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Abstract 

 
The probabilistic population model with interactions between species will be developed. We use predator-

prey interaction to come up with a system of probabilistic differential equations. By accepting a series of 

assumptions that may govern the environment, one can reach a variety of different models. In a special case 

we develop a system with predator’s rate of change instead of the natural birth and death processes. The 

mean probability of the population as a mathematical expectation is computed as a solution of the system 

using random parameters. 

 
 

Keywords:  Probabilistic model; interactive species; expectation; stochastic parameters; phase diagram; 

mutually exclusive events; conditional probability; probabilistic differential equations. 

 

  



 
 

 

 
 

 

 
2 

 

1. Introduction to Deterministic Interactions: 
Let us assume 𝑥(𝑡) and 𝑦(𝑡) are the measures of two interactive objects or population of two species of time 𝑡. 
Suppose there is interactions between these two species, for example one is predator and the other is prey. 

 

Lotka (1950) and Voltera (1931) were the first to produce a system of nonlinear model to study a deterministic 

behavior of the populations of predator and prey [1],[2].  

 

 In a modeling approach, we may assume x(t) and y(t) follow the logistical growth in the absence predator-prey 

interaction. The mathematical model of the population in continuous deterministic case would be in the following 

form:  

 

{

𝑑𝑥

𝑑𝑡
= (a − 𝑏. 𝑥)x − m. x ∙ y,   x(0) = 𝑥0

𝑑𝑦

𝑑𝑡
= (d − c. y)y + n. x ∙ y,        y(0) = 𝑦0

           (1) 

 

where  𝐾1 =
𝑎

𝑏
 and 𝐾2 =

𝑑

𝑐
 are two carrying capacities of two species. This is a deterministic interacting population 

model. We would like to study the probabilistic interactive model between two species. 

 

In the following stochastic modeling, we do not consider predator y(t) using only the natural resources with the 

parameters c and d. In fact, prey population is the only resources. 

 

Some stochastic model of predator-prey was developed by Leslie and Gower 1960 (see [11]). Random parameters 

used in this formulation.  

 

A similar work published in 2002 by Swift Randall, using probability generating functions (see [18]). 

 

The latest stochastic model can be observed in Singh A (see [16]) where random parameters was in modeling of 

predator-prey interactions. 

In the following approach we will use probabilistic modeling for interactions between species. 

 

2. Conditions, Assumptions, and Parameters for Probabilistic Model 
 

Suppose  𝑡ℎ𝑎𝑡 𝑥(𝑡) and 𝑦(𝑡) are the populations of two species at time t, and to find the probability distributions 

of these populations at time (𝑡, 𝑡 + ∆𝑡]  will accept the following axioms: 

Axiom 1: The probability that the incidence of species x(t) (prey) will be killed by the predator y(t) in a very short 

time interval is directly proportional to: i) the length of the interval ∆𝑡 and ii) the predator – prey population 

probability densities.  

 

Let 𝛼 be a constant of proportionality, then the probability of reproduction of m-individual is  

 

𝑝[𝑜𝑛𝑒 𝑏𝑖𝑟𝑡ℎ 𝑖𝑛  ∆𝑡 𝑓𝑜𝑟 𝑥(𝑡) = 𝑚 ] = 𝛼.𝑚. ∆𝑡 
 

and 𝑝[ 𝑜𝑛𝑒 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑦(𝑡) = 𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠] = 𝛽. 𝑛. ∆𝑡 
 

Notice that:  𝛼 is the growth rate of one individual of x in a unit of time and  

 

𝛽 is the rate on one reproduction of predator y in a unit of time. 

 

Axiom 2: The probability that there is exactly one kill-contact between predator and prey in a very short period 

of time is proportional to the number of the predators and preys at time t and the length of the 

interval,  𝑝[𝑜𝑛𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 (𝑡, 𝑡 + ∆𝑡)] = 𝛾. 𝑝𝑚. 𝑝𝑛 . ∆𝑡. 
Where 𝑝𝑚 = 𝑝𝑟𝑜𝑏[𝑥(𝑡) = 𝑚]  𝑎𝑛𝑑 𝑝𝑛 = 𝑝𝑟𝑜𝑏[𝑦(𝑡) = 𝑛]. We understand that the symbolic definition of the 

probability density functions 𝑝𝑚 (𝑡) 𝑎𝑛𝑑 𝑝𝑛(𝑡) are function of time. Assuming these functions are continuously 

differentiable, that is the instantaneous rates will be denoted by: 
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𝑑

𝑑𝑡
(𝑝𝑚) = 𝑝

′
𝑚
(𝑡) 𝑎𝑛𝑑 

𝑑

𝑑𝑡
(𝑝𝑛) = 𝑝

′
𝑛
(𝑡). 

