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Abstract

The review presents a synopsis of the progress made in electroencephalography
(EEG) and its use in diagnosing and evaluating different neurological conditions
in last quinquennial. The study discusses how EEG is used for epilepsy,
sleep disorders, movement disorders, cognitive assessment, and brain injury
assessment. In relation to epilepsy, EEG remains indispensable for seizure
diagnosis, classification as well as localization of epileptogenic zones. Recent
improvements include machine learning algorithms integration with high-density
EEG systems. As regards sleep disorders, abnormal patterns that are indicative
of such diseases like sleep apnea or narcolepsy can be identified through an
analysis on sleep architecture using EEGs also useful in monitoring response
to treatment. In Parkinson’s disease and Huntington’s disease where there is
cortical involvement alongside other parts of the brain stem or basal ganglia.
It helps researchers understand more about cortical damage caused by these
diseases thus contributing significantly towards understanding their pathogenesis
. Besides this Additionally too Furthermore , cognitive assessment based on EEG
has advanced through quantitative biomarkers development for detection at early
stages monitoring decline Alzheimer’s disease among others. Traumatic injuries
may lead to impaired brain functions hence knowledge about severity prediction
outcome can be established based on traumatic brain injury assessment using
EEG.
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1 Introduction
Electroencephalography, or EEG [1], is a technique used to measure and record electrical activity
in the brain. In order to identify and amplify the tiny electrical impulses that are generated by brain
neurons, several electrodes are applied to the scalp. The brain experiences electrical activity due to
neuronal communication, which uses electrical impulses to transmit information [2]. These electrical
impulses may be detected by electrodes applied to the scalp; the resulting data is referred to as an
EEG recording. Usually made of conductive gel or paste, electrodes are small metal discs or sensors
that are put to the scalp [3] [4]. The structure of human brian is presented in figure 1a and 10-20
electrode system is presented in Figure 1b. The fundamental EEG acquisition procedure is depicted
in Figure 2.

(a) Human Brain Structure (b) 10-20 Electrode Placement Scheme

Figure 1: Human Brain Structure & 10-20 Electrode Placement Scheme

Figure 2: EEG Acquisition Process

The characteristics of EEG signals include their frequency, amplitude, and morphology, which can
change based on neurological disorders, age, and brain state. When the brain is calm, awake, and the
eyes are closed, alpha waves, which are oscillations in the 8–13 Hz range, are most noticeable. They
are connected to a calm and relaxed condition and are usually seen across the posterior parts of the
brain [5]. The higher frequency range of 14 to 30 Hz is occupied by beta waves, which are frequently
seen during alertness, mental activity, and active attention. They typically cover the frontal and central
areas of the brain, and during times of stress or worry, their amplitude may rise. Theta waves,
which have a frequency range of 4 to 7 Hz, are frequently seen during light sleep, REM (rapid eye
movement), and sleepiness [6]. They could also be present while in very relaxed or meditative states.
Slow oscillations with a frequency range of 0.5 to 4 Hz, known as delta waves, are commonly seen in
deep sleep phases like slow-wave sleep (SWS). Additionally, they are linked to neurological conditions
and other brain illnesses such brain injuries. The high-frequency range of 30 to 100 Hz is attributed
to gamma waves, which are linked to cognitive functions including perception, memory, and attention.
They are believed to be involved in information processing and neural network synchronization since
they are seen in task-related cortical activity [7]. Figure 3 shows the different type of EEG Signals [8].
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Figure 3: Types of EEG Signal

Epilepsy is frequently diagnosed and tracked by EEG. During seizures, it can identify aberrant
electrical activity in the brain. Certain EEG patterns can be used to identify the kind of epilepsy and
inform treatment choices [9]. In order to identify sleep disorders such narcolepsy, parasomnias, and
sleep apnea, sleep medicine uses electroencephalography (EEG). Identification of sleep phases
and irregularities in brain activity while sleeping is aided by it [10]. Movement disorders including
Parkinson’s disease and Huntington’s disease can be diagnosed and treated with EEG. Even though
EEG results in these conditions are sometimes vague, they can supplement the results of other
diagnostic procedures [11]. Assessing brain function after a stroke or traumatic brain injury (TBI)
might be aided by EEG. It can assist direct rehabilitation efforts by identifying irregularities in electrical
activity that can suggest the degree of brain injury [12]. Although attention-deficit/hyperactivity
disorder (ADHD) and autism spectrum disorder (ASD) are neurodevelopmental illnesses for which
electroencephalography (EEG) is not usually the primary diagnostic technique, it can be utilized in
research settings to look at underlying brain abnormalities [13].

In the last five years, electroencephalography (EEG) has become a vital diagnostic tool for a
wide range of neurological disorders, providing information about both normal and abnormal brain
activity. Recent studies have demonstrated the effectiveness of electroencephalography (EEG) in
precisely defining neurophysiological patterns linked to many illnesses, including epilepsy, movement
abnormalities, and cognitive deficits. This study summarizes the most recent developments in
EEG-based diagnostics, illuminating how this field is developing in terms of comprehending and
treating neurological disorders. The structure of the manuscript is as follows: Section 2 discuss the
current trends in epilepsy diagnosis using EEG. The sleep disorder diagnosis related techniques are
presented in Section 3. Advancements in movement disorder diagnosis using EEG is presented in
Section 4. Approaches related to cognitive assessment is represented in the Section 5. Brain injury
diagnosis procedures are conveyed in Section 6. A overall discussion on the various advancement
in neurological diagnosis using EEG is expressed in Section 7. Section 8 and Section 9 holds the
concluding remarks and future directives.

