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ABSTRACT 

For the arid and semi-arid region of Devbhumi Dwarka in Gujarat, where soil 

moisture issue is prominent, a GIS-based approach is needed to develop models for 

estimation of soil moisture. In this study, Landsat and Sentinel data were used to develop 

multiple soil moisture indices. Using these spectral indices, artificial neural network (ANN) 

models were developed using actual recorded soil moisture data. Total of 174 samples were 

collected in the study area of 3,77,731 ha. Values of soil moisture ranged from 3.40 % to 

12.50 % with an average value of 8.42 %. The maps of soil moisture indices i.e. LST, NDVI, 

NDWI, NSDSI3, MI and VSWI were generated on 1:550000 scale using ArcMap software. 

Moisture index NSDSI3 was highest correlating index. Best ANN model for soil moisture 

content (SMC) estimation was developed using Sentinel data (8-14-1) with RMSE, R
2
 and 

NRMSE values of 0.85 %, 0.73 and 0.10 for training and 1.11 %, 0.54 and 0.13 for testing 

respectively. 
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1. INTRODUCTION 

Soil, a finite and non-renewable natural resource, plays a critical role in sustaining 

agricultural productivity. In India, the per capita availability of land has dwindled due to 

population escalation, emphasizing the need for effective land and water management 

practices to enhance crop production. The focus of this paper is on the critical aspect of soil 

moisture estimation through remote sensing and GIS in Devbhumi Dwarka region, 

emphasizing its significance for sustainable land and water management practices. 

The estimation of soil moisture is a complex yet essential task for understanding and 

optimizing agricultural processes. Various methods, including gravimetric techniques, 

moisture sensors and remote sensing technologies, have been employed to measure or 

estimate soil moisture. Ground-based techniques, such as gravimetric methods and soil 

moisture sensors, offer precise data for specific point locations but are limited by labour 

intensity and spatial coverage. In contrast, remote sensing techniques, utilizing platforms like 

Landsat and Sentinel, provide a cost-effective and efficient means to monitor soil moisture 

over large spatial areas, overcoming the challenges posed by traditional ground-based 

sampling networks. 

Recent advancements in remote sensing, particularly with platforms like Sentinel-2 

and Landsat-8, have revolutionized soil moisture assessment. These satellites, equipped with 

moderate-resolution sensors, offer valuable data for large-scale dynamic monitoring. This 

paper explores the practical utility of remote sensing techniques in mapping and modelling 

soil moisture, providing a comprehensive understanding of its spatial-temporal variations. 

Soil moisture, crucial for optimal crop water productivity, demands accurate 

determination. Ex-situ methods like the gravimetric method, though accurate, are labour-

intensive (Reynolds, 1970). Garg et al. (2016) highlighted the efficacy of sensors like GMS, 



 

 

TDR, and FDR, emphasizing cost-effectiveness and accuracy in varying soil types.In-situ 

methods, including FDR and TDR, present viable options with high correlation coefficients. 

Sharma et al. (2018) conducted a comprehensive review of soil moisture estimation methods, 

differentiating point measurements and remote sensing. They concluded that while TDR 

provides accurate results with minimal soil disturbance, remote sensing offers broader 

coverage but requires initial ground truthing. Similarly, Gojiya et al. (2023a) have reviewed 

comprehensively various soil moisture measurement and estimation methods with efficiency 

of GIS based moisture estimation. Liu et al. (2021) delved into the application of Sentinel-2 

bands for soil moisture estimation, providing valuable insights into the spatial distribution of 

soil moisture at different depths. 

Hassan-Esfahani et al. (2015) leveraged artificial neural network (ANN) models with 

spectral images to estimate surface soil moisture, demonstrating impressive accuracy. 

Khanmohammadiet al. (2015) explored NDVI, NDMI, and LST indices for surface soil 

moisture estimation, showcasing a reasonable correlation.Welikheet al. (2017) utilized MSI 

to estimate soil moisture in Alabama, establishing its efficiency in areas lacking in-situ data. 