 

Axiom 3: Prey uses natural resources to grow, and prey is the only resource of food available for predators. When 

the kill-contact between prey and predator happens, the prey population will be reduced from 𝑚 𝑡𝑜 𝑚 − 1. 

 

Axiom 4: We will take time increment (∆𝑡) sufficiently small, so that no individual can have more than one event 

like incidence to kill or reproduce one individual during that time interval (𝑡, 𝑡 + ∆𝑡]. 
  

Axiom 5: The probability of more than one kill-contact, or one contact and one birth, is negligible.  

For further details on the foundation of mathematical modeling please see [7],[[8],[9],[10],[11]. 

 

Notes: 

 

1. By axiom 1, the probability of no birth prey during (𝑡, 𝑡 + ∆𝑡] is 

 

𝑝[𝑛𝑜 𝑏𝑖𝑟𝑡ℎ 𝑓𝑜𝑟 𝑝𝑟𝑒𝑦 𝑥(𝑡) = 𝑚] = 1 − 𝛼.𝑚. ∆𝑡 
 

By the same reason for the probability of no offspring during the time interval (𝑡, 𝑡 + ∆𝑡] for predator 

is   𝑝[𝑛𝑜 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 𝑦(𝑡) = 𝑛] = 1 − 𝛽. 𝑛. ∆𝑡 
 

2. In a more complicated model one may assume that the probability of one birth of predator is proportional 

to the probability density of prey population at time t, that is in Axiom 1 there can be   

𝑝[𝑜𝑛𝑒 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟] = 𝛽. 𝑃𝑚(𝑡). 𝑛. ∆𝑡 
 

3. Probability of kill-incidence in small time interval is = 𝛾. 𝑝𝑚(𝑡). 𝑝𝑛 . ∆𝑡 
 

4. Probability of no kill-incidence in small time interval is = 1 − 𝛾. 𝑝𝑚(𝑡). 𝑝𝑛. ∆𝑡 
 

Parameters: 

 

𝛼 = 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑒𝑦= natural birth rate -natural death rate 

𝛽 = 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 
𝛾 = 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑒𝑦 𝑘𝑖𝑙𝑙𝑒𝑑 𝑏𝑦 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 
𝛿 = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟. 
 

3.  Modeling the probabilistic equation for prey 
 

By this interactive axiom, the following (mutually exclusive) disjoint events can be assumed: 

 

Event A1: At time 𝑡, there were (𝑚 − 1) prey individuals and one birth occurring during (𝑡, 𝑡 + ∆𝑡] 
 

Event B1: There were (𝑚 + 1) individuals at time 𝑡 and one contact leading to one prey being consumed by 

predator (prey-death) occurring during (𝑡, 𝑡 + ∆𝑡] 
 

Event C1: There were m-individuals at time 𝑡, no birth, and no contact occurring during  (𝑡, 𝑡 + ∆𝑡].  
 

Notice: We will consider natural birth processes for both predator-prey and the only death processes for prey 

killing-incidence by predators. For predators in this modeling one can study both with and without natural death 

processes [12],[13]. 

 

By these modeling axioms, these events are mutually exclusive. Thus 

 

𝑝(𝐴1 ∪ 𝐵1 ∪ 𝐶1) = 𝑝(𝐴1) + 𝑝(𝐵1) + 𝑝(𝐶1),  
 

Since we assume that events are countably infinite, 𝑝[⋃ 𝐸𝑖
∞
𝑖=0 ] =  ∑ 𝑃(𝐸𝑖

∞
𝑖=0 ). 
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In the following part of formulation, we are assuming that the rate of incidence between predator – prey is not the 

same as the rate of killing and consuming one prey by a predator. Gamma 𝛾 is the rate of killing incidence and 

beta is the birth rate of predators. So, 𝛾 ≠ 𝛽 means if the predator is chasing a prey to capture and kill, it may not 

be successful in all tries. 

