"Assessment of Foliar Spraying of Thiourea Bioregulator on Soil Parameters of Jackfruit (Artocarpus heterophyllus L.) cv. Chandra”

Abstract
A field experiment was conducted from June, 2022 to March, 2023 at the Instructional Farm, Department of Fruit Science and Department of Natural Resources Management (NRM), College of Horticulture and Forestry, Jhalrapatan, Jhalawar in the newly established orchard of jackfruit (Artocarpus heterophyllus L.) cv. Chandra. The experiment consisted of 9 treatments with varying concentration of thiourea (0.25% to 2.00%) laid out in a Completely Randomized Block Design (CRBD) with 3 replications. The plants were planted at a spacing of 8 m x 8m. The analysis of variance showed non-significant differences for all of the recorded soil parameters which were pH, EC (dS m⁻¹), N (kg ha⁻¹), P (kg ha⁻¹), K(kg ha⁻¹) and OC (%).

Keywords: Bioregulator, Electrical conductivity, Jackfruit (Artocarpus heterophyllus L.), Organic carbon, Thiourea

Author’s Contribution
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

1. Introduction
The jackfruit tree (Artocarpus heterophyllus L.) is a popular choice in climates that tend to be tropical or subtropical. It thrive especially well in southeast Asia. Its natural habitat is the western Ghats of India where it was originated. It’s often referred to as "the poor man's fruit" in eastern and southern regions of India.

This evergreen tree has both male and female flowers on the same plant. It showcases a special growth habit known as "cauliflorous bearing". Here, the trunk holds the female blossoms. In eastern India, young fruit is loved as a vegetable. The skin has a primary protein known as "jacalin". The latest statistics released by the Ministry of Agriculture and Farmers Welfare (2021–22) show that India has 1.88 lakh hectares of jackfruit plantations, resulting in a total production of 19.46 lakh metric tonnes (Anonymous, 2021-22). The worth of jackfruit goes beyond just its delicious taste, as it has immense potential for nutrition and income generation when cultivated in home gardens and agroforestry systems.
This has been directed to the scientifically driven interest in studying this species. As it spread to other regions with suitable climates, jackfruit has proven its usefulness (Morton, 1965). An important chemical component of jackfruit is thiourea, a compound containing sulfur and nitrogen, also known as Thio carbamamide.

Thiourea boasts a remarkable composition of sulphur (42.1%) and nitrogen (36.8%). The application of this compound to foliage leads to 50% absorption in plant leaves, while the rest of the residue lingers on the ground (Ratnakumar, 2016). Its biologically significant functional groups have been found to promote growth in various crops upon application (Jocelyn, 1972). In today's increasingly dry climate, the development and growth of plants is greatly hindered. However, research has shown that thiourea can effectively improve stress resistance in plants, resulting in enhanced growth, development, antioxidative defense system, sugar to starch metabolism, osmolytes accumulation and protein synthesis (Singh et al. 2023; Singh et al. 2020). The potential of such a wonderful biomolecule in plant improvement has inspired authors for assessing its influence on growth and development of Chandra cultivar of jackfruit (Artocarpus heterophyllus L.). While thiourea might indirectly influence soil properties by affecting plant health and nutrient cycling, any impact is likely to be relatively minor compared to direct soil amendments. As such, we intend to examine its impact on the soil properties of Chandra cultivar of jackfruit (Artocarpus heterophyllus L.).

2. Materials and methods
2.1 Experimental Site
A ten-month field trial was conducted during the 2022-2023 academic year at the newly established Jackfruit cv. Chandra orchard in the Instructional Farm of the Department of Fruit Science and Department of Soil Science at the College of Horticulture and Forestry in Jhalrapatan, Jhalawar. This particular area in the Jhalawar district, located in South Eastern part of Rajasthan between 23°4’ to 24°52’ N-Latitude and 75°29’ to 76°56’ E- Longitude, falls under Zone V and is renowned as the Humid South Eastern Plain. The average annual rainfall of the region is 954.7 mm. During summer season, the mercury can reach a scorching 43 - 48°C, while in winter, the minimum temperature can drop to as low as 1.0 - 2.6°C. Our experiment took place in the newly planted block specifically dedicated to the Jackfruit cv. Chandra at the Instructional Farm of the Department of Fruit Science.

