddeeplearningmethods,Longoetal.[67]provideaself-supervisedapproach for 

modelling mental workload.Promising accuracy and generalizability are demonstrated by the 

approach, with a mean absolute percentage error of around 11% and consistent accuracy among 

individuals. 

Theeffectivenessofasingle-channelEEGdeviceforassessingcognitivestatesisevaluatedby Molcho 

et al. [68].Their results point to a promising approach for identifying cognitive decline that 

mayfindwidespreadclinicalapplication: machinelearning-basedEEGcharacteristicstakenfroman 

auditory cognitive exam. 

 

 

6 BrainInjuryAssessment 

EEG is a useful tool for brain injury assessment for assessing neurological function after traumatic 

braininjury(TBI)andothertypesofbraininjury.Withthesensitiveandnon-invasivemonitoring 

ofbrainactivityprovidedbyEEG,doctorscanidentifyanomaliesinelectricaltransmissionlinked 

tobraindamage.Afteranacuteinsult,EEGcangiveinstantaneousinformationonthedegree and kind of 

neuronal damage, which can assist influence treatment choices and forecast patient 

outcomes.Additionally, non-convulsive status epilepticus and subclinical seizures, which are frequent 

aftereffectsofbraininjuryandmayexacerbatesecondarybraindamageifignored,canbeidentified by EEG 

monitoring in the critical care unit.Furthermore, quantitative EEG (qEEG) analysis may measure 

alterations in patterns of brain activity over time, offering significant prognostic data and 

directingactivitiesrelatedtorehabilitation. EventhoughEEGisuseful,therearestillissuesthatneed to be 

addressed in order to maximize its application in brain injury evaluation and therapy.These issues 

include how to interpret EEG results in the context of multifactorial brain damage and the 

requirement for standardized procedures. 

InordertodetectepileptiformactivityinratEEGrecordsfollowingtraumaticbraininjury,Obukhov 

etal.[12]createatechniquethatuseswavelettransformandlogisticregression,withanaccuracyof around 

80%. 

Using EEG reactivity data, Amorim et al. [69] created a semi-automated technique that predicts 

outcomesinhypoxic-ischemicbraindamage,withAUCsof0.8forrandomforest,whichisequivalent to 

expert evaluation.Promising support for prognostication in cardiac arrest is provided by this 

approach. 

In a mouse model of traumatic brain injury (TBI), Vishwanath et al. [70] classified EEG data 

using machine learning methods, namely CNNs, and achieved accuracies of up to 92.03% when 

evaluating sleep and wake data.Their results point to the possibility of using these methods to 

diagnose neurological disorders such traumatic brain injury. 

Acomputer-aidedmethodforautomaticallyidentifyingDisordersofConsciousness(DoC) inbrain-

injuredpatientsusingEEGsignalsispresentedbyWangetal.[71].Withasupport vector machine classifier 

ensemble, their technique achieves a high accuracy of 98.21%, showing remarkable possibilities for 

precise diagnosis and medical treatment. 

Deep neural network designs are proposed by Faghihpirayesh et al. [72] for the automated 

identification of biomarkers for post-traumatic epilepsy (PTE) in patients with moderate-to-severe 

traumaticbraininjury(TBI)usingEEGdata.Theirrecurrentneuralnetworkprovidesapotential 



 

 
path for reliable, automated PTE detection and prediction in TBI patients, with an 80.78% accuracy 

rate in recognizing epileptiform anomalies. 

MachinelearningisusedbyTharaetal.[73]toforecasttheresultsofpaediatrictraumaticbrain injury 

(TBI). Support vector machines, neural networks, random forests, logistic regression, naive 

Bayes,andk-nearestneighbouralgorithmsareallusedintheirstudy,whichiscarriedoutinSouthern 

Thailand.Support vector machines show the best results.These ML algorithms show potential as 

screening tools for prognostic counselling and functional outcome prediction in paediatric traumatic 

brain injury cases due to their excellent sensitivity and specificity. 

EEG-derivedpsychophysiologicalindicatorswereusedinapilotresearchbyDietal.[74] to predict 

clinical outcomes in patients with disorders of consciousness (DoC) following brain damage.The 

translational value of EEG biomarkers in DoC assessment was highlighted by the accurate 

outcomes predictions for traumatic patients that were obtained by combining dominant 

frequencymeasuresandfunctionalconnectivity,whilemutualinformationcombinationandfunctional 

connectivity best predicted outcomes for nontraumatic patients.In nontraumatic patients, the 

suggested technique yielded an accuracy of 83.3% (sensitivity = 92.3%, specificity = 60%), and in 

traumatic patients, an accuracy of 80% (sensitivity = 85.7%, specificity = 71.4%). 