 

Also, using two independent events, prob [no birth & no incidence] =prob [no birth]. prob [no incidence] 

 

𝑝𝑚 [𝑡 + ∆𝑡] = 𝑝[𝐴1] + 𝑝[𝐵1] +  𝑝[𝐶1] 
=  𝑝[𝑥(𝑡)  = (𝑚 − 1) ∩  𝑜𝑛𝑒 𝑏𝑖𝑟𝑡ℎ 𝑖𝑛 ∆𝑡]  +  𝑝[𝑥(𝑡)  = (𝑚 + 1) ∩  𝑜𝑛𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑖𝑛 ∆𝑡]  +  𝑝[𝑥(𝑡)  = 𝑚 ∩ 

 𝑜𝑛𝑒 𝑧𝑒𝑟𝑜 𝑏𝑖𝑟𝑡ℎ 𝑖𝑛 ∆𝑡]  +  𝑝[𝑥(𝑡)  = 𝑚 ∩ 𝑧𝑒𝑟𝑜 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑖𝑛 ∆𝑡 ⋂𝑏𝑖𝑟𝑡ℎ]  
= 𝑝[𝑥(𝑡)  =  𝑚 −  1] . 𝑝[𝑜𝑛𝑒 𝑏𝑖𝑟𝑡ℎ |𝑥 (𝑡)  =  𝑚 − 1]  +  𝑝𝑚+1(𝑡). 𝑝[𝑜𝑛𝑒 𝑘𝑖𝑙𝑙 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 |𝑥(𝑡)  =  𝑚 + 1]  +
 𝑝[𝑥(𝑡)  =  𝑚] . 𝑝[𝑛𝑜 𝑏𝑖𝑟𝑡ℎ ∩  𝑛𝑜 𝑐𝑜𝑛𝑡𝑎𝑐𝑡|𝑥(𝑡)  = 𝑚] 
= 𝑝𝑚−1(𝑡). 𝛼 . ∆𝑡 . (𝑚 − 1) + 𝑝𝑚+1(𝑡). 𝛾 (𝑚 + 1). 𝑛 . ∆𝑡 + 𝑝𝑚  (𝑡). [1 −  𝛼 ∙ 𝑚 . ∆𝑡] . [1 ₋ 𝛾 (𝑚)(𝑛) . ∆𝑡] 
 

where the vertical line “|” represents the conditional probability. Now we simplify this relation as follows: 

 

𝑝𝑚 [𝑡 + ∆𝑡] = 𝑝𝑚−1(𝑡). 𝛼 . ∆𝑡 . (𝑚 − 1) + 𝑝𝑚+1(𝑡). 𝛾 (𝑚 + 1). 𝑛 . ∆𝑡 + 𝑝𝑚  (𝑡) − 𝑝𝑚 (𝑡)[ 𝛼 ∙ 𝑚 +
𝛾 (𝑚)(𝑛) . ]∆𝑡 + 𝑝𝑚 (𝑡)[ 𝛼 ∙ 𝑚 . ∆𝑡] . [𝛾 (𝑚)(𝑛) . ∆𝑡] . 

 

Since (∆𝑡2) is negligible this relation will be described by the following 

 

𝑝𝑚 (𝑡 + ∆𝑡) − 𝑝𝑚 (𝑡) = { 𝑝𝑚−1 (𝑡) 𝛼 (𝑚 − 1) + 𝑝𝑚+1(𝑡) 𝑛(𝑚 + 1) 𝛾 −  𝑝𝑚 (𝑡)[ 𝛾 𝑚𝑛 +  𝛼.𝑚]} ∆𝑡 
𝑝𝑚 (𝑡+ ∆𝑡)− 𝑝𝑚 (𝑡)

∆𝑡
 = 𝑝𝑚+1(𝑡) 𝑛. (𝑚 + 1) 𝛾  − 𝑝𝑚(𝑡). [𝑛 𝛾 +  𝛼] + 𝑝𝑚−1(𝑡) 𝛼 (𝑚 − 1) 

 

Let’s take the limit when  ∆𝑡 → 0, then: 

 

 
𝑑𝑝𝑚(𝑡)

𝑑𝑡
 = 𝑝𝑚+1(𝑡) 𝑛. (𝑚 + 1) 𝛾 − 𝑝𝑚 (𝑡) 𝑚(𝑛 𝛾 +  𝛼) + 𝑝𝑚−1(𝑡) 𝛼. (𝑚 − 1)      (2) 

 

This is the probabilistic differential equation for prey x(t)=m. 