2 Epilepsy Diagnosis

Epilepsy is a neurological illness that is complicated and marked by recurring seizures. It is a
major worldwide health concern. Abnormal electrical activity in the brain causes these seizures,
which can cause a wide range of symptoms, from momentary consciousness lapses to convulsions.
Even though epilepsy is common, it is nevertheless stigmatized and surrounded by myths, which
negatively affects millions of people’s quality of life globally. While antiepileptic medications continue
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to be the mainstay of epilepsy care, patients with drug-resistant epilepsy may find success with
surgical procedures and neuromodulation methods. Even with these developments, managing
epilepsy still presents some difficulties, such as getting a prompt diagnosis, having access to
specialist treatment, and managing the psychological components of the illness. Improving results
and people’s quality of life requires a multidisciplinary approach including researchers, community
support networks, and healthcare professionals. An ensemble of pyramidal one-dimensional CNN
models for EEG seizure detection is introduced by Ullah et al. [9], outperforming state-of-the-art
techniques and attaining 99.1% accuracy on the University of Bonn dataset. Their method performs
better on binary and ternary classification problems, with mean accuracies ranging from 97.4% to
100% when employing single and ensemble models. According to Jaiswal et al. [14], SpPCA and
SubXPCA combined with SVM are proposed for EEG seizure detection, and on benchmark datasets,
they achieve 100% accuracy in differentiating between normal and epileptic signals. By using
cross-subpattern correlation and subpattern-based PCA for feature extraction and classification, their
approaches beat those of other researchers. In order to improve efficiency and repeatability, Hao et
al. [15] present DeepIED, a semi-automatic epileptic discharge detector for EEG-fMRI recordings
based on deep learning. After testing 37 patients, the results showed a median sensitivity of 84.2%
and a false positive rate of 5 events/min. This is much higher than the median sensitivity of 50.0%
that was obtained using template-based approaches. A deep learning framework for EEG-based
epilepsy detection is presented by Abbasi et al. [16]. It uses LSTM architecture and achieves up
to 98% accuracy for binary classification and up to 95% accuracy for multi-class classification of
pre-ictal, inter-ictal, and ictal signals. They achieve great accuracies with their double-layered LSTM
technique, outperforming SVM performance and proving useful in epilepsy detection by utilizing
characteristics like Hurst Exponent and ARMA. Following DWT preprocessing, Aliyu et al. [17]
present an RNN for classifying epileptic EEG signals that achieves 99% accuracy with optimum
settings. With 99% accuracy, their RNN beats LR, SVM, KNN, RF, and DT. DT comes in second
with 98% accuracy, and RF has the lowest accuracy at 75%. By detecting certain sub-bands (1.5-2
Hz and 11-12.5 Hz), Burenter et al. [18] provide a spectral analysis-based technique for epilepsy
diagnosis using seizure-free EEG recordings, reaching 99% accuracy and outperforming neurologist
benchmarks (70-95%). Research on healthcare information systems may benefit from this approach,
which provides a reliable, quick, and affordable diagnostic substitute. Using DWT and arithmetic
coding, Amin et al. [19] provide a CAD approach that achieves 100% accuracy in separating
epileptic seizure signals from normal EEG data. Perfect sensitivity and specificity are shown by
the approach in several datasets, indicating that it may be a useful addition to clinical epilepsy
diagnosis. In order to detect epileptic seizures, Chatzichristos et al. [20] present a multi-view fusion
model that uses attention-gated U-nets and LSTM. This model outperforms previous techniques on
the TUH EEG seizure dataset and receives the highest TAES score in the Neureka 2020 Epilepsy
Challenge. Even with a large number of false alarms every day, the sensitivity stays below 25%.
In order to train a multi-class classifier, Xu et al. [21] provide a self-supervised learning method
for EEG anomaly detection using scaled transformations on regular EEG data. With an AUC of
0.943, the approach beats conventional anomaly detection techniques and shows resilience in
cross-validation testing with respect to different classifier architectures and hyper-parameters. Using
artificial neural networks (ANN) and other classifiers, Mardini et al. [22] provide an EEG-based
seizure detection framework that achieves a high accuracy of 97.82% in differentiating between
epileptic and normal signals across 14 dataset combinations. Their approach offers a useful tool for
identifying brain abnormalities and may find use in medical diagnostics and neuroscience research.
A thorough technique for detecting epileptic seizures including preprocessing, feature extraction, and
classification. It is implemented in MATLAB and TensorFlow 2/scikit-learn by Malekzadeh et al. [23].
By utilizing 10-fold cross-validation, the technique attains 99.5% accuracy, indicating potential for
improving the quality of life for those with epilepsy. In order to diagnose epilepsy based on scalp
EEGs, Thangavel et al. [24] present a deep learning method that uses 1D ConvNets. This method
achieves a false detection rate of 0.23/min at 90% sensitivity. With mean EEG classification BAC of
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78.1% (AUC 0.839) in LOIO cross-validation and 79.5% (AUC 0.856) in LOSO CV, the technique
shows promising performance and may be useful in lowering the amount of human labor required for
epilepsy diagnosis. In order to achieve high accuracy (sensitivity: 98.09%, specificity: 98.69%, false
detection rate: 0.24/h) in automated epileptic seizure detection from EEG signals, Zubair et al. [25]
use dimensionality reduction strategies and machine learning models. Their approach outperforms
earlier state-of-the-art studies and shows promise for improving seizure detection accuracy and
efficiency, which will help people with epilepsy and medical professionals. In their article Shankar
et al. [26], describe a deep learning method that uses CNNs to identify epileptic seizures from EEG
signals. This method produces RP-based 2D pictures for certain brain rhythms and achieves up to
93% accuracy on databases from Bonn University and CHB-MIT. The δ rhythm is shown to be the
appropriate brain rhythm for seizure analysis, and global statistical metrics and entropy are used to
assess the quality of RP images. A CNN-LSTM hybrid model is presented by Jiwani et al. [27] for the
identification of epileptic seizures from EEG recordings. It uses both spatial and temporal information
and has fewer trainable parameters. The model’s applicability for real-time processing applications
is demonstrated by its up to 100% accuracy in differentiating between healthy persons and seizure
sufferers when tested on the University of Bonn dataset. Christou et al. [28] use the University of
Bonn dataset to test the effects of different window sizes on the classification of EEG signals using
BFGS, multistart, modified GA, and K-NN classifiers. According to the study, the multistart technique
outperforms BFGS, modified GA, and K-NN, with a 20–21 second window obtaining the maximum
accuracy (81.59%).