Italinna et al. [75] use supervised machine learning and normative modelling to detect 

mildTraumatic Brain Injury (mTBI) from MEG recordings. The technique improved clinical decision-

makingby identifying mTBI patients from controls with a 79% accuracy rate. 

 

7 Discussion 

The comparative analysis of studies on automatic seizure detection in Table 1 presents a diverse 

arrayofmethodologies,featureextractiontechniques,classificationalgorithms,andresults. 

Varioustechniquesarestudied,includingdeeplearningmodelssuchasConvolutionalNeuralNetworks 

(CNNs)andRecurrentNeuralNetworks(RNNs),aswellasclassicmachinelearningclassifiersandensembl

e models. Feature extraction techniques span from simple signal processing 

techniquesliketheDiscreteWaveletTransform(DWT)tomorecomplexapproacheslikeSpectralPrincipal 

ComponentAnalysis(SpPCA)andRecurrencePlots.Classificationalgorithmsvarywidely,including 

SVMs, LSTM, CatBoost, and novel architectures like attention-gated U-nets.Results showcase high 

accuracy rates, often surpassing 90%, with some studies achieving perfect classification 

performance.Sensitivity, specificity, false detection rates, and area under the curve (AUC) are 

among the reported metrics, demonstrating the robustness and potential clinical utility of the 

proposed methods in seizure detection.However, further validation and standardization across 

diverse datasets are necessary to ensure the reliability and generalizability of these automated 

seizure detection systems. 

Table1:ComparisonofStudiesonAutomaticSeizureDetection 
 

Study Methodology FeatureExtraction 
Classification 

Algorithm 
Result 

Ullah et 
(2018) [9] 

al. Ensemble 
models 

of P-1D-CNN 
EEGsubsignals P-1D-CNN Accuracyof99.1±0.9% 

onUniversityofBonndataset 

Jaiswalet 
(2018)[18] 

al. 
Automatedseizuredetection SpPCA,SubXPCA SVM 

100%accuracyfor 
classificationofnormalandepilep

tic EEG signals 

Hao et 
(2018)[19] 

al. Deeplearning-
basedsemi-
automaticdetector 

EEGSignals 
DeepIED 
based) 

(RNN- Mediansensitivityof84.2% with 
false positive 
ratesetat5 

events/min 
Abbasiet 
(2019)[14] 

al. DeeplearningwithL
STMarchitecture 

HurstExponent,ARMA LSTM 
Upto99.17%accuracyfor 
variousEEGsignalc
lassifications 



 

 

 
Aliyu et al. 
(2019)[20] 

Recurrentneuralnetwo
rk(RNN) 

DWT 
RNN (with 
optimizations) 

99%accuracywith the 
bestgeneralization,outperformi

ngotheralgorithms 

Burenteretal. 
(2019)[21] 

Spectralanalysisof 
seizure-
freeEEGrecordi

ngs 

Fine-
gradedspectralanalysi
s 

Ensemble of 
Classifiers 

Accuracyof 99% 
indiagnosingepilepsy 

Amin et
 al.(2020
)[22] 

Discrete wavelet 
transform(DWT)andarithmeticc
oding 

DWT 
Linearandnon-
linearmachinelearnin
gclassifiers 

Perfectclassification 
performance(100%accuracy)f
or detecting epileptic 
seizureactivity 

Chatzichristosetal. 
(2020) [23] 

Attention-gated U-nets 
andlongshort-
termmemorynetwor 

SelflabelEEG 
k 

U-net&LSTM 
Outperformedstate-of 
-the-

artmethods,highest
TAESscorein 
Neureka 

2020EpilepsyChall
enge 

Xu et
 al.(2020)[
24] 

Self-
supervisedlearningmethodfora
nomalydetection 

SelflabelEEG 
Multi-class 
classifierusingsel

f-
labelednormalEE
Gdata 

Outperformedclassic 
anomaly 

detectionmethods,

AUC of 0.943 

Mardinietal.(2020)[
25] 