Liu et al. (2021) compared different indices for soil moisture estimation, highlighting the 

effectiveness of MI under various land cover types.Rabieiet al. (2021) employed Sentinel-1 

radar and Sentinel-2 multispectral imagery with machine learning algorithms for surface soil 

moisture estimation, showcasing high accuracy. Sedaghat et al. (2022) employed spectral 

indices, RF, and MLR for surface soil moisture estimation, highlighting the superiority of the 

RF method. Sharma et al. (2022) examined trends in NDVI and its correlation with LST, SM, 

and precipitation, emphasizing NDVI's sensitivity to LST. Gojiya et al. (2023b) reviewed 

multiple studies modelling soil properties such as soil salinity and soil moisture. Dubayahet 

al. (2023) explored multiscaling properties of soil moisture fields using passive microwave 

sensing and distributed models, underlining the success of passive microwave remote sensing 

in soil moisture determination.The review literature emphasizes the critical role of soil 

moisture in plant growth and crop water productivity. It compares ex-situ methods like 

gravimetric and calcium carbide with in-situ methods including FDR, TDR, and capacitance-

based sensors. Additionally, remote sensing and GIS techniques, such as Sentinel-2 bands 

and artificial neural networks, are explored for soil moisture estimation, highlighting their 

effectiveness in diverse conditions. 

Various studies have been done on modelling soil moisture using GIS techniques. As 

these models are area specific, these models need to be developed for the area of interest. Soil 

moisture modelling is of utmost importance for arid and semi-arid area like Devbhumi 

Dwarka. In the present study, soil moisture measurements were obtained through the 

gravimetric method. Subsequently, Artificial Neural Network (ANN) models were 

constructed utilizing these measurements, employing Landsat and Sentinel datasets, 

specifically focusing on the Devbhumi Dwarka region in Gujarat, India. 

1.1 Study Area Overview 

The research focused on the coastal belt of Devbhumi Dwarka district, Gujarat, India, 

situated on the southern coast of the Gulf of Kutch. The district comprises four talukas, 

spanning latitudes 21.89º N to 22.31º N and longitudes 69.33º E to 69.71º E. The study 

specifically aimedat the coastal talukas of Dwarka, Khambhalia, and Kalyanpur, collectively 

covering 3,77,731 ha (Fig. 1). 



 

 

 

Fig. : Location of the study area 

The climate of the study area is characterized as semi-arid (BSh) according to the 

Koppen and Geiger classification. This climate type is associated with hot, often extremely 

hot, summers and mild to cool winters, featuring minimal precipitation. Devbhumi Dwarka 



 

 

district experiences an average annual highest temperature of 36.9 °C, an average annual 

lowest temperature of 14.9 °C, and an annual rainfall of 640 mm (1990-2019). The district’s 

major crops include groundnut, cotton, cumin, gram, coriander, sesame, wheat, garlic, and 

onion (Anon., 2022b; GSDMA, 2022). 

2. METHODOLOGY 

2.1 Satellite datasets 

The soil moisture samples were taken in non-cloudy in second week of November 

from 9
th

 to 11
th

 November, 2022. Soil sampling was planned on the satellite visit days 

consequently. Total three Landsat tiles were necessary to cover the entire study area, while 

two of Sentinel tiles were combined to cover the study area. The details of satellite images 

used in the study are given in Table 1. Landsat data included surface reflectance as well as 

surface temperature data while sentinel data only comprised of surface reflectance. 

Table 1: Details of satellite images used 

Spacecraft 

Dataset Name 

Processing 

Level 
Sensor ID Tiling Grid Date Acquired 

Landsat 8 Level 2 OLI-TIRS WRS 150-045 11-11-2022 

Landsat 9 Level 2 OLI-TIRS WRS 151-044 09-11-2022 

Landsat 9 Level 2 OLI-TIRS WRS 151-045 09-11-2022 

Sentinel-2B Level 2A MSI UTM 42QVK 11-11-2022 

Sentinel-2B Level 2A MSI UTM 42QWK 11-11-2022 

2.2 Field Data Collection 

Utilizing a Random within Grid sampling method, 174 soil samples were 

systematically collected across the area with a 5 × 5 km grid overlaying the study area, each 

grid containing at least one sample. The soil sampling is shown in Fig. 2. The strategy, 

designed for representativity and accessibility, involved GPS recording and real-time tracking 

using the Google Earth app. Some grids, especially near salt farms near sea bay, remained 

inaccessible.Soil samples, 5 cm deep, were collected in air-tight plastic lock bags. 

    

Fig. 2: Soil sampling at different sites 

2.3 Measurement of Soil Moisture Content 



 

 

The gravimetric method, involving drying soil at 105 ℃ for 24 hours, was used to 

determine soil moisture content (SMC). The moisture content in dry weight basis was 

calculated using following formula. (Reynolds, 1970). 

