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ABSTRACT 1 

This study trained six machine learning models to predict meteorological variables at a 2 

tropical location. The models used are: Multiple linear regression, Decision tree, Random 3 

forest, Support vector machine, Extreme gradient boosting and Multilayer perceptron. This 4 

was with the aim of determining the best machine learning model for weather forecasting in a 5 

tropical location. The meteorological variables that were predicted are: Temperature, Solar 6 

radiation, Relative humidity and Wind speed.  To identify the efficiency and to quantify the 7 

predictive capacity of each models, evaluation metrics such as coefficient of determination 8 

(R
2
), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean square 9 

error (RMSE) were employed. The best performed model for temperature is the Random 10 

Forest which has R
2
 of 0.93, MAE of 0.78 

0
C, MAPE of 2.84 % and RMSE of 1.13 

0
C. Also, 11 

the best performed model for solar radiation is the Random Forest having an R
2
 value of 0.72, 12 

MAE of 85.34 W/m
2
 and RMSE of 19008.45 W/m

2
. For relative humidity, Random Forest also 13 

has the best performance. From the evaluation metrics, it has R
2
 of 0.92, MAE of 3.41 %, 14 

MAPE of 0.75 % and RMSE of 24.71 %. The best performed technique for predicting the wind 15 

speed was also the Random Forest having an R
2
 value of 0.79, MAE of 0.16 m/s and RMSE 16 

of 0.044 m/s. The study concluded that the best machine learning model for predicting 17 

meteorological variables in a tropical location is the Random Forest. 18 

 19 
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forecasting 21 

1. INTRODUCTION 22 
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Meteorological variables are important for the interpretation of physical processes in the lower 23 

atmosphere, agricultural meteorology, monitoring and prediction of weather and climate and 24 

for the management of natural resources [1]. These variables are critical for making short-25 

term and long-term decisions on activities such as monitoring of extreme weather events, 26 

farming response, early warning of pests and diseases, and so on.  27 

Weather which is the short-term condition of the atmosphere is characterised by wind, 28 

temperature, humidity and solar radiation variables forced by radiative fluxes, surface latent 29 

and sensible heat fluxes. Climate is the long-term atmospheric condition of a specific location 30 

over a long period of time, usually 30 years. It is a continuous, data-intensive, 31 

multidimensional, dynamic and chaotic process. These characteristics make weather/climate 32 

forecasting a difficult task. As a result, consistent and high-quality observations of climatic 33 

variables are critical [2].  34 

Weather forecasting is the use of science and technology to predict the state of the 35 

atmosphere at a specific area. Weather predictions are formed by collecting quantitative data 36 

about the current condition of the atmosphere and projecting how the atmosphere will evolve 37 

using scientific understanding of atmospheric dynamics. 38 

With the current global climate change, there is a need to develop a dependable model 39 

capable of accurately capturing fluctuations in weather variables. Weather variables are 40 

typically modeled using computational, numerical, and statistical techniques, the majority of 41 

which are nonlinear [3]. Many researchers have developed statistically based models for 42 

predicting meteorological time series of weather variables [4,5]. The challenge is attributed to 43 

the obvious ambient stochastic variables, as well as the fact that future returns cannot be 44 

projected with adequate precision when modeling such high-uncertainty conditions [6].  45 

Weather forecasting methods such as numerical weather prediction model, ensemble 46 

forecasting, among others, rely on sophisticated physical models and equations however, 47 

machine learning models provide a more data-driven approach, recognizing patterns and 48 

links in historical weather data to estimate future conditions.  49 

 50 

Machine learning is a sub-field of artificial intelligence that focuses on creating algorithms and 51 

techniques that allow computers to learn and make predictions without being explicitly 52 
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programmed. It entails the study of algorithms and statistical models that enable computers to 53 

learn from and predict or act on data. The fundamental principle behind machine learning is to 54 

allow computers to learn patterns or correlations from data and then generalize that 55 

knowledge to make predictions or decisions on new, previously unseen data. Machine 56 

learning algorithms, rather than following a fixed set of rules, learn iteratively from instances 57 

or experiences, continuously improving their performance over time [7]. Machine learning has 58 

numerous applications in fields such as image [8] and speech recognition, recommendation 59 

systems, autonomous vehicles [9], finance, healthcare, weather forecasting [10,11], and 60 