Machinelearningclassifiers SelflabelEEG ANN 
ANNachieved 
accuracyof97.82%f
ordetectingepileptic
seizures 

Malekzadehetal. 
(2021)[26] 

Preprocessing,feature 
extraction, 
andclassificationsteps 

Tunable-Q Wavelet 
Transform 

CNN–RNNmodel 
Accuracyof99.5% 
using10-
foldcross-

validation 

Thangaveletal.(202
1)[27] 

DeeplearningwithConvNets Variousinputfeatures,1
D ConvNet model 

CNN 
Falsedetection 
rateof0.23/minat90%sensitivity,
mean 

EEGclassification 
BACof78.1%(AUCof0.839) 

Zubairetal.(2021)[2
8] 

Dimensionalityreductionan
d machine learning 

DWT CatBoost 
Highaccuracywith 
sensitivity of 
98.09%,specificity of 98.69%, 

andfalsedetectionrateof0.24/h 

Shankaretal.(2021)[
15] 

DeeplearningwithCNN RecurrencePlots(RP)f
rom EEG signals 

CNN 
Classification 
accuracyupto93%onB

onn University 
andCHB-
MITdatabases 

Christouetal.(2022)[
30] 

Evaluating impact 
ofdifferentwindowsizes 

EEGsignals BFGS,multistart,m
odifiedGA,K-NN 

Highestaccuracy 
achieved with 20-
21seconds window 
size,multistartmethodreac

hed81.59%accuracy 

Jiwanietal.(2022)[2
9] 

CombinedCNNandL
STMmodels 

EEGsignals CNNandLSTM 
Maximumaccuracy 
of 100% 

fordistinguishingbetw
eenhealthyandseizur
epatients 

The comparative analysis of sleep disorder studies in Table 2 reveals a diverse 

landscapeofmethodologies,featureextractiontechniques,classificationalgorithms, 

andresults.Deeplearningmodelssuchasconvolutionalneuralnetworks(CNNs)and 

recurrent neural networks (RNNs) are used in the studies, as well as classic 

machinelearning techniques such as Support Vector Machines (SVMs) and Random 

Forest. Featureextractionmethodsspantimedomainfeatures,frequencydomainfeatures, 

energyinsub-bands,entropy,moments,andmulti-levelwaveletdecomposition,each 

tailored to capture pertinent information from EEG, ECG, EMG, and PPG 

signals.Notably,deeplearningmodelsemergeasprominenttools,showcasingtheirprowess in 

automatically learning intricate patterns from raw data, leading to state-of-the-art 

performance across various tasks.While traditional methods still find application, the 

superior performance of deep learning architectures, as evidenced by consistently high 

accuracyandsensitivity,underscoresaparadigmshiftinsleepdisorderanalysis.However, 

thechoiceofmethodologyandfeatureextractiontechniquesremainscontingentuponthe 

specific objectives and characteristics of the sleep disorder being studied. 



 

Table2:ComparativeAnalysisofSleepDisorderStudies 
 

Study Methodology FeatureExtraction 
Classification 

Algorithm 
Result 

Chambonetal.(2018
)[10] 

Deeplearningwithmultivariatean
d multimodal time series 

Timedomainfeature Deep learning 
modelwithlinearspatialfilt
ersand softmax 
classifier 

State-of-the-
artperformancewith high 
sensitivity andspecificity in 
detecting 
sleepstages 

Koushiketal.(2018)[
31] 

Deeplearningonsmartphone,ti
me-distributed 1-D 

deepconvolutional neural 
network 

Timedomainfeature 1-
Ddeepconvolutionalneur
alnetwork 

83.5% accuracy 
forfive-
classsleepstaging 

Tzimourtaetal. 
(2018)[32] 

Filtering EEG 
signal,calculatingenergyinsub-
bands 

Energyinsub-bands 
RandomForest,SVM, 
k-

NN,DecisionTree,Na¨ıve
Bayes 

Bestclassificationaccuracy:
Random Forest (75.29%) 

Korkalainenetal. 
(2019)[33] 

Deep learning-based 
method,singleEEGchannel,EEG
+EOG 

Timedomainfeature Deeplearning
architecture 

Sleepstagingaccuracy: 
83.7%(singleEEGchannel),83.9%

(EEG+EOG) 

Chambonetal.(2019
)[34] 