3 Sleep Disorders Diagnosis

The diagnosis of sleep problems is a complex task because of the wide range of symptoms and their
influence on general health and well-being. From narcolepsy and parasomnias to insomnia and sleep
apnea, sleep disorders cover a wide range of disruptions, each with its own clinical presentations and
underlying causes. A thorough evaluation that includes a full medical history, a clinical assessment,
and objective sleep investigations like actigraphy and polysomnography is frequently necessary for an
accurate diagnosis. By evaluating nocturnal activities, respiratory data, and sleep architecture, these
diagnostic techniques help determine the kind and severity of sleep disorders. Furthermore, new
technologies and sleep monitoring gadgets for use at home present chances for remote monitoring
and diagnosis, improving patient accessibility and convenience. To maximize diagnostic accuracy
and treatment success, multidisciplinary teamwork and patient-centered care methods are crucial.
Nevertheless, difficulties still exist in the prompt identification and management of sleep disorders.
Without the need of spectrograms or manually created features, Chambon et al. [10] offer a deep
learning technique for temporal sleep stage categorization utilizing multivariate time series data.
The model leverages PSG inputs, such as EEG, EOG, and EMG, and uses linear spatial filters and
softmax classifiers to achieve state-of-the-art performance in identifying sleep phases. It shows that
recognizing W stage has a high specificity (almost 1) and sensitivity (0.85). Using a time-distributed
1-D convolutional neural network trained on the Sleep-EDF dataset, Koushik et al. [29] present a
real-time sleep staging system that uses deep learning on a smartphone with a wearable EEG,
achieving 83.5% accuracy in five-class sleep stage categorization. The traditional gold standard
for sleep staging, polysomnography (PSG), is simplified and automated using this method. The
Random Forest classifier outperformed other classifiers with an accuracy of 75.29% when used
in Tzimourta et al. [30]’s approach for sleep staging utilizing EEG data from PSG recordings. In
addition to possibly improving the identification of sleep problems, this method presents a viable path
for a quick and affordable sleep examination. Using obstructive sleep apnea (OSA) detection as a
focal point, Korkalainen et al. [31] provide a deep learning approach for sleep stage division. With
EEG+EOG, the model achieved 83.9% accuracy for sleep staging, with accuracy decreasing with
OSA severity. This model was successful in both healthy persons and patients with suspected OSA.
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A deep learning model called DOSED is introduced by Chambon et al. [32] to automate the detection
of micro-architecture events in EEG data. When it comes to precise event location, duration, and type
prediction—all of which are critical for identifying sleep disorders—DOSED exceeds existing state-of-
the-art methods. Using a decision tree-based multi-class support vector machine classifier, Ravan
et al. [33] offer an EEG-based machine learning strategy that achieves 94.2% classification accuracy
across three sleep categories for quantifying sleep quality. Even with untested datasets, the approach
helps physicians diagnose sleep problems by providing a reliable and accurate assessment of sleep
quality. In their study, Buettner et al. [34] provide a fast and precise machine learning technique for
identifying sleep disorders, namely REM sleep behavior disorder. They surpass previous standards,
obtaining over 90% accuracy using a mere 10-minute EEG recording clip. The speed and precision
of identifying sleep disorders—which is vital for preventing secondary illnesses like Parkinson’s or
dementia—can be greatly improved with this method. Using deep learning on photoplethysmography
(PPG) data, Korkalainen et al. [35] correctly estimate total sleep time and the apnea-hypopnea
index (AHI) with accuracy rates of 80.1%, 68.5%, and 64.1% for three, four, and five-stage sleep
classifications, respectively. This technique may make it easier and more affordable to diagnose
sleep problems, particularly obstructive sleep apnea (OSA). In order to identify patient groups with
sleep-related illnesses, Jarchi et al. [36] provide a bio-signal processing and deep learning approach
that outperforms state-of-the-art classifiers and achieves 72% accuracy. By integrating ECG and
EMG data, their suggested deep neural network design provides thorough analysis for the diagnosis
of disorders including restless legs syndrome (RLS) and obstructive sleep apnea (OSA). With high
accuracies ranging from 91.3% to 99.2% using ensemble boosted trees classifier, Sharma et al. [37]
propose an EEG-based method for automated identification of six sleep disorders, providing a quick
and easy way to diagnose sleep disorders in homes and clinics. A thirty-layer CNN model using
EEG signals is introduced by Sudhakar et al. [38] for the detection of sleep disorders. AlexNet
outperforms GoogleNet with an accuracy of 93.33%, showing promise even with a small dataset size.
An automated sleep stage classification system employing EEG signals and supervised classifiers
is presented by Sharma et al. [39]; for balanced datasets, it achieves up to 92.8% accuracy and
0.915 Cohen’s Kappa coefficient. For diagnostic reasons, the approach may be used in sleep
labs and provides a dependable means of evaluating the quality of sleep in individuals suffering
from different types of sleep disorders. Using bidirectional recurrent neural networks for sleep EEG
signals, Fu et al. [40] create a deep learning model that achieves 70–85% classification accuracy for
each category on the Sleep-EDF dataset. Their approach outperforms previous models in terms of
accuracy, indicating its efficacy and potential for real-world use in sleep study. Using deep learning
models trained on 135 EEG signals acquired with AES, Leino et al. [41] offer an accurate automated
sleep staging approach based on ambulatory forehead EEG, attaining up to 89.1% accuracy. The
model shows good ability to discriminate between different stages of sleep, especially when using the
Fp1/Fp2 EEG channel combination.