 

4. Developing Probabilistic differential equations for predator y(t)=n 
 

For driving the probabilistic equation for predator y(t), we will assume that  

 

𝑝𝑛(𝑡) = 𝑝𝑟𝑜𝑏[𝑦(𝑡) = 𝑛]  where 𝑦(𝑡)  is the population of predator at 𝑡. 
We also consider the following mutually exclusive events: 

 

Event A2: At time 𝑡, there are 𝑦(𝑡) =  𝑛 −  1 predators and one birth occurring for predator y(t) on the interval 

(𝑡, 𝑡 +  ∆𝑡]. 
 

Event B2:  At time 𝑡, there are 𝑦(𝑡)  =  𝑛 predators and no birth or death occurring during (𝑡, 𝑡 +  ∆𝑡]. 
 

Event C2: There were y(t)=n+1 predators at time 𝑡, and one death occurring for predator during  

(𝑡, 𝑡 +  ∆𝑡].  
 

In the previous section we introduced a parameter gamma, 𝛾 , representing the death rate for prey due to 

interactions between two species. The death rate for predators is the natural death rate that we can call delta 𝛿. 

 

Thus, the probability of this event in small time interval is not directly proportional to the number of conflicts. 

Since all events A2, B2, and C2 are mutually exclusive, 

 

 𝑝(𝑡 + ∆𝑡] =  𝑝[𝐴2 ∪  𝐵2 ∪ 𝐶2] =  𝑝(𝐴2) +  𝑝(𝐵2) + 𝑝(𝐶2).  
 

Also using two independent events, prob [no birth & no incidence] =prob [no birth]. prob [no incidence] 
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𝑝𝑛 [𝑡 + ∆𝑡] =  𝑝[𝑦(𝑡) = (𝑛 − 1) ∩  𝑜𝑛𝑒 𝑏𝑖𝑟𝑡ℎ 𝑖𝑛 ∆𝑡] +  𝑝[𝑦(𝑡) = (𝑛 + 1) ∩  𝑜𝑛𝑒 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 𝑑𝑒𝑎𝑡ℎ 𝑖𝑛 ∆𝑡]
+  𝑝[𝑦(𝑡) = 𝑛 ∩  𝑛𝑜 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 𝑏𝑖𝑟𝑡ℎ 𝑖𝑛 ∆𝑡] 

 

= 𝑝[𝑦(𝑡) =  𝑛 −  1]. 𝑝[𝑜𝑛𝑒 𝑏𝑖𝑟𝑡ℎ |𝑦 (𝑡) =  𝑛 − 1] + 𝑝𝑛+1(𝑡). 𝑝[𝑜𝑛𝑒 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 𝑑𝑒𝑎𝑡ℎ |𝑦(𝑡) =  𝑛 + 1] +
 𝑝[𝑦(𝑡) =  𝑛] 𝑝[𝑛𝑜 𝑏𝑖𝑟𝑡ℎ 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 |𝑦(𝑡) = 𝑛] 
= 𝑝𝑛−1(𝑡). 𝛽 . ∆𝑡 . (𝑛 − 1) + 𝑝𝑛+1(𝑡). 𝛿  (𝑛 + 1). ∆𝑡 + 𝑝𝑛 (𝑡). [1 −  𝛽 ∙ 𝑛 . ∆𝑡]. [1 −  𝛿  (𝑛). ∆𝑡] 
 
where the vertical line “|” represents the conditional probability.  

 

Notice that the birth rate for predator is 𝛽  and death rate for predator is 𝛿 . Now we simplify this relation as 

follows: 

 

𝑝𝑛 [𝑡 + ∆𝑡] = 𝑝𝑛−1(𝑡). 𝛽 . ∆𝑡 . (𝑛 − 1) + 𝑝𝑛+1(𝑡). 𝛿  (𝑛 + 1).  ∆𝑡 + 𝑝𝑛 (𝑡). [ 1 −  𝛽 ∙ 𝑛. ∆𝑡]. [1 −  𝛿  . 𝑛 . ∆𝑡] 
𝑝𝑛 [𝑡 + ∆𝑡] − 𝑝𝑛 (𝑡)

= 𝑝𝑛−1(𝑡). 𝛽 . ∆𝑡 . (𝑛 − 1) + 𝑝𝑛+1(𝑡). 𝛿  (𝑛 + 1).  ∆𝑡 − 𝑝𝑛 (𝑡). [ 𝛽 ∙ 𝑛 . ∆𝑡]
−  [𝑝𝑛 (𝑡).  𝛿  (𝑛) . ∆𝑡] 

 

We divide each side by ∆𝑡 and notice that ∆𝑡2 is negligible. 