Dreem One Shot 
EventDetector(DOSED),

deeplearningarchitecture 

Timedomainfeature DOSED(deeplearninga
rchitecture) 

Outperformsstate-of-the-
artmethods in event 
detection 

Ravanetal.(2019)[3
5] 

Electroencephalography-based 
machine learning 

approach,decisiontree-
basedmulti-classsupport 
vector machineclassifier 

Quantitativefeaturesfro
m EEG signals 

SupportVector
Machine(SVM) 

Average classification 
accuracyof 94.2% for sleep 
qualitymeasurement 

Buettneretal. 
(2020)[36] 

Machinelearningapproach for 
sleepdisorderdiagnosisusingele

ctroencephalographicdata 

Frequency 
feature 

domain 
RandomForest 

Accuracyofover90% for 
classifyingREMsleepb

ehaviourdisorder 

Korkalainenetal. 
(2020)[37] 

Deeplearningmodel,PPG 
data 

Timedomainfeature Deeplearning
architecture 

Accuracies:80.1%(3-stage), 
68.5%(4-stage),64.1%(5-stage) 

Jarchi et al. 
(2020)[38] 

Deep 
EMG 

learning, ECG and 
Entropy&Moments DeepNeuralNet

work(DNN) 

Accuracy:72%inrecognizing 
fourgroupswithsleep-
relateddisorders 

Sharmaetal. 
(2021)[41] 

Automatedidentificationofsix 
sleepdisordersusingEEGsignals 

Ensembleboostedtrees
classifier 

Ensembleboostedtrees
classifier 

Highestaccuracy:91.3% for 
identifyingthetypeofsleepdis
order 

Sudhakaretal. 
(2021)[40] 

Detectionofsleepdisorders 
usingEEGsignalsanddeeplearni
ng neural networks 

Timedomainfeature ConvolutionalNeuralNet
work(CNN) 

Accuracy:93.33%usingAlexNet 

Sharmaetal.(2021)[
39] 

Automatedsleepstage 
classificationusingmulti-
levelwavelet decomposition 
andnorm-based feature 

extraction 

Multi-levelwavelet 
decompositionandn
orm-
basedfeatureextract

ion 

Supervisedclassifiers 
Highest accuracy: 
92.8%(balanceddataset)fors
leepstageclassification 

Fu et
 al.(2022)[
42] 

Deeplearningmodelforsleep 
EEGsignalsusingbidirectionalre
current neural networkencoding 

and decoding 

Time& 
Frequencydomainfeature 

BidirectionalRecurrentN
euralNetwork(BiRNN) 

Classificationaccuracy:70
-85%foreachcategory 

Leino et
 al.(2022
)[43] 

Accurateautomaticsleep 
stagingbasedonambulatoryfore

head EEG using 
deeplearningmodels 

Timedomainfeature Deeplearning
architecture 

Accuracy: 79.7%(5-stage), 
84.1% (4-stage), 89.1% (3-

stage)forsleepstagingusingambul
atoryforeheadEEG 

 
The comparative analysis of movement disorder diagnosis studies in Table 3 reveals 

adiverserangeofmethodologies, featureextractiontechniques, classificationalgorithms, and 

achievedresults.Researchersuseavarietyofdeeplearningarchitectures,including 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

theircombinations, to evaluate EEG data, ECG signals, and raw MRIs for diagnosis. 

MachinelearningtechniquessuchasSupportVectorMachines(SVMs),LogisticRegression(LR

),andk-NearestNeighbours(k-

NN)arealsoused,frequentlyincombinationwithsophisticatedfeatureextractionmethodssucha

swavelettransformationsand 

synchronizationlikelihoodfeatures.Resultsdemonstratehighaccuracyrates,with some 

studies achieving almost perfect classification performance, surpassing traditional 

methods.Additionally, transfer learning and automated feature selection techniques 

contribute to improved diagnostic accuracy and efficiency.These findings underscorethe 

potential of machine learning and deep learning approaches in enhancing movement 

disorderdiagnosisthroughtheanalysisofphysiologicalsignalsandmedicalimagingdata. 



 

 
However, furthervalidationonlargerandmorediversedatasetsisessentialtoensurethe 

robustness and generalizability of these diagnostic tools in clinical settings. 