many more. It has transformed numerous industries and continues to grow rapidly as massive 61 

datasets, improved computer power, and breakthroughs in algorithms and methodologies 62 

become available. Machine learning algorithms have shown potential in enhancing weather 63 

prediction efficiency and natural disaster forecasts, which may aid in disaster preparedness 64 

and response operations [12].  65 

The aim of this study is to predict meteorological variables with selected machine learning 66 

models and evaluate their performances in order to identify the best performing model for 67 

weather prediction in a tropical location.  68 

Table 1 shows similar studies of using machine learning algorithms for weather and climate 69 

prediction. 70 

 71 

Authors Research Topics Models Tools 

Anton et al. [13]  

 

Collaborative data mining 

in agriculture for 

prediction of soil moisture 

and temperature  

 

k-nearest neighbor model 

(k-NN)  local polynomial 

regression (LPR) neural 

net model (NN) and 

support vector machine 

(SVM)  

The data analysis was 

conducted with the aid 

of a SQL command 

and a Microsoft Access 

database 

Cortez and 

Morais [14]  

 

A data mining approach to 

predict forest fires using 

meteorological data  

 

Multiple regression (MR)  

Decision trees (DT) and  

Random forests (RF)  

Neural networks (NN)  

The open-source 

library Rainer (for the R 

statistical environment) 

was used.  

Table 1: Similar studies of using machine learning algorithms for weather and climate prediction 
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Support vector machines 

(SVM)  

Joshi et al. [15]  

 

Weather forecasting and 

climate changing using 

data mining application  

Decision tree classifiers  

 

Both decision trees and 

decision tree rules 

were created using the 

See5 program 

Olaiya and  

Adeyemo [16] 

Application of data mining  

techniques in weather 

prediction and climate 

change studies  

 

Artificial neural network  

Decision tree algorithm 

C5 Decision Tree 

classifier algorithm 

using the See5 was 

implemented 

Oladipo et al. 

[17]  

 

Prediction and analysis of  

student performance by 

data mining in WEKA  

 

Classification Association  

 

WEKA tool was used 

as the software for data 

mining 

Segovia et al 

[18] 

Meteorological variables 

forecasting system using 

Machine Learning and 

open-source software 

Multiple regression (MR) 

Polynomial regression, 

 Decision trees (DT) and  

Random forests (RF)  

XGBoost, multilayer 

perceptron neural network 

(MLP) 

Python open-source 

software 

 

Shivang and  

Sridhar [19]  

 

Weather Prediction for 

Indian location using 

machine learning  

Linear regression  

Functional regression  

Neural network  

Python 

 

Zaman [20]  

 

 

Machine learning model 

on rainfall - a predicted 

approach for Bangladesh  

 

Classification algorithms 

(Naive Bayes, random 

forest classifier, and 

decision tree algorithm) 

The machine learning 

library was Apache 

Spark 
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Regression algorithm 

(linear  regression, 

random forest regression)  

 72 

2. METHODOLOGY 73 

2.1 Design and Prediction Models for Meteorological Variables 74 

In this research, six machine learning models were used to predict the following 75 

meteorological variables: temperature, solar radiation, wind speed and relative humidity. The 76 

models that were used are: Multiple Linear Regression, Decision Tree, Random Forest, 77 

Support Vector Machine, Extreme Gradient Boosting, and Multilayer Perceptron. 78 

Evaluation metrics such as Coefficient of Determination (R
2
), Mean Absolute Error (MAE), 79 

Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE)  were 80 

used to identify the best performing algorithm. To predict the meteorological variables, the 81 

design methodology shown in Figure 1 was performed. 82 

2.2 Data Acquisition 83 

The meteorological data used for the forecasting models were collected from the Obafemi 84 

Awolowo University Meteorological Station (7.53 
0
N; 4.54 

0
E), Nigeria. The sensors employed 85 

for the measurements of the meteorological parameters were mounted on a 6-metre 86 

meteorological mast. A wind cup anemometer (034B) was installed at a height of 6 metres to 87 

measure wind speed. A temperature and relative humidity probe (HMP45) was mounted at a 88 

height of 4 metres to measure air temperature and relative humidity. At a height of 2 metres, a 89 

pyranometer (CS300) was mounted for the measurement of incoming solar radiation.  90 

 91 
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 126 

2.3 Data Processing 127 

A one-year data (from 1 January, 2020 to 31 December, 2021) was obtained from the station. 128 