4 Movement Disorders Diagnosis

EEG-based movement disorder diagnosis is a developing field of study that aims to clarify the
neurological underpinnings of motor dysfunction. EEG can offer important insights into cortical
involvement and abnormal brain activity associated with illnesses including Parkinson’s disease,
Huntington’s disease, and dystonia, even though it is not usually the primary diagnostic tool for
movement disorders. Event-related potentials, aberrant oscillatory activity patterns, and cortical
synchronization can all be seen in EEG recordings, which can provide further data for neuroimaging
research and clinical evaluations. EEG can also help distinguish movement disorders from other
neurological illnesses that share symptoms, which can lead to a more precise diagnosis and better
treatment planning. Even though EEG has great potential, issues like low spatial resolution and
variability in EEG results among people with movement disorders highlight the need for more
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research and integration of EEG with other diagnostic modalities for a thorough assessment and
treatment of these intricate conditions. The deep convolutional neural network technique presented
by Vrbancic et al. [11] outperformed conventional approaches, however it lagged slightly below
the state-of-the-art approach in terms of accuracy when it came to identifying motor impairment
neurological diseases from EEG data. Nevertheless, it streamlines the diagnosis of neurological
disorders by providing totally automated categorization devoid of human involvement. With good
accuracy rates of 98% for SVM, 91.7% for LR, and 93.6% for NB classification, Mumtaz et al. [42]
offer an EEG-derived synchronization likelihood (SL) feature-based automated diagnostic system
for Major Depressive Disorder. Their work offers a promising new technique for the diagnosis of
depression by demonstrating the ability of EEG-based characteristics to distinguish MDD patients
from healthy controls with consistency. By employing an additional tree classifier, Vanegas et al. [43]
achieve virtually flawless classification performance with an AUC of 0.99422 when proposing machine
learning-based detection of EEG biomarkers in Parkinson’s disease during visual stimulation. In
addition to offering important insights into the neurophysiological hallmarks of the disease, their
work emphasizes the potential of EEG spectral amplitude across various frequency bands for
precise PD diagnosis. To diagnose and prognosticate idiopathic Rapid Eye Movement Behavior
Disorder (RBD), Ruffini et al. [44] present deep learning models based on eyes-closed resting EEG
data. Using both deep convolutional neural networks (DCNN) and deep recurrent neural networks
(RNN), their method—which draws inspiration from audio or picture classification—achieves about
80% classification accuracy, demonstrating the promise of deep learning in EEG data for cognitive
problem identification. For the purpose of classifying motor imagery EEG signals, Dai et al. [45]
present a unique deep learning framework that combines convolutional neural networks (CNN) with
variational autoencoders (VAE). This approach outperforms current approaches, demonstrating a
3% improvement on the BCI Competition IV dataset 2b. With an average kappa value of 0.564,
their method—which combines time, frequency, and channel information—achieves the greatest
results and shows promise for motor imagery EEG categorization. By using automated machine
learning approaches, Koch et al. [46] are able to categorize EEG signals in patients with Parkinson’s
disease (PD) with an 84.0% classification accuracy using automated calculated features. Their
method suggests novel biomarkers for Parkinson’s disease (PD) cognitive function and demonstrates
that a greater accuracy of 91.0% may be achieved by combining automated and clinical aspects.
Transfer learning of pre-trained Convolutional Neural Networks (CNNs) is used by Shajil et al. [47]
to classify motor imagery (MI) EEG signals. The highest classification accuracy of 82.78±4.87%
was achieved for the BCI Competition IV dataset 2a and 83.79±3.49% for an acquired dataset
using InceptionV3 CNN. Their work demonstrates how well pre-trained CNN models—especially
those with more layers and parameters—may be used to efficiently classify two-class MI EEG
data. For the purpose of diagnosing neurological disorders based on EEG data, Bouallegue et
al. [48] suggest a dynamic filtering and deep learning-based method that combines FIR and IIR
filters with a Gated-Recurrent Unit (GRU) Recurrent Neural Network (RNN) for preprocessing. With
100% accuracy in diagnosing epilepsy and 99.5% accuracy in diagnosing autism, their system
achieves amazing accuracy in feature extraction and classification using Convolutional Neural
Networks (CNN). The thirteen-layer CNN architecture proposed by Oh et al. [49] achieves 88.25%
accuracy, 84.71% sensitivity, and 91.77% specificity in the identification of Parkinson’s disease
(PD) using EEG signals. This approach, which eliminates the requirement for traditional feature
representation phases, shows promise as a dependable, long-term PD diagnosis tool when verified
using stratified ten-fold cross-validation. Using machine learning methods and the Maximum Overlap
Discrete Wavelet Transform (MODWT), Abdulwahab et al. [50] create an EEG Motor-Imagery BCI
System. Achieving 98.81% average accuracy using SVM algorithm using MODWT for feature
extraction, their work highlights the importance of EEG for severe motor disorders, rehabilitation,
and communication. Using raw MRIs to identify microstructural neural network biomarkers, Bashir
et al. [51] present DystoniaNet, a deep learning-based technique for aided diagnosis of movement
disorders, especially isolated dystonia. With an overall accuracy of 98.8%, DystoniaNet outperforms
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shallow machine learning networks, demonstrating the promise of computational intelligence in
the early identification of movement disorders. Using resting state EEG data, Shaban et al. [52]
provide a deep learning-based framework with 98% accuracy, 97% sensitivity, and 100% specificity
for automated Parkinson’s disease (PD) screening and classification. This framework supports
doctors in diagnosis and treatment recommendations by acting as an accurate and dependable
computer-aided diagnostic tool. In comparison to traditional research, Urtnasan et al. [53] achieve
a superior F1-score of 92% using deepPLM, a deep learning model for automated identification of
periodic limb movement syndrome using ECG signals. With excellent accuracy in test, assessment,
and training groups, it presents a viable substitute for PLMS screening, especially for home health
care services. A deep neural network technique for automatically determining movement intention
from EEG data is presented by Shahini et al. [54]. High accuracy of 96.9% and 89.8%, respectively,
are attained for two-class and three-class situations. This method outperforms prior approaches
that rely on manual feature extraction since it operates directly on raw EEG data without feature
extraction. In order to diagnose Parkinson’s illness, Shaban et al. [55] describe a deep learning
technique that applies a 20-layer CNN to the Wavelet domain of resting-state EEG. With a high
specificity and sensitivity of about 99.9%, the method is successful in correctly dividing people into
two groups: those with Parkinson’s disease (with and without treatment) and healthy controls.

5 cognitive Assessment

EEG-based cognitive evaluation has become a useful technique for studying brain activity and
evaluating cognitive functions. With its non-invasive method of monitoring brain electrical activity
in real time, electroencephalography (EEG) gives insights into the neural dynamics linked to a
range of cognitive processes, including executive function, memory, and attention. Researchers
can find certain neural signatures that indicate cognitive states, task engagement, and cognitive
load by examining EEG data. Furthermore, exact temporal resolution is provided by event-related
potentials (ERPs), which are obtained from EEG data and may be utilized to analyze cognitive
processes with millisecond accuracy. Moreover, quantitative EEG (qEEG) analysis offers quantifiable
measurements of brain activity, making it possible to find biomarkers linked to neurodegenerative
illnesses including Alzheimer’s disease and cognitive decline. It is possible to diagnose cognitive
deterioration early, track the course of a disease, measure the effectiveness of treatment, and
improve patient care and cognitive rehabilitation techniques by incorporating EEG-based cognitive
evaluation into clinical practice. An end-to-end deep neural network model was created by Almogbel
et al. [13] to directly predict cognitive effort from raw EEG data. For a 150-second window, the
model achieved an astounding 95.31% accuracy. Their CNN-based method successfully recovers
high-level characteristics from EEG data, showing promise for precise cognitive strain assessment
with much room for improvement. Using cutting-edge machine learning techniques, Liu et al. [56]
provide an EEG-based evaluation of mental tiredness across four levels. Their work emphasizes
the trade-off between recognition rates and practicality, stressing prospects for future accuracy
increases in subject-independent techniques. They achieve an average accuracy of 93.45% in
subject-dependent approaches and 39.80% in subject-independent approaches. In human-machine
collaboration situations, Yang et al. [57] provide a deep learning-based method for quantifying
cognitive mental effort using EEG signals. By utilizing subject-specific integrated deep learning
committees, their ensemble classifier surpasses standard classifiers in accuracy, achieving 92%, but
at the cost of greater computing complexity and parameter overhead. Using EEG spectrum data
and traditional machine learning, Plechawska et al. [58] offer a subject-independent technique for
cognitive workload estimation that achieves up to 91% accuracy using kNN model validation and
cross-validation. Selecting features improves classification accuracy, proving useful in task level
estimate. A deep neural network is introduced by Almogbel et al. [59] to detect cognitive workload
and driving context directly from raw EEG signals. The network achieves an average accuracy of 96%
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and can distinguish between driving on a city or highway with accuracy, indicating the effectiveness of
deep CNNs in workload and context classification without the need for preprocessing. In comparison
to traditional techniques, Sridhar et al. [60] achieve enhanced diagnosis of mild cognitive impairment
(MCI) by introducing a subject-agnostic BLSTM network to assess cognitive functions based on
brain signal characteristics. The work shows potential accuracy in detecting MCI by using gamma
band power analysis and sensory-motor paradigms to determine cognitive deterioration. In order
to distinguish between writing and typing activities, Qu et al. [61] suggest an EEG-based technique
that uses machine learning and deep learning algorithms to achieve accuracy levels above chance.
According to their research, EEG indicators are able to identify minute differences in cognitive
tasks, even when the tasks’ communication and cognitive modes are equivalent. A methodology
for separating moderate cognitive impairment (MCI) patients from healthy controls using EEG
data is put forth by Siuly et al. [62]. By utilizing auto-regressive model features and Permutation
Entropy in conjunction with contemporary machine learning techniques, they surpass previous
approaches and offer a reliable biomarker for MCI identification, attaining a remarkable 98.78%
accuracy rate through the use of Extreme Learning Machine. In order to differentiate Parkinson’s
Disease patients based on cognitive function, Geraedts et al. [63] present a completely automated
machine learning pipeline that uses EEG signals and achieves a mean accuracy of 92%. This
method shows potential for cognitive profiling in PD patients undergoing Deep Brain Stimulation
screening. To identify cognitive burden, Gupta et al. [64] suggest a technique that combines deep
learning with EEG-based functional connectivity, resulting in state-of-the-art accuracy of 80.87%.
The study shows how functional connectivity information may be used for workload categorization
in real time. For the purpose of classifying EEG signals, Suchetha et al. [65] offer two unique deep
learning architectures: SCN and MBCN. MBCN outperforms SCN and conventional approaches,
reaching 88.33% accuracy and displaying reduced computing complexity. An integrated EEG, eye
tracking, and neuropsychological test low-cost screening paradigm for MCI is presented by Jiang et
al. [66]. With predictive power of 84.5 ± 4.43% and 88.8 ± 3.59% in two cohorts, respectively, and
AUCs of 0.941 and 0.966, the model has potential for use in the prediction of cognitive decline in
the future. Using EEG data and deep learning methods, Longo et al. [67] provide a self-supervised
approach for modeling mental workload. Promising accuracy and generalizability are demonstrated
by the approach, with a mean absolute percentage error of around 11% and consistent accuracy
among individuals. The effectiveness of a single-channel EEG device for assessing cognitive states
is evaluated by Molcho et al. [68]. Their results point to a promising approach for identifying cognitive
decline that may find widespread clinical application: machine learning-based EEG characteristics
taken from an auditory cognitive exam.