2.2 Plant Material
One-year-old aged Chandra jackfruit plants were grown at a spacing of 8 m x 8 m. This specific cultivar is known for its early fruiting, typically within 36 to 48 months after being transplanted.

2.3 Doses and Time of application of Thiourea

The plant thiourea (treatments) was used at the dose of T₀-0.25%, T₁-0.50%, T₃-0.75%, T₄-1.00%, T₅-1.25%, T₆-1.50%, T₇-1.75% and T₈-2.00%. The treatments were applied in the form of foliar spray. The foliar spray was done during 2nd week of June, August and October (2022).

2.4 Method analysis

2.4.1 pH

Using a glass electrode pH metre and 1:2 soil water suspensions, the pH of the soil was measured. 20g of soil and 40 ml of distilled water were combined in a 100 ml beaker to create a 1:2 soil water suspension (Jackson, 1973).

2.4.2 Electrical conductivity (dSm⁻¹)

Electrical conductivity of soil water suspensions (1:2.5) calculated using ECmeter (Model Elico CL 180) as elaborated by Jackson (1973). These EC values were converted later to saturation paste value (EC).

2.4.3 Organic carbon (%)

The chromic acid wet oxidation method developed by Walkley and Black (1934) serves as the foundation for the calculation of soil organic carbon. 1N K₂Cr₂O₇ solution was used to oxidise the soil's degradable material. The heat produced when two volumes of H₂SO₄ and one volume of dichromate are combined helps the process. Ferrous sulphate was used to titrate the residual dichromate. The amount of C contained in the soil sample has an inverse relationship with the titrate.

\[
\text{Organic carbon (\%)} = \frac{10(B - T) \times 0.003 \times 100}{B \times \text{Weight of soil (g)}}
\]

Where,

\[B = \text{Volume (ml) of ferrous ammonium sulphate solution required for blank titration.}\]

\[T=\text{Volume of ferrous ammonium sulphate solution needed for titration of soil sample.}\]
2.4.4 Available Nitrogen (kg ha\(^{-1}\))

Utilising the alkaline potassium permanganate method as recommended by Subbiah and Asija (1956), available nitrogen was ascertained.

\[
\text{Available N (kg/ha)} = R \times 31.36
\]

Where,

\[
R = \text{Volume of 0.02 N H}_2\text{SO}_4 \text{ required for titration}
\]

2.4.5 Available Phosphorus in Soil (kg ha\(^{-1}\))

Available phosphorus was determined with extraction by 0.5 M NaHCO\(_3\) solution adjusted at pH 8.5 as suggested by Olsen et al. (1954).

\[
\text{Available } P \left(\text{ kg ha}^{-1} \right) = \frac{R \times \text{Volume of extract} \times 2.24 \times 10^6}{\text{Volume of aliquot} \times \text{Weight of soil} \times 10^6}
\]

Where,

\[
R = \text{ppm P in the aliquot} \left(\text{ppm P} \times \frac{2.24 \times 10^6}{5} \right)
\]

(Obtained from standard curve) = (ppm P) \times 8.96 \times 2.29

2.4.6 Available Potassium (kg ha\(^{-1}\))

Available potassium was determined by extracting the soil by shaking with 1 N neutral ammonium acetate solution by flame photometer as suggested by Metson (1956).

\[
\text{Available } K \left(\text{ kg ha}^{-1} \right) = \frac{R \times \text{Volume of extract} \times 2.24 \times 10^6}{\text{Weight of soil taken} \times 10^6}
\]

Where,

\[
R = \text{ppm of K in the extract (obtained from the standard curve)}
\]

3. Statistical Analysis

The data attained from were exposed to statistical examination (ANOVA) in MS Excel programme on computer system through the procedure of a Completely Randomized Block Design (CRBD) for various characters studied in present investigation. The treatment differences were tested by “F” test for significance based on null hypothesis. The appropriate standard error of mean (S.Em.\(\pm\)) was calculated in each case and critical difference (CD) at 5 per cent level of probability was operated to compare the treatment means, where the treatment effects were significant (Panse and Sukhatme, 1967). Suitable
4. Result and discussion