The data was sampled every 10 seconds and saved as 1-minute averaged values before 129 

being reduced to produce 30-minute statistics. Following data preprocessing, a total of 17,284 130 

data points for each variable (temperature, relative humidity, wind speed, and solar radiation) 131 

were produced.  132 

Figure 1: Flowchart of the Design and Implementation of the Prediction Models for Meteorological 
Variables 
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In forecasting, it is important to ensure that there are no missing data points in the 133 

measurements or to execute a data filling method. In this study, a Python algorithm was used 134 

to compute the average of the existing list of data points and automatically fill up the missing 135 

data points. 136 

2.4 Division of Data 137 

The database was divided into three categories to ensure that the models perform properly: 138 

training set, test set, and validation set. The first, as the name implies, was used to train the 139 

forecasting models, the second to evaluate the test set, and the third to validate each of the 140 

implemented models. From the total of 17,284 data points obtained for each variable, with 80% 141 

of the database (13,825 data points) used to train the models, 20% (3,457 data points) used 142 

to test the models, and 5 days (210 data points) used to validate the models. 143 

2.5 Selected Machine Learning Models 144 

2.5.1 Multiple Linear Regression 145 

Multiple Linear Regression (MLR) is a statistical method used to model the relationship 146 

between a dependent variable and two or more independent variables. The modeled 147 

variables are called the predicted or dependent variables (y), while the independent variables 148 

are known as predictors, or features (X) [21]. The general form of the multiple linear 149 

regression model is: 150 

y =  a + b1X1  +  b2X2  + . . . + bn Xn     (1) 151 

where X1 , X2 , …, Xn   are the independent variables; b1 , b2 , …, bn  are the coefficients 152 

representing the relationship between the independent variables and the dependent 153 

variable;ais the constant of the relationship between the dependent and independent variable; 154 

and y is the predicted or dependent variable. 155 

 156 

2.5.2 Decision Tree 157 

A decision tree is a flow chart that operates by recursively splitting the dataset into subsets 158 

based on input feature values. The aim is to build a tree-like model in which each internal 159 

node represents a decision based on a feature, each branch indicates the decision's outcome, 160 

and each leaf node represents the final forecast. The mean or mode of the responses of the 161 

training dataset which are within the new dataset is used for prediction [22]. Gini impurity is 162 
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often employed as a criterion for separating nodes during tree construction. The Gini impurity 163 

for a node is determined by the probability of each class being present in that node. The 164 

equation for a Gini impurity is represented by: 165 

𝐺𝑖  =  1 −   (𝑃𝑖 ,𝑘)2𝑚
𝑘=1       (2) 166 

where 𝐺𝑖  is the Gini impurity; m is the number of class and 𝑃𝑖 ,𝑘  is the probability of class i, 167 

given node k. 168 

2.5.3 Random Forest 169 

Random Forest is an ensemble learning method that integrates predictions from numerous 170 

decision trees to improve the model's overall performance and robustness. Random Forest 171 

trains multiple decision trees independently on a random portion of the data. This is 172 

accomplished using bootstrapping, which is sampling with replacement. As a result, each tree 173 

has a different subset of the data. Decision trees are prone to overfitting, but random forests 174 

circumvent this by creating random selections of data and using those subsets to construct 175 

smaller trees. The error for random forest is determined by the strength of the individual 176 

generated trees and their correlation [23]. 177 

2.5.4 Support Vector Machine 178 

Support vector machines are supervised learning models that use learning techniques to 179 

examine data for classification and regression. To categorize unlabeled data, support vector 180 

clustering algorithm uses the statistics of support vectors obtained in the support vector 181 

machines method. These data sets necessitate unsupervised learning algorithms that seek 182 

natural clustering of data into groups and then map additional data to these clusters. The aim 183 

of the SVM algorithm is to determine the best hyperplane in an N-dimensional space that can 184 

split data points into different classes in the feature space. The hyperplane attempts to 185 

maximize the margin between the closest points of various classes. The size of the 186 

hyperplane is determined by the number of features. 187 

2.5.5 Extreme Gradient Boosting 188 

Extreme Gradient Boosting (XGBoost) is an effective algorithm for regression and 189 

classification problems. XGBoost performs a second-order Taylor expansion on the loss 190 