6 Brain Injury Assessment

Electroencephalography (EEG) is a useful tool for brain injury assessment for assessing neurological
function after traumatic brain injury (TBI) and other types of brain injury. With the sensitive and
non-invasive monitoring of brain activity provided by EEG, doctors can identify anomalies in electrical
transmission linked to brain damage. After an acute insult, electroencephalography (EEG) can give
instantaneous information on the degree and kind of neuronal damage, which can assist influence
treatment choices and forecast patient outcomes. Additionally, non-convulsive status epilepticus and
subclinical seizures, which are frequent aftereffects of brain injury and may exacerbate secondary
brain damage if ignored, can be identified by EEG monitoring in the critical care unit. Furthermore,
quantitative EEG (qEEG) analysis may measure alterations in patterns of brain activity over time,
offering significant prognostic data and directing activities related to rehabilitation. Even though
EEG is useful, there are still issues that need to be addressed in order to maximize its application
in brain injury evaluation and therapy. These issues include how to interpret EEG results in the
context of multifactorial brain damage and the requirement for standardized procedures. In order
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to detect epileptiform activity in rat EEG records following traumatic brain injury, Obukhov et al. [12]
create a technique that uses wavelet transform and logistic regression, with an accuracy of around
80%. Using EEG reactivity data, Amorim et al. [69] created a semi-automated technique that
predicts outcomes in hypoxic-ischemic brain damage, with AUCs of 0.8 for random forest, which is
equivalent to expert evaluation. Promising support for prognostication in cardiac arrest is provided
by this approach. In a mouse model of traumatic brain injury (TBI), Vishwanath et al. [70] classified
EEG data using machine learning methods, namely CNNs, and achieved accuracies of up to
92.03% when evaluating sleep and wake data. Their results point to the possibility of using these
methods to diagnose neurological disorders such traumatic brain injury. A computer-aided method
for automatically identifying Disorders of Consciousness (DoC) in brain-injured patients using EEG
signals is presented by Wang et al. [71]. With a support vector machine classifier ensemble,
their technique achieves a high accuracy of 98.21%, showing remarkable possibilities for precise
diagnosis and medical treatment. Deep neural network designs are proposed by Faghihpirayesh et
al. [72] for the automated identification of biomarkers for post-traumatic epilepsy (PTE) in patients
with moderate-to-severe traumatic brain injury (TBI) using EEG data. Their recurrent neural network
provides a potential path for reliable, automated PTE detection and prediction in TBI patients, with
an 80.78% accuracy rate in recognizing epileptiform anomalies. Machine learning is used by Thara
et al. [73] to forecast the results of pediatric traumatic brain injury (TBI). Support vector machines,
neural networks, random forests, logistic regression, naive Bayes, and k-nearest neighbor algorithms
are all used in their study, which is carried out in Southern Thailand. Support vector machines
show the best results. These ML algorithms show potential as screening tools for prognostic
counseling and functional outcome prediction in pediatric traumatic brain injury cases due to their
excellent sensitivity and specificity. EEG-derived psychophysiological indicators were used in a pilot
research by Di et al. [74] to predict clinical outcomes in patients with disorders of consciousness
(DoC) following brain damage. The translational value of EEG biomarkers in DoC assessment
was highlighted by the accurate outcomes predictions for traumatic patients that were obtained
by combining dominant frequency measures and functional connectivity, while mutual information
combination and functional connectivity best predicted outcomes for nontraumatic patients. In
nontraumatic patients, the suggested technique yielded an accuracy of 83.3% (sensitivity = 92.3%,
specificity = 60%), and in traumatic patients, an accuracy of 80% (sensitivity = 85.7%, specificity
= 71.4%). Using supervised machine learning and normative modeling, Italinna et al. [75] provide
a novel way to detect mild traumatic brain injury (mTBI) using MEG recordings. Their method
demonstrated its ability to enhance clinical decision-making by accurately identifying mTBI patients
from controls with an accuracy of 79%.

7 Discussion

The comparative analysis of studies on automatic seizure detection in Table 1 presents a diverse
array of methodologies, feature extraction techniques, classification algorithms, and results. From
deep learning models like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) to traditional machine learning classifiers and ensemble models, various approaches are
explored. Feature extraction methods range from basic signal processing techniques like Discrete
Wavelet Transform (DWT) to more advanced methods such as Spectral Principal Component
Analysis (SpPCA) and Recurrence Plots (RP). Classification algorithms vary widely, including
SVMs, LSTM, CatBoost, and novel architectures like attention-gated U-nets. Results showcase
high accuracy rates, often surpassing 90%, with some studies achieving perfect classification
performance. Sensitivity, specificity, false detection rates, and area under the curve (AUC) are
among the reported metrics, demonstrating the robustness and potential clinical utility of the
proposed methods in seizure detection. However, further validation and standardization across
diverse datasets are necessary to ensure the reliability and generalizability of these automated
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seizure detection systems.