Table3:ComparativeAnalysisofMovementDisorderDiagnosisStudies 
 
 
 
 
 
 
 

 
, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The comparative analysis of the studies presented in Table 4 reveals a diverse 

landscapeofmethodologies,featureextractiontechniques,classificationalgorithms, and 

results in cognitive assessment using EEG data.While deep learning models dominate 

the landscape for their ability to extract features directly from raw EEG signals, machine 

learning techniques also play a significant role, particularly in leveraging more traditional 

feature extraction methods.Results vary widely across studies, with reported accuracy 

rates ranging from modest to high levels, influenced by factors such as data 

quality,feature extractioneffectiveness,andalgorithm choice.Despitethis variability,the 

studiescollectivelyhighlightthepotentialofEEG-

basedcognitiveassessmentindetectingcognitivedecline,assessingcognitiveworkloadanddiff

erentiatingcognitivestates,offeringpromising perspectives for improving clinical diagnosis 

and human-machine interaction. 

Study Methodology FeatureExtraction 
Classification 

Algorithm 
Result 

Vrbancic 
al.(2018)[11] 

et DeepConvolutionalNeu
ralNetworks(CNN) 

EEGsignals CNN Overall accuracy of 
69.23%,outperformedtraditional

methods 
Mumtaz 
al.(2018)[44] 

et 
MachineLearning 

EEG-derived 
synchronizationlikelihoo
d (SL) features 

SVM,LR,NB 
Highaccuracyratesachieved 
forMajorDepressiveDisor
derdiagnosis 

Vanegas 
al.(2018)[45] 

et 
MachineLearning EEG-basedbiomarkers ExtraTreeClassifier

(ETC) 
Almost perfect 
classificationperformanceforPDdi

agnosis 

Ruffinial.(201
9)[46] 

et DeepConvolutionalNeural 
Network (DCNN), 
DeepRecurrentNeuralNet

work(RNN) 

EEG
 data
spectrograms 

as 
DCNN, RNN 

80%(±1%)classificationa
ccuracy in control 
vs.PD-conversiongroup 

Dai 
al.(2019)[47] 

et Convolutional Neural 

Network(CNN),VariationalAuto
encoder(VAE) 

Combinedtime,frequencya
nd channel information 

CNN-VAE 
Outperformedbestclassification

method in literature, 
improvedaccuracy by 3% 

Koch 
al.(2019)[48] 

et AutomatedMachineLe
arning 

794featuresfromEEG 
channels 

Automatedcomput
edfeatures 

Classificationaccuracyof84.0%, 
better performance 
withautomatedfeaturesal
one 

Shajilal.(2020
)[49] 

et 
TransferLearning Pre-

trainedConvolutionalNeura
lNetworks(CNNs) 

InceptionV3,Ale
xNet,ResNet50 

InceptionV3 achieved 
highestclassificationaccuracy 
of82.78±4.87% 

Bouallegueal.(
2020)[50] 

et DynamicFiltering,Deep
Learning 

FIRandIIRfilters, 
Gated-

RecurrentUnit(GRU),Con
volutionalNeuralNetwork(
CNN) 

GRU,CNN 
Averageaccuracyof100%fore
pilepsy diagnosis, 99.5% 

forautismdiagnosis 

Oh 
al.(2020)[51] 

et Convolutional 
NeuralNetwork(CNN) 

EEGsignals CNN 
Accuracy:88.25%, 
Sensitivity:84.71%, 
Specificity:91.77% 

Abdulwahabal.
(2021)[52] 

et 
MachineLearning MaximumOverlapDiscrete

WaveletTransform(MODW
T) 

SVM,k-NN, 

DecisionTree 

Averageaccuracyof98.81%u
singMODWT 

Bashir 
al.(2021)[53] 

et 
DeepLearning RawMRIs DystoniaNet Overallaccuracyof98.8%f

or dystonia diagnosis 

Shaban 
al.(2021)[16] 

et 
DeepLearning RestingstateEEG data ArtificialNeural

Networks 

Accuracy:98%, 
Sensitivity:97%, 
Specificity:100% 

Urtnasan 
al.(2022)[54] 

et 
DeepLearning ECGsignals DeepPLM 

F1-score:92%, 
Accuracy:88%intra

ininggroup 

Shahinial.(202
2)[55] 

et 
DeepNeuralNetwork RawEEGdata DeepNeuralNetwor

k 

Accuracy:96.9%for 
two-
stage,89.8%forthre
e-stage 
movementintentions 

Shabanal.(202
2)[56] 

et DeepConvolutionalNe
uralNetwork(CNN) 