𝑆𝑜𝑖𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒  % =  
𝑤𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑤𝑒𝑡 𝑠𝑜𝑖𝑙 − 𝑤𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙

𝑤𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙
 × 100 

Fig. 3 shows the soil moisture content measuring process. 

 
   

Fig. 3: Measurement of soil moisture content (SMC) 

2.4 Satellite Data Pre-processing 

Acquired images were at Level 2 processing, meeting high-quality standards as 

Analysis Ready Data (CARD)-compliant, endorsed by CEOS. This involves generating 

Surface Reflectance (SR) and Surface Temperature (ST), ensuring consistent radiance 

measurements and facilitating change detection. 

2.5 Rescaling for Data Utilization 

To use Level 2 surface reflectance and temperature data, a rescaling process was 

applied using specific factors for Landsat and Sentinel datasets. This ensures accurate and 

comparable utilization of the data. 

For Landsat surface reflectance products, the following rescaling equation was 

applied: 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = (𝐷𝑎𝑡𝑎 × 0.0000275)  +  (−0.2) 

For Sentinel surface reflectance products, the following rescaling equation was 

applied: 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = (𝐷𝑎𝑡𝑎 × 0.0000275)  +  (−0.2) 

For Landsat surface temperature products, the following rescaling equation was 

applied: 

𝐿𝑎𝑛𝑑 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = (𝐷𝑎𝑡𝑎 × 0.00341802)  +  149.0 

This rescaled surface temperature represents the temperature of the Earth’s surface in 

Kelvin (K) which can be converted to degree centigrade (°C) using raster calculator easily. 

These adjustments using raster calculator tools in ArcMap were crucial for accurate 

interpretation and comparison of the satellite data. 

2.6 Soil moisture indices 

 The following soil moisture indices were developed using the satellite data. 



 

 

2.6.1 Normalised Difference Vegetation Index (NDVI) 

NDVI (Rouse et al., 1974) was computed as an index of plant “greenness” and it 

attempts to track photosynthetic activity.NDVI values range from -1 to +1, where higher 

positive values indicate the presence of greener and healthier plants. 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 –  𝑅

𝑁𝐼𝑅 +  𝑅
 

Where, NIR = Reflectance in near-infrared band 

   R = Reflectance in the red visible band 

2.6.2 Normalized Difference Water Index (NDWI) 

 NDWI is a ratio between the NIR and SWIR values. NDWI was calculated using the 

following formula (Gao, 1996): 

𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

 The value of NDWI ranges from -1 to +1. NDWI is sensitive to changes in soil 

moisture which are strongly related to vegetation drought conditions. The average NDWI 

remains consistently lower than 0.3 under drought conditions and higher than 0.4 under non-

drought conditions. This index is also known as Land Surface Water Index (LSWI) and 

Normalised Difference Moisture Index (NDMI) (EOS Data Analytics, 2022). 

2.6.3 Normalized Shortwave-Infrared Difference Soil Moisture Index (NSDSI3) 

Remote sensing-based observations of bare soil moisture from broadband remote 

sensing are of great value as they provide both high temporal and spatial resolution soil 

moisture in local areas. This index was proposed by Yue et al. (2019),  using different water 

absorption in shortwave-infrared bands. Four traditional hyperspectral-based bare-soil 

moisture indices were used to develop this index. 

𝑁𝑆𝐷𝑆𝐼3 =  
𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2

𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2
  

2.6.4 Moisture Index (MI) 

 Moisture index was calculated by using following formula (Rohde and Olson, 1970). 

This multispectral index has been proposed for use in describing surface moisture 

characteristics. 

𝑀𝐼 =
𝑁𝐼𝑅

𝐵
 

2.6.5 Vegetation Supply Water Index (VSWI) 

 The VSWI assumes that under normal conditions, with sufficient soil water supply, 

land surface temperature observed over vegetation have low values due to cooling effects of 

evapotranspiration. Vegetation Supply Water Index (VSWI) is the ratio of NDVI to LST 

(Carlson et al., 1995) as given below. 

𝑉𝑆𝑊𝐼 =
𝑁𝐷𝑉𝐼

𝐿𝑆𝑇
 



 

 

2.7 Modelling SMC using Artificial Neural Network (ANN) 

All spectral indices for soil moisture content were used as input data to the artificial 

neural network and soil parameters i.e., soil moisture was output data to train ANN model. 

To further eliminate inputs, higher correlation inputs were chosen, and inputs were removed 

until best input combination was achieved as suggested by Wang et al. (2021). 