Table 1: Comparison of Studies on Automatic Seizure Detection

Study Methodology Feature Extraction Classification
Algorithm Result

Ullah et al.
(2018) [9]

Ensemble of P-1D-CNN
models EEG sub signals P-1D-CNN Accuracy of 99.1 ± 0.9%

on University of Bonn dataset
Jaiswal et al.
(2018) [14] Automated seizure detection SpPCA, SubXPCA SVM 100% accuracy for

classification of normal and
epileptic EEG signals

Hao et al.
(2018) [15]

Deep learning-based
semi-automatic detector

EEG Signals DeepIED (RNN-
based)

Median sensitivity of 84.2% with
false positive rate
set at 5 events/min

Abbasi et al.
(2019) [16]

Deep learning with
LSTM architecture

Hurst Exponent,
ARMA

LSTM Up to 99.17% accuracy for
various EEG signal
classifications

Aliyu et al.
(2019) [17]

Recurrent neural
network (RNN)

DWT RNN (with
optimizations)

99% accuracy with the
best generalization,
outperforming other algorithms

Burenter et al.
(2019) [18]

Spectral analysis of
seizure-free
EEG recordings

Fine-graded spectral
analysis

Ensemble of
Classifiers

Accuracy of 99%
in diagnosing epilepsy

Amin et al.
(2020) [19]

Discrete wavelet transform
(DWT) and arithmetic coding

DWT Linear and non-linear
machine learning
classifiers

Perfect classification
performance (100% accuracy)
for detecting epileptic
seizure activity

Chatzichristos et
al. (2020) [20]

Attention-gated U-nets and
long short-term memory network

Self label EEG U-net & LSTM
Outperformed state-of
-the-art methods,
highest TAES score
in Neureka 2020
Epilepsy Challenge

Xu et al.
(2020) [21]

Self-supervised learning
method for anomaly detection

Self label EEG
Multi-class
classifier using
self-labeled
normal EEG data

Outperformed classic
anomaly
detection methods,
AUC of 0.943

Mardini et al.
(2020) [22] Machine learning classifiers Self label EEG ANN

ANN achieved
accuracy of 97.82%
for detecting
epileptic seizures

Malekzadeh et al.
(2021) [23]

Preprocessing, feature
extraction,
and classification steps

Tunable-Q Wavelet
Transform CNN–RNN model Accuracy of 99.5%

using 10-fold
cross-validation

Thangavel et al.
(2021) [24] Deep learning with ConvNets Various input features,

1D ConvNet model
CNN

False detection
rate of 0.23/min at 90%
sensitivity, mean
EEG classification
BAC of 78.1% (AUC of 0.839)

Zubair et al.
(2021) [25]

Dimensionality reduction
and machine learning

DWT CatBoost
High accuracy with
sensitivity of 98.09%,
specificity of 98.69%, and
false detection rate of 0.24/h

Shankar et al.
(2021) [26] Deep learning with CNN Recurrence Plots (RP)

from EEG signals
CNN

Classification
accuracy up to 93% on
Bonn University and
CHB-MIT databases

Christou et al.
(2022) [28]

Evaluating impact of
different window sizes

EEG signals BFGS, multistart,
modified GA, K-NN

Highest accuracy
achieved with 20-21
seconds window size,
multistart method
reached 81.59% accuracy

Jiwani et al.
(2022) [27]

Combined CNN and
LSTM models

EEG signals CNN and LSTM
Maximum accuracy
of 100% for
distinguishing
between healthy and
seizure patients

The comparative analysis of sleep disorder studies in Table 2 reveals a
diverse landscape of methodologies, feature extraction techniques, classification
algorithms, and results. Studies employ a range of approaches, from deep
learning models like convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) to traditional machine learning algorithms such as Support
Vector Machines (SVM) and Random Forest. Feature extraction methods span
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time domain features, frequency domain features, energy in sub-bands, entropy,
moments, and multi-level wavelet decomposition, each tailored to capture pertinent
information from EEG, ECG, EMG, and PPG signals. Notably, deep learning
models emerge as prominent tools, showcasing their prowess in automatically
learning intricate patterns from raw data, leading to state-of-the-art performance
across various tasks. While traditional methods still find application, the superior
performance of deep learning architectures, as evidenced by consistently high
accuracy and sensitivity, underscores a paradigm shift in sleep disorder analysis.
However, the choice of methodology and feature extraction techniques remains
contingent upon the specific objectives and characteristics of the sleep disorder
being studied.

Table 2: Comparative Analysis of Sleep Disorder Studies

Study Methodology Feature Extraction Classification
Algorithm Result

Chambon et al.
(2018) [10]

Deep learning with multivariate
and multimodal time series

Time domain feature Deep learning model
with linear spatial filters
and softmax classifier

State-of-the-art performance
with high sensitivity and
specificity in detecting
sleep stages

Koushik et al.
(2018) [29]

Deep learning on smartphone,
time-distributed 1-D deep
convolutional neural network

Time domain feature 1-D deep convolutional
neural network

83.5% accuracy for
five-class sleep staging

Tzimourta et al.
(2018) [30]

Filtering EEG signal,
calculating energy in sub-bands

Energy in sub-bands Random Forest, SVM,
k-NN, Decision Tree,
Naı̈ve Bayes

Best classification accuracy:
Random Forest (75.29%)

Korkalainen et al.
(2019) [31]

Deep learning-based method,
single EEG channel, EEG+EOG

Time domain feature Deep learning
architecture

Sleep staging accuracy:
83.7% (single EEG channel),
83.9% (EEG+EOG)

Chambon et al.
(2019) [32]

Dreem One Shot Event
Detector (DOSED), deep
learning architecture

Time domain feature DOSED (deep learning
architecture)

Outperforms state-of-the-art
methods in event detection

Ravan et al.
(2019) [33]

Electroencephalography-based
machine learning approach,
decision tree-based multi-class
support vector machine
classifier

Quantitative features
from EEG signals

Support Vector
Machine (SVM)

Average classification accuracy
of 94.2% for sleep quality
measurement

Buettner et al.
(2020) [34]

Machine learning approach for
sleep disorder diagnosis using
electroencephalographic data

Frequency domain
feature Random Forest Accuracy of over 90% for

classifying REM sleep
behavior disorder

Korkalainen et al.
(2020) [35]

Deep learning model, PPG
data Time domain feature Deep learning

architecture
Accuracies: 80.1% (3-stage),
68.5% (4-stage), 64.1% (5-stage)

Jarchi et al.
(2020) [36]

Deep learning, ECG and
EMG Entropy & Moments Deep Neural

Network (DNN)
Accuracy: 72% in recognizing
four groups with sleep-related
disorders

Sharma et al.
(2021) [39]

Automated identification of six
sleep disorders using EEG
signals

Ensemble boosted
trees classifier

Ensemble boosted
trees classifier

Highest accuracy: 91.3% for
identifying the type of sleep
disorder

Sudhakar et al.
(2021) [38]

Detection of sleep disorders
using EEG signals and deep
learning neural networks

Time domain feature Convolutional Neural
Network (CNN)

Accuracy: 93.33% using
AlexNet

Sharma et al.
(2021) [37]