 
𝑝𝑛 [𝑡 + ∆𝑡] − 𝑝𝑛 (𝑡)

∆𝑡
= 𝑝𝑛−1(𝑡). 𝛽 .  (𝑛 − 1) + 𝑝𝑛+1(𝑡). 𝛿  (𝑛 + 1) − 𝑝𝑛 (𝑡). [ 𝛽 ∙ 𝑛 ] − [𝑝𝑛 (𝑡).  𝛿  𝑛 ] 

 

Pass the limit as ∆𝑡 → 0 : 

 
𝑑𝑝𝑛 (𝑡)

𝑑𝑡
= 𝑝𝑛−1(𝑡). 𝛽 .  (𝑛 − 1) + 𝑝𝑛+1(𝑡). 𝛿  (𝑛 + 1) − 𝑝𝑛 (𝑡). [𝛽 ∙ 𝑛 +   𝛿 𝑛 ]      (3) 

 

This a probabilistic differential equation that can be used as a model for predator. Equations (2) and (3) together 

will be a system of nonlinear probabilistic differential equation: 

 

{
 
𝑑𝑝𝑚(𝑡)

𝑑𝑡
 = 𝑝𝑚+1(𝑡) 𝑛. (𝑚 + 1) 𝛾 − 𝑝𝑚 (𝑡) 𝑚(𝑛 𝛾 +  𝛼) + 𝑝𝑚−1(𝑡) 𝛼. (𝑚 − 1)

𝑑𝑝𝑛 (𝑡)

𝑑𝑡
= 𝑝𝑛+1(𝑡). (𝑛 + 1)𝛿 − 𝑝𝑛 (𝑡). [𝛽 +   𝛿  ]𝑛 + 𝑝𝑛−1(𝑡). 𝛽 .  (𝑛 − 1) ]

     (4) 

 

Note (1): The first term of the second equation  𝑝𝑛+1(𝑡). (𝑛 + 1)𝛿  is independent from n. But the similar term in 

the first equation  𝑝𝑚+1(𝑡) 𝑛. (𝑚 + 1) 𝛾 has a factor n. This is based on the two parameters gamma and delta.  

 

The parameter 𝛾  is the death rate caused by killing incidents between two species and the parameter 𝛿 represents 

the natural death rate for predators. 

 

Note (2): In this modeling of system of equations (4) we considered that the reproduction rate for prey alpha 𝛼 is 

equal to the natural birth and death of prey. But for the predator the natural birth is beta 𝛽 and death is delta 𝛿. 

For simplicity one may assume that beta 𝛽 is a reproduction factor of predators. By excluding the validity practice 

for 𝛿 = 0 where the system (4) will be reduced to a system (6). 

 

Note (3): The vector form of the system (4) can be described by the following relation 

 

[
𝑝𝑚
𝑝𝑛
]
′

= [𝑛(𝑚 + 1)𝛾 (𝑛 + 1)𝛿]. [
𝑝𝑚+1
 𝑝𝑛+1

] + [−𝑚(𝑛𝛾 + 𝛼) −(𝛽 + 𝛿)𝑛]. [
𝑝𝑚
𝑝𝑛
] + [𝛼(𝑚 − 1) 𝛽(𝑛 − 1)]. [ 

𝑝𝑚−1
𝑝𝑛−1

] 

 

 

5. Predator with a reproduction parameter: 
 

For driving the probabilistic equation for predator y(t), we will assume that  

 

𝑝𝑛(𝑡) = 𝑝𝑟𝑜𝑏[𝑦(𝑡) = 𝑛]  where 𝑦(𝑡)  is the population of predator at 𝑡. 
We also consider the following mutually exclusive events: 
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Event A3: At time 𝑡, there are 𝑦(𝑡) =  𝑛 −  1 predators and one birth occurring for predator y(t) on the interval 

(𝑡, 𝑡 +  ∆𝑡]. 
 

Event B3:  At time 𝑡, there are 𝑦(𝑡)  =  𝑛 predators and no birth or death occurring during (𝑡, 𝑡 +  ∆𝑡]. 
 

Event C3: There were y(t)=n+1 predators at time 𝑡, and one death occurring for predator during  

(𝑡, 𝑡 +  ∆𝑡]. 
  