Waveletdomainofr
esting-stateEEG 

CNN 
Accuracy:99.9%, 
Specificity:100%, 

Sensitivity: 97% 

forclassifyingHC,PDwith
andwithoutmedication 

 



 

Table4:ComparativeAnalysisofCognitiveAssessmentbyEEG 
 

Study Methodology 
Feature 

Extraction 
ClassificationAlgorithm Result 

Almogbelet(2
018)[13] 

al. 
DeepLearning RawEEGsignals End-to-

endDeepNeuralNetwo
rkmodel 

Highaccuracyrateof95.31% for 
cognitive workload 

classificationwithoutpre-
processingorfeatureengineering 

Liu 
al.(2018)[57] 

et 
MachineLearning EEGrecordings 

Subject-dependentand 
Subject-
independentfatiguerec
ognitionalgorithms 

Subject-dependent average 
accuracyof 93.45%, Subject-
independentaverage accuracy of 
39.80% 

Yangal.(2019
)[58] 

et 
DeepLearning EEGsignals 

EnsembleClassifier 
basedonSubject-
specificIntegratedDeepLe
arningCommittees 

Subject-specificclassification 
accuracyof92%outperformsclass
ical shallow and deepclassifiers 

Plechawskaal.
(2019)[59] 

et 
MachineLearning EEGspectraldata k-

NearestNeighbours(kN
N)model 

High maximal 

accuraciesachieved,∼91%forvali
dationdataset and cross-
validation 
approach 

Almogbelal.(2
019)[60] 

et 
DeepLearning RawEEGsignals End-to-

endDeepNeuralNetwo
rkmodel 

Averageaccuracyof0.960 
forworkloadandcontextclassification,hig
h recall and precision scores 
onrawEEGsignals 

Sridhar 
al.(2020)[61] 

et 
DeepLearning 

Brain 
features 

signal BidirectionalLong 
Short-
TermMemory(BLSTM)

Network 

Outperformsconventionaldeep 
neural networks in 
detectingMildCognitiveImpairme

nt(MCI) 

Qu 
al.(2020)[62] 

et 
MachineLearning EEG data 

Variousmachineea
rning and 
deeplearningalgorit
hms 

Differenttasks(writingvs. 
typing)canbeclassifiedwithacc
uracy up to 70% 

forindividualsubjects 

Siulyal.(2020)
[63] 

et 
 

MachineLearning 
 

EEG data ExtremeLearningMachin
e(ELM),SupportVector 
Machine (SVM), 

K-NearestNeighbours(KNN) 

ELM-based method 

achievesthe highest 
classificationaccuracy of 
98.78% fordistinguishing MCI 

fromhealthycontrols 

Geraedtsal.(20
21)[64] 

et 
MachineLearning EEGsignals MLpipeline 

Highaccuracyachievedfor 
differentiatingParkinson’sDiseas
epatientsbasedoncognitivefuncti

on 

Guptaal.(202
1)[65] 

et 
 

DeepLearning 
EEG-
basedfunctionalconn
ectivity 

Mutual Information 
(MI),ConvolutionalNeuralNetw
ork,Phase Locking Value 
(PLV),Phase Transfer Entropy 
(PTE) 

State-of-the-artaccuracyof 

80.87% for 
cognitiveworkloadclassifi
cationusing EEG 

functionalconnectivity 

Suchethaal.(2
021)[66] 

et 
DeepLearning EEGsignals 

SequentialConvolutionalNetwor
k(SCN), 
Multi Branch 
ConvolutionalNetwork(MBCN) 

MBCNmodeloutperforms 
SCNmodelandtraditionalmeth
ods, achieving highaccuracy, 

F1-score, precision, and 
sensitivity 

Jiangal.(2022
)[17] 

et 
MachineLearning 

EEG,eyetracking,neu
ropsychologicaltests 

Machinelearningmodel 
Excellentclassification 
performances for 
screeningmild cognitive 
impairment(MCI) with 

potential forprediction 

Longoal.(202
2)[67] 

et 
DeepLearning EEG data Self-supervised 

deeplearningtechniques 

Goodaccuracyand 
generalizabilityformental

workloadmodellingusinga 
brain rate index 

Molchoal.(202
2)[68] 

et 
MachineLearning EEGfeatures Machinelearning-

basedEEGfeatures 

Theproposedtool 
demonstrates the 
abilitytoassesscognitivest
ates 
anddetectcognitivedecline 