function, incorporates a regularization term to avoid overfitting and improves the 191 

generalization performance of the model. The algorithm works by consecutively building a 192 
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succession of decision trees, and combining their predictions to form a strong prediction 193 

model. In each iteration, XGBoost fits a new tree to the residuals (the difference between the 194 

actual and predicted values) of the previous set, focusing on minimizing both the loss function 195 

and the term regularization. 196 

2.5.6 Multilayer Perceptron Neural Network 197 

A Multilayer Perceptron (MLP) is a type of artificial neural network distinguished by its layered 198 

architecture, consisting of several layers of fully interconnected neurons which includes an 199 

input layer, one or more hidden layers, and an output layer. Figure 2 shows the structure of a 200 

multilayer perceptron neural network. The input layer is made up of n units that distribute the 201 

input signals to the next layer. The hidden layer is made up of neurons k, that have no 202 

physical contact with the outside; and the output layer is made up of rneurons whose outputs 203 

comprise the vector of external outputs of the multilayer perceptron. 204 

The neural network is trained by calculating the linear combination of a set of input variables 205 

with a bias term, then applying an activation function, typically the threshold or sign function, 206 

to produce the network output. Thus, the network weights are modified using the supervised 207 

learning by error correction (back propagation) approach, so that the predicted output is 208 

compared to the value of the output variable to be acquired, with the difference being the 209 

error or residual. Each neuron acts independently of the others: each neuron gets a set of 210 

input values (an input vector), computes the scalar product of this vector and the vector of 211 

weights, adds its own bias to the result, and returns the final result obtained [24].  212 

 213 
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 224 

 225 

 226 

 227 

After carrying out heuristics testing on the above mentioned models, the best tuning 228 

parameters for each variable are listed in Table 2. 229 

 230 

 231 

Predicted Variables Input Variables 

Temperature Solar radiation, Relative humidity, Wind speed 

Solar radiation Temperature, Relative humidity, Wind speed 

Wind speed Temperature,  Relative humidity, Solar radiation 

Relative humidity Temperature, Wind speed, Solar radiation 

 232 

 233 

2.6 Metrics for Accessing the Performances of the Selected Machine Learning 234 

Models 235 

In order to determine the forecasting accuracy of the weather models i.e. to identify the model 236 

that is more efficient in prediction, evaluation metrics such as the mean square error (RMSE), 237 

mean absolute percentage error (MAPE), mean absolute error (MAE) were employed. To 238 

determine if the models perform well in training and to quantify their predictive capacity, the 239 

coefficient of determination (R
2
) was used. 240 

2.6.1 Root Mean Square (RMSE) 241 

Root mean Square (RMSE) is used to measure the average magnitude of the errors between 242 

the predicted values and actual values. It measures the spread of errors, with lower values 243 

suggesting better model performance.  244 

RMSE =   
1

n
 (yi  −  yi )2n

i=1      (3) 245 

Table 2: Tuning Parameters for the Different Machine Learning Models 

Figure 2: Structure of a Multilayer Perceptron Neural Network 
s 
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where: n is the number of data points; yi is the actual (observed) value for the i-th data point 246 

and yi  is the predicted value for the i-th data point. 247 

2.6.2 Mean Absolute Percentage Error (MAPE) 248 

Mean Absolute Percentage Error (MAPE) is used to find the average of the percentage errors 249 

between the predicted and actual values. It is given by: 250 

MAPE =  
1

n
  

yi  − yi 

yi
 n

i=1  ×  100     (4) 251 

where: n is the number of data points; yi is the actual (observed) value for the i-th data point 252 

and yi  is the predicted value for the i-th data point. 253 

One of the major limitations of using MAPE is that when using actual numbers close to or at 0, 254 

the MAPE score will be off by a factor of 0 or excessively high. As a result, it is not suggested 255 

to use MAPE when the real values are near to 0. 256 

2.6.3 Mean Absolute Error (MAE) 257 

Mean Absolute Error (MAE) calculates mean of the absolute differences between the actual 258 

and predicted values. It indicates how far the predictions are from the actual values on 259 

average. A lower MAE suggests more accuracy because it indicates that the model's 260 

predictions are closer to the actual values. 261 

MAE =  
1

n
  yi  −  yi  n

i=1       (5) 262 

where: n is the number of data points; yi is the actual (observed) value for the i-th data point 263 