The data presented in Table 1 clearly demonstrate that varying levels of thiourea leaf spray concentrations had non-significant effect on the soil's available pH, EC, OC, nitrogen, phosphorus and potassium for the jackfruit plants. This could be due to foliar-applied thiourea may not have been effectively translocated to the soil in sufficient quantities. The foliar spray primarily targets the plant's leaves, and the uptake and translocation of the substance to the root zone might have been insufficient to induce changes in soil properties. Another reason for non-significant effect of thiourea may be that the thiourea sprayed on foliage could have been rapidly metabolized or degraded by the plant or microbial activity before reaching the soil. This could limit its availability for interactions with the soil matrix and subsequent effects on soil properties. Similar result was also recorded by Bochalia (2008), Ram et al. (2009) and Jeengar (2012)
Table 1. Effect of thiourea on pH, EC, N, P₂O₅, K₂O and OC of Jackfruit cv. Chandra orchard soil during growth period

<table>
<thead>
<tr>
<th>Treatments</th>
<th>pH</th>
<th>EC (dS m⁻¹)</th>
<th>N (kg ha⁻¹)</th>
<th>P (kg ha⁻¹)</th>
<th>K (kg ha⁻¹)</th>
<th>OC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀ (Control)</td>
<td>7.4</td>
<td>0.35</td>
<td>323.00</td>
<td>27.44</td>
<td>284.35</td>
<td>0.46</td>
</tr>
<tr>
<td>T₁ (Thiourea 0.25%)</td>
<td>7.39</td>
<td>0.32</td>
<td>321.33</td>
<td>26.33</td>
<td>284.00</td>
<td>0.48</td>
</tr>
<tr>
<td>T₂ (Thiourea 0.50%)</td>
<td>7.36</td>
<td>0.33</td>
<td>324.67</td>
<td>24</td>
<td>283.33</td>
<td>0.49</td>
</tr>
<tr>
<td>T₃ (Thiourea 0.75%)</td>
<td>7.38</td>
<td>0.34</td>
<td>325.66</td>
<td>28.66</td>
<td>286.00</td>
<td>0.51</td>
</tr>
<tr>
<td>T₄ (Thiourea 1.00%)</td>
<td>7.35</td>
<td>0.33</td>
<td>332.00</td>
<td>28</td>
<td>292.33</td>
<td>0.52</td>
</tr>
<tr>
<td>T₅ (Thiourea 1.25%)</td>
<td>7.32</td>
<td>0.3</td>
<td>328.33</td>
<td>27.66</td>
<td>291.00</td>
<td>0.53</td>
</tr>
<tr>
<td>T₆ (Thiourea 1.50%)</td>
<td>7.34</td>
<td>0.27</td>
<td>329.33</td>
<td>30</td>
<td>287.99</td>
<td>0.54</td>
</tr>
<tr>
<td>T₇ (Thiourea 1.75%)</td>
<td>7.45</td>
<td>0.26</td>
<td>322.80</td>
<td>29.33</td>
<td>291.00</td>
<td>0.55</td>
</tr>
<tr>
<td>T₈ (Thiourea 2.00%)</td>
<td>7.28</td>
<td>0.29</td>
<td>326.00</td>
<td>29</td>
<td>291.33</td>
<td>0.57</td>
</tr>
<tr>
<td>SEm (±)</td>
<td>0.024</td>
<td>0.004</td>
<td>2.20</td>
<td>0.48</td>
<td>1.27</td>
<td>0.009</td>
</tr>
<tr>
<td>CD (5%)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>
Fig. 2. Effect of thiourea on pH, EC and OC of Jackfruit cv. Chandra orchard soil

Fig. 3. Effect of thiourea on N, P and K of Jackfruit cv. Chandra orchard soil

5. Conclusion

On the basis of results obtained from the field experiment entitled "Assessment of Thiourea Bioregulator Impact on Soil Parameters of Jackfruit (Artocarpus heterophyllus L.) cv. Chandra" it is concluded that varying levels of thiourea leaf spray concentrations had non-significant effect on the soil's available pH, EC, OC, nitrogen, phosphorus and potassium for the jackfruit plants.
7. References

Ram P, Solanki NS, Singh D, Dadheech RC. Growth, yield and economics of quality protein...