 The most important attribute of a layered neural network design is choosing the 

architecture. Various training algorithms are available like Levenberg Marquardt, Bayesian 

Regulation, Conjugate Gradient Descent, etc. Levenberg Marquardt is found to be superior 

by many researchers in various soil properties modelling (Hassan-Esfahani et al., 2015; 

Alexakis et al., 2017; Wang et al., 2021), which mostly outperforms other algorithms. Feed 

forward backpropagation neural network with Levenberg Marquardt algorithm was chosen in 

the study. Overall process flow of the work carried out is shown in flow diagram in Fig. 4. 

 

Fig.4: Flow diagram of the process 

3. RESULTS & DISCUSSION 

3.1 Measurement of soil moisture content 

 The soil moisture content (SMC) of soil samples was determined using gravimetric 

method (Reynolds, 1970). Overall, it was varied ranging from 3.40 % to 12.50 % with a 

mean value of 8.42 % and standard deviation of 1.62 %. The lowest and highest value of 3.40 

% to 12.50 % were recorded in soil samples collected from Dwarka and Kalyanpur talukas, 

respectively (Table 2). 

Table 2: Taluka wise range of soil moisture content 



 

 

SMC (%) 

Taluka 
Minimum Maximum Mean 

Standard 

Deviation 

Khambhalia 4.40 11.64 8.76 1.30 

Kalyanpur 3.46 12.50 8.72 1.42 

Dwarka 3.40 10.26 7.43 1.94 

 In total, 174 samples were recorded. From the recorded samples, map of soil moisture 

content over the study area was prepared using ArcMap. The map displayed in Fig. 5 will 

help in visualising SMC over the study area. 

Values of soil moisture content were on lower side. This can be attributed to the 

timing of soil sampling was in second week of November month. During that time of the 

year, no crops are sown in the study area. Furthermore, Devbhumi Dwarka district has about 

two third area which is only rain fed (ACP: Devbhumi Dwarka, 2020); and lower cropping 

intensity leading to almost no sowing during sampling time. Spectral indices calculated are 

based on topsoil reflectance (Asfaw et al., 2018; Gorji et al., 2020; Li et al., 2022), for this 

reason, soil sampling was also done in topsoil which tends be drier. The wastelands and 

majority parts of Dwarka taluka were having sandy loam soil which has lower water holding 

capacity (Kern, 1995). Certain similar studies done in BSh climates have also shown lower 

soil soil moisture content (Duff et al., 1997; Chang et al., 2016; Williams et al., 2018; Meena 

et al., 2020). 

 

Fig. 5: Map of measured soil moisture content values at sampling locations 

3.2 Spectral indices for soil moisture 

All the maps of spectral indices are shown in Fig. 6 to Fig. 13. The performance of 

this individual indices with measured SMC is mentioned with coefficient of determination. 



 

 

The Normalized Difference Water Index (NDWI) ranged from -0.61 to 0.58 for Landsat and -

0.59 to 0.40 for Sentinel, with respective coefficients of determination (R
2
) of 0.43 and 0.46. 

The Moisture Index (MI) varied between 0.17 to 2.11 (Landsat) and 0.32 to 1.78 (Sentinel), 

with R
2
 values of 0.44 and 0.47. Normalized Difference Vegetation Index (NDVI) values 

were -0.34 to 0.59 (Landsat) and -0.28 to 0.46 (Sentinel), exhibiting R
2
 values of 0.27 and 

0.37. The Normalized Shortwave-Infrared Difference Soil Moisture Index (NSDSI3) had 

ranges of -0.20 to 0.71 (Landsat) and -0.04 to 0.46 (Sentinel), with R
2
 values of 0.50 and 

0.48. Land Surface Temperature (LST) for Landsat ranged from 20.92 °C to 31.18 °C, 

displaying a negative correlation (R
2
: 0.33). The Vegetation Supply Water Index (VSWI) for 

Landsat, normalized between 0 to 1, showed an R
2
 value of 0.35. Notably, NSDSI3, MI, and 

NDWI exhibited high correlation with Soil Moisture Content (SMC), while NDVI, LST, and 

VSWI showed lower correlation, possibly due to limited vegetation in the study area. 