Since all events A3, B3, and C3 are mutually exclusive, then 

 

 𝑝(𝑡 + ∆𝑡] =  𝑝[𝐴3 ∪  𝐵3 ∪ 𝐶3] =  𝑝(𝐴3) +  𝑝(𝐵3) + 𝑝(𝐶3) . As a result,  

𝑝𝑚(𝑡 +  ∆𝑡] 
=  𝑝𝑟𝑜𝑏[ 𝑦(𝑡) = (𝑛 − 1) ∩  𝑜𝑛𝑒 𝑏𝑖𝑟𝑡ℎ 𝑖𝑛 ∆𝑡] +  𝑝𝑟𝑜𝑏[ 𝑦(𝑡) =  𝑛 ∩  𝑛𝑜 𝑏𝑖𝑟𝑡ℎ − 𝑑𝑒𝑎𝑡ℎ 𝑖𝑛 ∆𝑡] 
= 𝑝[𝑦(𝑡) = (𝑛 − 1)]. 𝑝𝑟𝑜𝑏[ 𝑜𝑛𝑒 𝑏𝑖𝑟𝑡ℎ 𝑖𝑛 ∆𝑡| 𝑦(𝑡) = (𝑛 − 1)] + 

+𝑝[ 𝑦(𝑡)  =  𝑛]. 𝑝[ 𝑧𝑒𝑟𝑜 𝑏𝑖𝑟𝑡ℎ 𝑖𝑛 ∆𝑡 │ 𝑦(𝑡) = 𝑛]. 
= 𝑝𝑛−1 (𝑡). 𝛽. (𝑛 −  1) ∆𝑡 + 𝑝𝑛 (𝑡). [1 −  𝛽 𝑛 ∆𝑡] 
 

Therefore: 

 

𝑝𝑛(𝑡 + ∆𝑡) – 𝑝𝑛 (𝑡)  =  [𝛽 (𝑛 − 1) 𝑝𝑛−1(𝑡) –  𝛽 𝑛 𝑝𝑛(𝑡)] ∆𝑡 

 
𝑝𝑛 (𝑡+ ∆𝑡)− 𝑝𝑛 (𝑡)

∆𝑡
 =  𝛽 [(𝑛 − 1) 𝑝𝑛−1(𝑡) –  𝑛 𝑝𝑛(𝑡)] 

𝑑𝑝𝑛(𝑡)

𝑑𝑡
= 𝛽 [(𝑛 − 1) 𝑝𝑛−1(𝑡) –  𝑛 𝑝𝑛(𝑡)]                                     (5) 

 

As a result of both equations (2) and (5), the following is a system of probabilistic prey-predator model.  

 

{

𝑑𝑝𝑚(𝑡)

𝑑𝑡
=   𝑛 (𝑚 + 1) 𝛾 𝑝𝑚+1(𝑡)  −  𝑚(𝑛 𝛾 +  𝛼) 𝑝𝑚(𝑡)  +  𝛼 (𝑚 − 1) 𝑝𝑚−1(𝑡)

   
𝑑𝑝𝑛(𝑡) 

𝑑𝑡
= 𝛽 [(𝑛 − 1) 𝑝𝑛−1(𝑡) –  𝑛 𝑝𝑛(𝑡)]

                  (6) 

This system of differential equations can be modified and expressed in the following form, 

 

{
 
𝑑𝑝𝑚(𝑡)

𝑑𝑡
= 𝛼 [(𝑚 − 1)𝑝𝑚−1(𝑡) −  𝑚 𝑝𝑚(𝑡)]  +  𝑛 𝛾 [(𝑚 + 1) 𝑝𝑚+1(𝑡) –  𝑚 𝑝𝑚  𝑡)]

 
𝑑𝑝𝑛(𝑡)

𝑑𝑡
= 𝛽[(𝑛 −  1) 𝑝𝑛−1(𝑡) −  𝑛 𝑝𝑛(𝑡)]

                  (7) 

 

The solution to the system probabilistic differential equations (7) for m-prey and n-predator is:  

 

< 𝑝𝑚(𝑡), 𝑝𝑛(𝑡) > 𝑎𝑡 𝑡  𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑖nitial conditions 𝑎𝑡 𝑡 = 𝑡0 which will be < 𝑝𝑚(0), 𝑝𝑛(0) >. 

The probabilistic systems of differential Equations (6) and (7) can be solved analytically or by discrete numerical 

approximation using, [15],[16]. 