and yi  is the predicted value for the i-th data point. When compared to other error metrics, 264 

such as Mean Squared Error (MSE), MAE is less sensitive to outliers. 265 

2.6.4 Coefficient of Determination (R2) 266 

The Coefficient of Determination (R
2
) is a statistical measure that examines how much of the 267 

variance in the dependent variable is explained by the independent variables in a regression 268 

model. In other words, it assesses the model's goodness of fit. Its formula as written in 269 

equation (6) is described by 1 minus the ratio of the sum of the squared differences between 270 
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the observed values and the predicted values to the sum of the squared differences between 271 

the observed values and the mean of the observed values. 272 

R2  =  1 −  
 (yi  − yi )2

 (yi  − y )2       (6) 273 

where yi are the observed values, yi  are the predicted values and y  is the mean of the 274 

observed values.  275 

The values of R
2
 range between 0 and 1. R

2
 of 1 indicates that the model predicts the 276 

dependent variable completely based on the independent variables. A R
2
 of 0 implies that the 277 

model has no explanatory power. 278 

3. RESULTS AND DISCUSSION 279 

3.1 Temperature Prediction 280 

The machine learning models that were used to predict temperature and the metrics used to 281 

evaluate the performances of each models are shown in Table 3.  282 

The coefficient of determination, R
2
 for the models, Multiple linear regression, Decision tree, 283 

Random Forest, Support Vector Machine, Extreme Gradient Boosting and Multilayer 284 

Perceptron are close to 1 (0.86, 0.89, 0.93, 0.86, 0.91 and 0.91 respectively). These obtained 285 

values of R
2
 indicate that the predicted values obtained from the models show close 286 

agreements with the actual values. Thus, implying that the models are good fits for estimating 287 

temperatureat the study location.  288 

The MAE indicates that all the models’ predictions are closer to the actual values, with 289 

Random Forest having the best accuracy. The MAPE indicates the percentage of accuracy 290 

prediction of the models. Random Forest has the least MAPE which implies that it has the 291 

least percentage of errors.  The RMSE values produced by the models show that the models 292 

produced relatively low values of scatter points as indicated in Figure 3 with Random Forest 293 

having the least scatter points and MLR having the largest scatter points. This shows that the 294 

models performed well in predicting temperature.  295 

 296 

 297 

Models Coefficient of  
Determination 
(R

2
)  

Mean Absolute  
Error (MAE) 
[
0
C]  

Mean Absolute 
Percentage  
Error (MAPE) 
[%] 

Mean Square Error  
(RMSE)  
[
0
C] 

 

Multiple linear  0.8583 1.17 4.45 2.2148 

Table 3: Evaluation Metrics for Temperature Prediction 
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regression  

Decision tree 0.8866 0.93 3.39 1.8121 

Random forest 0.9293 0.78 2.84 1.1298 

Support Vector 
Machine 

0.8613  1.12 4.33 2.2638 

Extreme Gradient 
Boosting 

0.9140 0.85 3.10 1.3740 

Multilayer 
perceptron 

0.9098 0.94 3.52 1.4406 

 298 

Random Forest is the best performing technique for predicting the temperature variable 299 

having the highest R
2
, lowest MAE, lowest MAPE and the least RMSE. The least performed 300 

technique is the Multiple Linear Regression which has the lowest R
2
, highest MAE, highest 301 

MAPE and highest RMSE. 302 

Figure 4 shows the time series plot of the actual (black) and the predicted (red) values of 303 

temperature for a representative of five days, using the different Machine Learning techniques. 304 

The Figure validates that the best performing technique is the Random Forest. 305 

 306 
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 16 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

Figure 3: Scatter Plots of the Actual and Predicted Temperature using the Different Models 
s 
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Figure 4: Time Series Plots of the Actual and Predicted Temperature using the Different Models 
s 
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3.2 Solar Radiation Prediction 344 

Table 4 shows the machine learning models and the metrics used for evaluating the 345 

performances of the models for the prediction of solar radiation. The obtained value of 346 

coefficient of determination, R
2
 for Random forest and Multilayer perceptron are 0.72 and 347 

0.70 respectively. The value of R
2
 for Multiple linear regression, Decision tree, Support Vector 348 

Machine and XGboostare 0.66, 0.51, 0.67 and 0.67 respectively. These values indicate that 349 