Automated sleep stage
classification using multi-level
wavelet decomposition and
norm-based feature extraction

Multi-level wavelet
decomposition and
norm-based feature
extraction

Supervised classifiers Highest accuracy: 92.8%
(balanced dataset) for sleep
stage classification

Fu et al.
(2022) [40]

Deep learning model for sleep
EEG signals using bidirectional
recurrent neural network
encoding and decoding

Time &
Frequency domain feature

Bidirectional Recurrent
Neural Network (BiRNN)

Classification accuracy:
70-85% for each category

Leino et al.
(2022) [41]

Accurate automatic sleep
staging based on ambulatory
forehead EEG using deep
learning models

Time domain feature Deep learning
architecture

Accuracy: 79.7% (5-stage),
84.1% (4-stage), 89.1% (3-stage)
for sleep staging using ambulatory
forehead EEG

The comparative analysis of movement disorder diagnosis studies in Table 3
reveals a diverse range of methodologies, feature extraction techniques,
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classification algorithms, and achieved results. Researchers employ various deep
learning architectures such as Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and their combinations to process EEG signals, ECG
signals, and raw MRIs for diagnosis. Machine learning techniques like Support
Vector Machines (SVMs), Logistic Regression (LR), and k-Nearest Neighbors (k-
NN) are also utilized, often in conjunction with advanced feature extraction methods
such as wavelet transforms and synchronization likelihood (SL) features. Results
demonstrate high accuracy rates, with some studies achieving almost perfect
classification performance, surpassing traditional methods. Additionally, transfer
learning and automated feature selection techniques contribute to improved
diagnostic accuracy and efficiency. These findings underscore the potential of
machine learning and deep learning approaches in enhancing movement disorder
diagnosis through the analysis of physiological signals and medical imaging data.
However, further validation on larger and more diverse datasets is essential to
ensure the robustness and generalizability of these diagnostic tools in clinical
settings.

Table 3: Comparative Analysis of Movement Disorder Diagnosis Studies

Study Methodology Feature Extraction Classification
Algorithm Result

Vrbancic et
al.(2018) [11]

Deep Convolutional
Neural Networks (CNN)

EEG signals CNN Overall accuracy of 69.23%,
outperformed traditional methods

Mumtaz et
al.(2018) [42] Machine Learning EEG-derived synchronization

likelihood (SL) features
SVM, LR, NB High accuracy rates achieved

for Major Depressive
Disorder diagnosis

Vanegas et
al.(2018) [43] Machine Learning EEG-based biomarkers Extra Tree

Classifier (ETC)
Almost perfect classification
performance for PD diagnosis

Ruffini et
al.(2019) [44]

Deep Convolutional Neural
Network (DCNN), Deep
Recurrent Neural Network
(RNN)

EEG data as
spectrograms DCNN, RNN 80% (±1%) classification

accuracy in control vs.
PD-conversion group

Dai et
al.(2019) [45]

Convolutional Neural Network
(CNN), Variational
Autoencoder (VAE)

Combined time, frequency,
and channel information

CNN-VAE Outperformed best classification
method in literature, improved
accuracy by 3%

Koch et
al.(2019) [46]

Automated Machine
Learning

794 features from EEG
channels

Automated
computed features

Classification accuracy of 84.0%,
better performance with
automated features alone

Shajil et
al.(2020) [47] Transfer Learning Pre-trained Convolutional

Neural Networks (CNNs)

InceptionV3,
AlexNet,
ResNet50

InceptionV3 achieved highest
classification accuracy
of 82.78±4.87%

Bouallegue et
al.(2020) [48]

Dynamic Filtering,
Deep Learning

FIR and IIR filters,
Gated-Recurrent Unit (GRU),
Convolutional
Neural Network (CNN)

GRU, CNN Average accuracy of 100% for
epilepsy diagnosis, 99.5%
for autism diagnosis

Oh et
al.(2020) [49]

Convolutional
Neural Network (CNN)

EEG signals CNN Accuracy: 88.25%,
Sensitivity: 84.71%,
Specificity: 91.77%

Abdulwahab et
al.(2021) [50] Machine Learning Maximum Overlap Discrete

Wavelet Transform (MODWT)

SVM, k-NN,
Decision Tree

Average accuracy of 98.81%
using MODWT

Bashir et
al.(2021) [51] Deep Learning Raw MRIs DystoniaNet Overall accuracy of 98.8%

for dystonia diagnosis
Shaban et
al.(2021) [52] Deep Learning Resting state EEG data Artificial Neural

Networks
Accuracy: 98%,
Sensitivity: 97%,
Specificity: 100%

Urtnasan et
al.(2022) [53] Deep Learning ECG signals DeepPLM F1-score: 92%,

Accuracy: 88% in
training group
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Shahini et
al.(2022) [54] Deep Neural Network Raw EEG data Deep Neural

Network

Accuracy: 96.9% for
two-stage, 89.8%
for three-stage
movement intentions

Shaban et
al.(2022) [55]

Deep Convolutional
Neural Network (CNN)

Wavelet domain of
resting-state EEG

CNN
Accuracy: 99.9%,
Specificity: 100%,
Sensitivity: 97% for
classifying HC, PD with
and without medication

The comparative analysis of the studies presented in Table 4 reveals a
diverse landscape of methodologies, feature extraction techniques, classification
algorithms, and results in cognitive assessment using EEG data. While deep
learning models dominate the landscape for their ability to extract features directly
from raw EEG signals, machine learning techniques also play a significant role,
particularly in leveraging more traditional feature extraction methods. Results
vary widely across studies, with reported accuracy rates ranging from modest
to high levels, influenced by factors such as data quality, feature extraction
effectiveness, and algorithm choice. Despite this variability, the studies collectively
underscore the potential of EEG-based cognitive assessment in detecting
cognitive decline, assessing cognitive workload, and differentiating cognitive
states, offering promising prospects for clinical diagnosis and human-machine
interaction enhancement.