  

Fig. 6:NDWI map of study area using 

Landsat images 

Fig. 7:NDWI map of study area using 

Sentinel images 

  

Fig. 8: MI map of study area using Landsat 

images 

Fig. 9: MI map of study area using Sentinel 

images 



 

 

  

Fig. 10: NSDSI3 map of study area using 

Landsat images 

Fig. 11: NSDSI3 map of study area using 

Sentinel images 

  

Fig. 12:LST map of study area using 

Landsat images 

Fig. 13:VSWI map of study area using 

Landsat images 

3.3 Modelling soil moisture content using ANN 

The best input combination was selected based on the performance. Table 3 outlines 

the architecture of the three best-performing ANN models for both satellites. The 

performance of ANN models is shown in Table 4 and Table 5 for Landsat and Sentinel, 

respectively. While these models demonstrated good performance in training, their testing 

performance was not as robust, possibly due to a limited dataset for proper training. Among 

the models, ANN3L and ANN3S exhibited the highest performance indicators in both 

training and testing for Landsat and Sentinel data respectively, aligning with the findings of 

Hassan-Esfahani et al. (2015), suggesting that a larger number of inputs improved model 

performance. Similar observations were made by Chung et al. (2022) and Hachani et al. 

(2019) in estimating soil moisture in arid regions with limited input data. The results overall 

align well with studies in semi-arid to arid conditions with a lower number of input data. The 

performance of best performing model is visualized in Fig. 14andFig. 15 for Landsat and 

Sentinel, respectively. 



 

 

Table 3: Best performing ANN models with Landsat and Sentinel data 

Model ID Input variables Architecture 

Landsat 

ANN1L LST, NDWI, MI, NSDSI3 4-12-1 

ANN2L NDVI, LST, NDWI, MI, VSWI, NSDSI3 6-17-1 

ANN3L NDVI, LST, NDWI, MI, VSWI, NSDSI3, B, G, NIR, R 10-15-1 

Sentinel 

ANN1S NDWI, MI, NSDSI3 3-12-1 

ANN2S NDWI, MI, NSDSI3, NDVI 4-10-1 

ANN3S NDVI, NDWI, MI, NSDSI3, B, G, NIR, R 8-14-1 

Table 4: Performance of Landsat derived ANN models 

Indicator 
ANN1L ANN2L ANN3L 

Training Testing Training Testing Training Testing 

RMSE (%) 0.64 1.75 0.81 1.47 0.76 1.23 

R
2
 0.84 0.14 0.75 0.31 0.78 0.51 

NRMSE 0.08 0.21 0.10 0.17 0.09 0.15 

Table 5: Performance of Sentinel derived ANN models 

Indicator 
ANN1S ANN2S ANN3S 

Training Testing Training Testing Training Testing 

RMSE (%) 0.97 1.23 0.98 1.25 0.85 1.11 

R
2
 0.67 0.44 0.70 0.48 0.73 0.54 

NRMSE 0.12 0.15 0.12 0.15 0.10 0.13 

 

 

 

Fig. 14:Comparison of observed vs estimated SMC (%) for ANN3L with 

Landsat data 
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Fig. 15:Comparison of observed vs estimated SMC (%) for ANN3S with 

Sentinel data 

4. CONCLUSION 

The spectral indices, including NDVI, NDWI, MI, NSDSI3, LST, and VSWI, 

exhibited varied performance in capturing SMC. Notably, NSDSI3, MI, and NDWI 

demonstrate higher correlation with SMC, indicating their potential for accurate soil moisture 

estimation. However, NDVI, LST, and VSWI show lower correlation, possibly due to limited 

vegetation cover in the study area. The application of Artificial Neural Network (ANN) 

models for SMC prediction reveals promising results. Among the three best-performing ANN 

models for both Landsat and Sentinel data, ANN3L and ANN3S exhibit the highest 

performance indicators in both training and testing phases. The architecture of these models 

involves multiple input variables, emphasizing the significance of a diverse set of inputs for 

improved model performance. The observed limitations in testing performance may be 

attributed to the limited dataset for proper training, highlighting the need for further data 

collection to enhance model robustness. 

In conclusion, the study provides valuable insights into soil moisture dynamics in the 

Devbhumi Dwarka region, emphasizing the influence of specific spectral indices on accurate 

estimation. The integration of ANN models enhances the predictive capability, with 

considerations for expanding the dataset to ensure more robust model performance in testing 

phases. These findings contribute to the broader understanding of soil moisture modelling in 

semi-arid climates, paving the way for refined agricultural management practices in the 

region. The developed ANN model will be useful in estimating soil moisture content in the 

semi-arid region of Devbhumi Dwarka. 
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