The comparative analysis presents in Table 5 presents a comprehensive overview of 

researchendeavorsaimedatutilizingEEGandMEGdataforassessingbraininjuriesand 

predicting clinical outcomes.Each study employs distinct methodologies, ranging from 

EEG-baseddetectionofepileptiformactivitytoMEG-basedidentificationofmildtraumatic brain 

injury.Various feature extraction techniques and classification algorithms such as 

wavelettransform,CNNs,andSupportVectorMachinesareutilized,reflectingthediversity in 

analytical approaches.Despite differences in methodologies, the results demonstrate 

promising accuracies, with some studies achieving accuracies exceeding 90%.These 

findingsunderscorethepotentialofEEGandMEGdataasvaluabletoolsinclinicalsettings 



 

 
fordiagnosingbraininjuries,monitoringpatientoutcomes,andguidingtreatmentdecisions. 

Additionally, the comparative analysis focuses on ongoing advances in machine 

learninganddeeplearningapproaches,whichimprovetheaccuracyandreliabilityofbraindamag

e 

assessmentmethodsbasedonneuroimagingdata. 

Table5: ComparativeAnalysisofBrainInjuryAssessmentbyEEG 
 

Study Methodology 
Feature 

Extraction 
ClassificationAlgorithm Result 

Obukhov et 
al.(2018)[12] 

EEG-
baseddetectionofepilept
iformactivity 

EEGrecords Wavelettransform,logis
ticregression 

Accuracyofaround 80% 
indetectingepileptiforma
ctivity 

Amorim
 et
al.(2019)[69] 

EEG reactivity 
forpredictingoutcome
sinhypoxic-
ischemicbraininjury 

EEGreactivitydata RandomForest,GLM,e
xpertreview 

Comparableperformance 
to expert EEG 

reactivityassessment for 
outcomeprediction in hypoxic-
ischemicbraininjury 

Vishwanath et 
al.(2020)[70] 

Machinelearningfor 
identifyingbiomarkersof
TBI 

EEGdata, CNNs Convolutionalneuralnetworks Accuracy up to 92.03% 
inidentifyingbiomarkersofTBI 

Wang et 
al.(2020)[71] 

Automated detection 
ofDisorders of 

Consciousness(DoC)inbrain-
injuredpatients 

EEGsignals 
PowerSpectralDensityDi
fference(PSDD),SVMe
nsemble 

Highest accuracy of 98.21% 
indetectingDoCandwakefulnes
sin brain-injured patients 

Faghihpirayesh 
etal.(2021)[72] 

Deeplearningforautomateddet
ection of epileptiformactivity in 
TBI patients 

EEG data Recurrentneuralnetwork 
Accuracy of 80.78% 

inautomaticallyidentifying
epileptiformabnormalitiesin 
TBI patients 

Thara et 
al.(2021)[73] 

MLpredictionofoutcomesin 
paediatric traumaticbrain 
injury (TBI) 

Clinicalandradiologicc
haracteristics 

SupportVectorMachines, 
NeuralNetworks,Rando
mForest,Logistic 
Regression,NaiveBayes,k-NN 

Highperformanceinpredicting 
TBI outcomes, with 
supportvectormachinesachiev
ingthebestresults 

Di et 
al.(2022)[74] 

EEGbiomarkersfor 
predictingclinicalou
tcomeinpatientswit

hDoC 

EEGbiomarkers Machinelearningprocedure 
Accuracyof80%-83.3% 
in predicting 
clinicaloutcomesinp

atientswithDoC 

Italinna
 et
al.(2022)[75] 

MEG-baseddetection 
ofmildtraumaticbraininjury 

MEGrecordings SupportVectorMachine 
Accuracyof79%indistin
guishingmild 
TBIpatientsfromcontrols 

 

7.1 limitationsofthecurrentstudies 

The development of EEG-based diagnostic techniques has the potential to 

completelytransform clinical procedures in a number of areas, such as the diagnosis of 

movementdisorders, the categorization of sleep disorders, the detection of seizures, 

cognitiveevaluation, and the assessment of brain injuries. To guarantee these 

approaches’effectiveness and applicability in actual healthcare settings, a number of 

issues andconcerns must be taken into account. 