Table 4: Comparative Analysis of Cognitive Assessment by EEG

Study Methodology Feature
Extraction Classification Algorithm Result

Almogbel et al.
(2018) [13] Deep Learning Raw EEG signals End-to-end Deep

Neural Network model

High accuracy rate of 95.31% for
cognitive workload classification
without pre-processing or feature
engineering

Liu et
al.(2018) [56] Machine Learning EEG recordings

Subject-dependent and
Subject-independent
fatigue recognition
algorithms

Subject-dependent average accuracy
of 93.45%, Subject-independent
average accuracy of 39.80%

Yang et
al.(2019) [57] Deep Learning EEG signals

Ensemble Classifier
based on Subject-specific
Integrated Deep Learning
Committees

Subject-specific classification
accuracy of 92% outperforms
classical shallow and deep
classifiers

Plechawska et
al.(2019) [58] Machine Learning EEG spectral data k-Nearest Neighbors

(kNN) model

High maximal accuracies
achieved, ∼91% for validation
dataset and cross-validation
approach

Almogbel et
al.(2019) [59] Deep Learning Raw EEG signals End-to-end Deep

Neural Network model

Average accuracy of 0.960
for workload and context classification,
high recall and precision scores
on raw EEG signals

Sridhar et
al.(2020) [60] Deep Learning Brain signal

features
Bidirectional Long
Short-Term Memory
(BLSTM) Network

Outperforms conventional deep
neural networks in detecting
Mild Cognitive Impairment (MCI)

Qu et
al.(2020) [61] Machine Learning EEG data Various machine

earning and deep
learning algorithms

Different tasks (writing vs.
typing) can be classified with
accuracy up to 70% for
individual subjects

Siuly et
al.(2020) [62] Machine Learning EEG data

Extreme Learning
Machine (ELM), Support
Vector Machine (SVM),
K-Nearest Neighbors (KNN)

ELM-based method achieves
the highest classification
accuracy of 98.78% for
distinguishing MCI from
healthy controls

Geraedts et
al.(2021) [63] Machine Learning EEG signals ML pipeline

High accuracy achieved for
differentiating Parkinson’s
Disease patients based on
cognitive function
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Gupta et
al.(2021) [64] Deep Learning EEG-based

functional
connectivity

Mutual Information (MI),
Convolutional Neural Network ,
Phase Locking Value (PLV),
Phase Transfer Entropy (PTE)

State-of-the-art accuracy
of 80.87% for cognitive
workload classification
using EEG functional
connectivity

Suchetha et
al.(2021) [65] Deep Learning EEG signals

Sequential Convolutional
Network (SCN),
Multi Branch Convolutional
Network (MBCN)

MBCN model outperforms
SCN model and traditional
methods, achieving high
accuracy, F1-score, p
recision, and sensitivity

Jiang et
al.(2022) [66] Machine Learning EEG, eye tracking,

neuropsychological
tests

Machine learning model
Excellent classification
performances for screening
mild cognitive impairment
(MCI) with potential for
prediction

Longo et
al.(2022) [67] Deep Learning EEG data Self-supervised

deep learning techniques

Good accuracy and
generalizability for mental
workload modeling using
a brain rate index

Molcho et
al.(2022) [68] Machine Learning EEG features Machine learning-

based EEG features

The proposed tool
demonstrates the ability
to assess cognitive states
and detect cognitive decline

The comparative analysis presents in Table 5 presents a comprehensive
overview of research endeavors aimed at utilizing EEG and MEG data for
assessing brain injuries and predicting clinical outcomes. Each study employs
distinct methodologies, ranging from EEG-based detection of epileptiform activity to
MEG-based identification of mild traumatic brain injury. Various feature extraction
techniques and classification algorithms such as wavelet transform, CNNs,
and Support Vector Machines are utilized, reflecting the diversity in analytical
approaches. Despite differences in methodologies, the results demonstrate
promising accuracies, with some studies achieving accuracies exceeding 90%.
These findings underscore the potential of EEG and MEG data as valuable tools
in clinical settings for diagnosing brain injuries, monitoring patient outcomes, and
guiding treatment decisions. Moreover, the comparative analysis highlights the
ongoing advancements in machine learning and deep learning techniques, further
enhancing the accuracy and reliability of brain injury assessment methods based
on neuroimaging data.

Table 5: Comparative Analysis of Brain Injury Assessment by EEG

Study Methodology Feature
Extraction Classification Algorithm Result

Obukhov et
al.(2018) [12]

EEG-based detection of
epileptiform activity

EEG records Wavelet transform,
logistic regression

Accuracy of around 80%
in detecting epileptiform
activity

Amorim et
al.(2019) [69]

EEG reactivity for
predicting outcomes
in hypoxic-ischemic
brain injury

EEG reactivity data Random Forest, GLM,
expert review

Comparable performance
to expert EEG reactivity
assessment for outcome
prediction in hypoxic-ischemic
brain injury

Vishwanath et
al.(2020) [70]

Machine learning for
identifying biomarkers
of TBI

EEG data, CNNs Convolutional neural networks Accuracy up to 92.03% in
identifying biomarkers of TBI

Wang et
al.(2020) [71]

Automated detection of
Disorders of Consciousness
(DoC) in brain-injured patients

EEG signals Power Spectral Density
Difference (PSDD),
SVM ensemble

Highest accuracy of 98.21% in
detecting DoC and wakefulness
in brain-injured patients

Faghihpirayesh et
al.(2021) [72]

Deep learning for automated
detection of epileptiform
activity in TBI patients

EEG data Recurrent neural network
Accuracy of 80.78% in
automatically identifying
epileptiform abnormalities
in TBI patients
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Thara et
al.(2021) [73]

ML prediction of outcomes
in pediatric traumatic
brain injury (TBI)

Clinical and radiologic
characteristics

Support Vector Machines,
Neural Networks,
Random Forest, Logistic
Regression, Naive Bayes, k-NN

High performance in predicting
TBI outcomes, with support
vector machines achieving the
best results

Di et
al.(2022) [74]

EEG biomarkers for
predicting clinical
outcome in patients
with DoC

EEG biomarkers Machine learning procedure
Accuracy of 80%-83.3%
in predicting clinical
outcomes in patients
with DoC

Italinna et
al.(2022) [75] MEG-based detection

of mild traumatic brain injury
MEG recordings Support Vector Machine Accuracy of 79% in

distinguishing mild
TBI patients from controls

8 Conclusion

The comparative analyses conducted amongst various neuroimaging research
demonstrate the noteworthy advancements achieved in the application of deep
learning and machine learning approaches to neurological diagnoses. These
research demonstrate the adaptability and efficacy of sophisticated computational
approaches in identifying significant patterns from complicated neuroimaging
data, ranging from seizure detection to cognitive evaluation and brain damage
prediction. When combined with creative feature extraction techniques and reliable
classification algorithms, the impressive performance of deep learning models
highlights how automated diagnostic systems have the potential to completely
transform clinical practice. However, in order to fully achieve this promise, more
work must be done to integrate multimodal neuroimaging data, test and standardize
these approaches across a variety of datasets, and resolve issues with regulatory
approval and interpretability.

9 Future Directives

Future prospects for neuroimaging-based diagnostics research are bright
and varied. The development of novel approaches for early detection and
personalized treatment planning, the improvement of current diagnostic tools, and
the investigation of the synergies between various modalities to obtain a deeper
understanding of neurological disorders are all made possible by the advancements
in machine learning and deep learning techniques. As technology advances, more
attention is being paid to ethical issues, making sure algorithmic decision-making is
transparent and equitable, and encouraging multidisciplinary partnerships to close
the knowledge gap between computational neuroscience and clinical practice.
Through the utilisation of computational techniques and neuroimaging data, a new
age of precision medicine may be ushered in, characterised by patient care that is
optimised and personalized due to insights gained from the intricate workings of
the human brain.
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