 

6.  Solution to the probabilistic differential equations: 
 

Taking sigma over the integers m and n in the system of equations (7) will produce the following expectations, 

that is 

 

𝐸[𝑥(𝑡) = 𝑚] = ∑ 𝑚 𝑝𝑚(𝑡)
∞
𝑚=1  and  𝐸[𝑦(𝑡) = 𝑛] = ∑ 𝑛 𝑝𝑛(𝑡)

∞
𝑛=1  

{
∑
𝑑𝑝𝑚(𝑡)

𝑑𝑡
 =  𝛼 [𝐸𝑚−1(𝑡)  −  𝐸𝑚(𝑡)] +  𝑛. 𝛾 [𝐸𝑚+1(𝑡) −  𝐸𝑚(𝑡)]

∑
𝑑𝑝𝑚(𝑡)

𝑑𝑡
 =  𝛽 [𝐸𝑛−1(𝑡)  − 𝐸𝑛(𝑡)]   

           (8) 

One interpretations x(t)= m in axiom (1) could be the probability of one birth of the predator in a different 

environment is proportional to the population of prey at that time. 

 

Note (1):  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 𝑤𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑚 𝑏𝑦 𝑝𝑟𝑜𝑏[𝑥 = 𝑚]: 
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 𝑝[𝑜𝑛𝑒 𝑏𝑖𝑟𝑡ℎ 𝑜𝑓 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 𝑖𝑛 𝑡 + ∆𝑡] =  𝛽 . 𝑛.𝑚. ∆𝑡 
 

This kind of assumption cannot be valid in probabilistic sense. The relation in Note (1) will add restriction on the 

size of two population n and m to satisfy the definition of probability:  

 

0 ≤  𝛽 . 𝑛.𝑚. ∆𝑡 ≤ 1 

 
The second kind of interpretation can be described by the following equation. 

 

That is the probability of one birth of the predator in a different environment is proportional to the density of 

population of prey at that time when prob [x(t)=m]. 

 

Intuitively the population change of preys in the absence of predators can follow the logistic growth. 

 

Note (2):      𝑝[𝑜𝑛𝑒 𝑏𝑖𝑟𝑡ℎ 𝑜𝑓 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 𝑖𝑛 𝑡 + ∆𝑡] =   𝛽. 𝑛. 𝑝𝑚(𝑡). ∆𝑡 
 

As a result, the second equation for predator will be in the following form 

 
𝑑𝑝𝑛(𝑡)

𝑑𝑡
 = 𝛽 𝑝𝑚 (𝑡) [(𝑛 − 1) 𝑝𝑛−1(𝑡)  −  𝑛 𝑝𝑛(𝑡)]                                                                           (9) 

 
And the first equation in the system of equation (4) and (5) will be in the following 

 
𝑑𝑝𝑚(𝑡)

𝑑𝑡
 = 𝛼 [(𝑚 − 1) 𝑝𝑚−1(𝑡) –  𝑚 𝑝𝑚(𝑡)] +  𝛾 𝑝𝑛 (𝑡)[(𝑚 + 1) 𝑝𝑚+1(𝑡) –  𝑚𝑝𝑚  (𝑡)]  (10) 

 

To simplify the new system, we substitute the following: 

 

𝑚𝑝𝑚  (𝑡)  =  𝑈𝑚(𝑡) 𝑎𝑛𝑑 𝑛 𝑝𝑛(𝑡)  =  𝑉𝑛(𝑡), where:  

𝑝𝑚 (𝑡) =  𝑈𝑚(𝑡)/𝑚, 𝑎𝑛𝑑    𝑝𝑛(𝑡)  =  𝑉𝑛(𝑡)/n      (11) 

 

∑𝑚𝑝𝑚 (𝑡)  =  𝐸𝑚 (𝑡) 𝑎𝑛𝑑 ∑ 𝑛𝑝𝑛(𝑡)  =  𝐸𝑛(𝑡) 

 

m
𝑑𝑝𝑚(t)

dt
 =

𝑑𝑈𝑚(t)

dt
 and  𝑛

𝑑𝑝𝑛(t)

dt
 = 
𝑑𝑉𝑛(t)

dt
 

 
1

𝑚
. 
𝑑𝑈𝑚(𝑡)

𝑑𝑡
 = 𝛼 [𝑈𝑚−1(𝑡) − 𝑈𝑚(𝑡)]  +  𝑛 𝛾 [𝑈𝑚+1(𝑡)  −  𝑈𝑚(𝑡)] 

 

First Type: As a result, the first model will be 

 

{

𝑑𝑈𝑚(𝑡)

𝑑𝑡
= −𝑚 . 𝛼 [−𝑈𝑚−1(𝑡) +  𝑈𝑚(𝑡)]  +  𝑚 𝑛 𝛾 [𝑈𝑚+1(𝑡)  −  𝑈𝑚(𝑡)]

𝑑𝑉𝑛(𝑡)

𝑑𝑡
 =  𝛽. 𝑛[𝑉𝑛−1(𝑡)  − 𝑉𝑛(𝑡)]

   (12) 

 

where 𝑚 =  1, 2, 3, ….,  and 𝑛 =  1, 2, 3, …. 
 