Multiple linear regression, Decision tree, Support Vector Machine and XGboost do not 350 

perform well in their training, hence their predictive ability for solar radiation variable is 351 

low.Random forest and Multilayer perceptron showed relatively close agreements with the 352 

actual values. Thus, implying that the models are relatively good fits for estimating solar 353 

radiation. The MAE values obtained from the models are large numbers which shows that the 354 

models have large errors. The RMSE values show large scatter points as shown in Figure 5. 355 

The large numbers obtained for MAE and RMSE are due to the negative values present in the 356 

actual values of solar radiation. These negative values which are obtained in the early hours 357 

of the morning and late hours of the evening are results of the radiative cooling of the earth's 358 

surface [25]. Using the evaluation metrics for the performance of the models, Random Forest 359 

is the best performed technique, seconded by Multilayer perceptron while Decision Tree is the 360 

least performed technique. 361 

Figure 6 shows the time series plot of the actual (black) and the predicted (red) values of 362 

solar radiation for a representative of five days, using the different Machine Learning 363 

techniques. The figure validates that the best performing technique is the Random Forest. 364 

 365 

 366 

Models Coefficient of  
Determination  
(R

2
) 

Mean Absolute 
Error (MAE)  
[W/m

2
]  

Mean Square Error  
(RMSE)  
[W/m

2
] 

Multiple linear regression  0.6626 109.78 21427.0687 

Decision tree 0.5050 836.64 31436.6249 

Random forest 0.7220 85.34 19008.4522 

Support Vector Machine 0.6694 108.36 20995.9538 

Extreme Gradient Boosting 0.6740 87.97 20703.7786 

Multilayer perceptron 0.7007 88.33 17655.6951 

 367 

 368 

 369 

Table 4: Evaluation Metrics for Solar Radiation Prediction 
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 399 

Figure 5: Scatter Plots of the Actual and Predicted Solar Radiation using the Different Models 
s 
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Figure 6: Time Series Plots of the Actual and Predicted Solar Radiation using the Different Models 
s 
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3.3 Relative Humidity Prediction 400 

Table 5 shows the performances of the different models used to predict the relative humidity. 401 

The coefficient of determination (R
2
) for the models are close to 1 which implies that the 402 

trained models have good fittings with the actual values. The MAE values show that the 403 

models do not have large errors and MAPE shows the percentage of the errors with Random 404 

Forest having the least MAPE. The RMSE shows that the models have moderate scatter 405 

points (as shown in Figure 7) and Random Forest has the least RMSE. Evaluation of the 406 

metrics shows that Random Forest has the best performance seconded by Extreme Gradient 407 

Boosting while the least performed technique is the Support Vector Machine. Figure 8 which 408 

shows the time series plot of the actual (black) and the predicted (red) values of relative 409 

humidity for a representative of five days, confirms that the best performed model is the 410 

Random Forest among the different Machine Learning Models.  411 

 412 

 413 

 414 

Model Coefficient of  
Determination 
(R

2
)  

Mean Absolute  
Error (MAE) 
[%]  

Mean Absolute 
Percentage  
Error (MAPE) 
[%] 

Mean Square Error 
(RMSE)  
[%] 
 

Multiple linear  
regression  

0.7756 6.50 9.43 68.7015 

Decision tree 0.8634 4.09 5.97 41.8424 

Random forest 0.9193 3.41 0.75 24.7115 

Support Vector 
Machine 

0.7607 6.04 5.01 73.2893 

Extreme Gradient 
Boosting 

0.8944 3.96 5.73 32.3235 

Multilayer 
perceptron 

0.8660 4.42 6.35 41.0369 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

Table 5: Evaluation Metrics for Relative Humidity Prediction 
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 449 

Figure 7: Scatter Plots of the Actual and Predicted Relative Humidity using the Different Models 
s 
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Figure 8: Time Series Plots of the Actual and Predicted Relative Humidity using the Different Models 
s 
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3.4 Wind Speed Prediction 450 

Table 6 shows the performances of the different models used to predict the wind speed. The 451 

coefficient of determination (R
2
) obtained for the models shows that Random Forest, Extreme 452 

Gradient Boosting and Multilayer Perceptron are 0.79, 0.77 and 0.76 implying that the models 453 

are good fits for prediction of wind speed. The other models: Multilinear Regression, Decision 454 