• SeizureIdentificationusingEEG 

– Difficulty in ensuring model resilience across diverse datasets and real-

worldsituations. 

– Lackofreal-timeapplication,limitingimmediatetherapeuticvalue. 

– Challenges in model interpretability hinder acceptance by

 medicalprofessionals. 

– Lackofuniformityinassessmentmeasuresanddatasetscomplicatesoutcomecom

parison. 



 

 
– Computational complexity of deep learning models may hinder deployment 

inresource-limited settings. 

• SleepDisorderClassificationusingEEG 

– Limitedgeneralizabilityacrossdifferentpopulationsandrecordingsettings. 

– PotentialoversightofvaluabledatafromothermodalitieslikeEOGandEMG. 

– Concernsaboutinterpretabilityofdeeplearningmodels. 

– Absenceofstandardizedassessmentmeasuresanddatasetscomplicatescompari

son. 

– Computationalcostofdeeplearningapproachesmaylimitpracticaldeployment. 

• MovementDisorderDiagnosisusingEEG 

– Difficultyinextrapolatingresultstolargerandmorediversepopulations. 

– Potentialoverlookofsupplementaryinformationfromothermodalities. 

– Interpretabilityconcernswithdeeplearningmodels. 

– Lackofstandardizedassessmentmeasuresanddatasetshamperscomparison. 

– Computationalcomplexityofdeeplearningmodelsmayrestrictpracticaldeploymen

t. 

• CognitiveAssessmentusingEEG 

– Smallsamplesizeslimitgeneralizability. 

– Inconsistentmethodologiesacrossstudieshinderreplicationandcomparison. 

– FocusonofflineEEGanalysismaynotcapturenaturalisticcognitiveprocesses. 

– Interpretabilityissueswithdeeplearningmodels. 

– Needformoreclinicaltrialstoconfirmpracticalityandtherapeuticvalue. 

• BrainInjuryAssessmentusingEEG 

– Limitedreliabilityandgeneralizabilityduetosmallsamplesizes. 

– Inconsistencyinpreprocessingmethodologiesandfeatureextractionstrategies. 

– Interpretabilityconcernswithdeeplearningandmachinelearningmodels. 

– FocusonofflineEEGanalysismaynotcapturereal-timebraininjuryprogression. 

– Needforstandardizedproceduresandimprovedmodelinterpretabilityforpractical 

deployment. 



 

8 Conclusion 

The comparative analyses conducted amongst various neuroimaging research 

demonstrate the noteworthy advancements achieved in the application of deep learning 

andmachinelearningapproachestoneurologicaldiagnoses. Thisresearchdemonstrates the 

adaptability and efficacy of sophisticated computational approaches in identifying 

significantpatternsfromcomplicatedneuroimagingdata,rangingfromseizuredetectionto 

cognitive evaluation and brain damage prediction.When combined with creative feature 

extractiontechniquesandreliableclassificationalgorithms,theimpressiveperformanceof 

deep learning models highlights how automated diagnostic systems have the potential to 

completelytransformclinicalpractice. However,inordertofullyachievethispromise,more 

workmustbedonetointegratemultimodalneuroimagingdata,testandstandardizethese 

approaches across a variety of datasets, and resolve issues with regulatory approval and 

interpretability. 

 

 

9 FutureDirectives 

Futureprospectsforneuroimaging-baseddiagnosticsresearcharebrightandvaried. The 

developmentofnovelapproachesforearlydetectionandpersonalizedtreatmentplanning, 

theimprovementofcurrentdiagnostictools,andtheinvestigationofthesynergiesbetween 

variousmodalitiestoobtainadeeperunderstandingofneurologicaldisordersareallmade 

possiblebytheadvancementsinmachinelearninganddeeplearningtechniques.As 

technology advances, increasing emphasis is being placed on ethical 

considerations,ensuring that algorithmic decision-making is transparent and egalitarian, 

and 

fosteringmultidisciplinarycollaborationstobridgetheknowledgegapbetweencomputational 

neuroscienceandclinicalpractice.Throughtheutilisationofcomputationaltechniquesand 

neuroimagingdata, anewageofprecisionmedicinemaybeusheredin, characterisedby 

patient care that is optimised and personalized due to insights gained from the intricate 

workings of the human brain. 
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