Tree and Support Vector Regression have R
2
 of 0.59, 0.68 and 0.57 respectively, implying 455 

that they have moderately good fittings with the actual values. The models have low MAE and 456 

RMSE values which means that they have low errors and low spread of scatter points as 457 

shown in Figure 9. This suggests that the models have good performances. The values of 458 

MAPE were not taken into account because MAPE is used when the values are higher than 0. 459 

The best performed model is Random Forest followed by Extreme Gradient Boosting while 460 

the least performed is Multiple Linear Regression. Figure 10 shows the time series plot of the 461 

actual (black) and the predicted (red) values of wind speed for a representative of five days, 462 

using the different Machine Learning techniques. The figure confirms that the best performed 463 

model is the Random Forest.  464 

 465 

 466 

Model Coefficient of  
Determination  
(R

2
)  

Mean Absolute  
Error (MAE)  
[m/s]  

Mean Square Error 
(RMSE)  
[m/s] 

Multiple linear  
regression  

0.5941 0.24 0.08716 

Decision tree 0.6807 0.19 0.06857 

Random forest 0.7931 0.16 0.04440 

Support Vector Machine 0.5749 0.24 0.09128 

Extreme Gradient Boosting 0.7706 0.16 0.04926 

Multilayer perceptron 0.7631 0.17 0.05080 

 467 
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 472 

 473 

 474 

Table 6: Evaluation Metrics for Wind Speed Prediction 
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Figure 9: Scatter Plots of the Actual and Predicted Wind Speed using the Different Models 
s 
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Figure 10: Time Series Plots of the Actual and Predicted Wind Speed using the Different Models 
s 
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4. CONCLUSION 505 

In this study, six machine learning models (Multiple linear regression, Decision tree, Random 506 

forest, Support Vector Machine, Extreme Gradient Boosting and Multilayer perceptron) were 507 

used to predict meteorological variables. The meteorological variables that were predicted are: 508 

Temperature, Solar radiation, Relative humidity and Wind speed. This was with the aim of 509 

determining the best machine learning model for weather prediction in a tropical location. The 510 

data used in the study was collected at the Meteorological Station located at Obafemi 511 

Awolowo University, Nigeria (7.53 
0
N; 4.54 

0
E). 512 

Evaluation metrics such as the mean square error (RMSE), mean absolute percentage error 513 

(MAPE), mean absolute error (MAE) and Coefficient of Determination (R
2
) were employed to 514 

identify the efficiency and to quantify the predictive capacity of each models. 515 

From the study, Random Forest gave the best performance for predicting temperature. The 516 

evaluation metrics obtained from the model showed that it has R
2
 of 0.93, MAE of 0.78 

0
C, 517 

MAPE of 2.84 % and RMSE of 1.13 
0
C. Extreme Gradient Boosting also performed well with 518 

an R
2
 of 0.91, MAE of 0.85 

0
C, MAPE of 3.10 % and RMSE of 1.37 

0
C. The best performed 519 

model for solar radiation is the Random Forest having an R
2
 value of 0.72, MAE of 85.34 520 

W/m
2
 and RMSE of 19008.45 W/m

2
. For relative humidity, Random Forest has the best 521 

performance. From the evaluation metrics, it has R
2
 of 0.92, MAE of 3.41 %, MAPE of 0.75 % 522 

and RMSE of 24.71 %. Extreme Gradient Boosting also performed well with an R
2
 of 0.89, 523 

MAE of 3.96 %, MAPE of 5.73 % and RMSE of 32.32 %. The best performed technique for 524 

predicting the wind speed is the Random Forest having an R
2
 value of 0.79, MAE of 0.16 m/s 525 

and RMSE of 0.044 m/s. Extreme Gradient Boosting also performed well with R
2
 value of 526 

0.77, MAE of 0.16 m/s and RMSE of 0.049 m/s. 527 

Random Forest was adjudged the best performed model having the highest R
2
, least MAE, 528 

least MAPE and least RMSE from the prediction of all the meteorological variables. The 529 

second-best performed model was the Extreme Gradient Boosting. 530 

The study concluded that Random Forest was the best performed machine learning model for 531 

the prediction of meteorological variables for weather forecasting in a tropical location. The 532 

prediction of the aforementioned meteorological variables will be used for future projects in 533 
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the study area such as agricultural meteorology, management of natural resources and 534 

monitoring and prediction of weather and climate. 535 

 536 
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