Second Type Model: The second type model assumes in (9) where the second differential equation will be in the 

following form which can be verified in a similar approach.  

 
dpn(t)

dt
= β pm (t) [(n − 1) pn−1(t)  −  n pn(t)]      (13) 

  
dVn(t)

dt
 =  β. pm(t)[Vn−1(t) − Vn(t)] =  β.

Um(t)

m
[Vn−1(t) − Vn(t)]                               (14) 

 

Third Type Model: The model (12) of this probabilistic model is in the following form: 

 

http://b.n.pm/
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{

𝑑𝑈𝑚(t)

dt
 =  𝑚. 𝛼 [𝑈𝑚−1(𝑡) − 𝑈𝑚(𝑡)]  +  𝛾.𝑚.

𝑉𝑛

𝑛
 [𝑈𝑚+1(𝑡)  −  𝑈𝑚(𝑡)]

𝑑𝑉𝑛(t)

dt
 =  𝛽. 𝑛.

𝑈𝑚(𝑡)

𝑚
[𝑉𝑛−1(𝑡)  − 𝑉𝑛(𝑡)]

     (15) 

Solution to the second equation of the system (12): This equation can be written in the following form: 

 
𝑑𝑉𝑛(t)

dt
 = 𝛽. 𝑛. [𝑉𝑛−1(𝑡)  −  𝑉𝑛(𝑡)] , 𝑛 = 1, 2, 3, . . . . 

Let us write this equation for n=1,2, 3,…, thus 

 
𝑑𝑉1

dt
 + 
𝑑𝑉2

dt
 + .... + 

𝑑𝑉𝑛

dt
 + .... = 𝛽 [𝑉0  +  𝑉1  +  𝑉2  +  … +  𝑉𝑛−1  +  … , ] 

𝑑[𝑽𝟎 + 𝑽𝟏 + 𝑽𝟐 + ...+ 𝑽𝒏−𝟏 + ...]

𝑑𝑡
 = 𝛽 𝑉𝑛(𝑡)  

 

Suppose the value of n is bounded to 𝑁, then define 𝑉1  +  𝑉2 + . . . + 𝑉𝑁 = �⃑� 𝑁, then the initial value problem: 

 

 
𝑑𝑉𝑁

𝑑𝑡
 = 𝛽 𝑉𝑁(𝑡),   𝑉𝑁(0) = 𝑉0     

𝑦𝑖𝑒𝑙𝑑𝑠
→       𝑉𝑁 (t) = 𝑉0(t) 𝑒

βt       𝑓𝑜𝑟 𝑛 = 1, 2, 3 , . . ..    (16)  

 

Solution of model (I): To solve the system of probabilistic differential equations 𝑉 model (1), first we calculate 

the mean of the function values of  < 𝑝𝑚(𝑡), 𝑝𝑛(𝑡) >.  The computation for standard deviation needs more 

investigation which is beyond this preliminary article.  

Denote the initial size of population at time 𝑡 =  0 𝑏𝑦 𝑥0 and 𝑦0 then: 
 

𝑝𝑥0(0) = 𝑝[𝑥(0) = 𝑥0] = 1 𝑎𝑛𝑑 𝑝𝑦0(0) = 𝑝[𝑦(0)  =  𝑦0]  =  1 

 

𝐴𝑛𝑑 𝑝𝑚≠𝑥0(0)  =  𝑝𝑛≠𝑦0(0)  =  0 
 

These equations are for the population size of m and n, that is 𝑝𝑚(t), 𝑝𝑛(t). 
Expected value and variance: By the definition of expectation  

 

𝐸[𝑥(𝑡)] =  ∑  

𝑥=1 𝑡𝑜 𝑚

𝑥(𝑡)𝑝𝑥(𝑡), 𝑎𝑛𝑑           𝐸[𝑦(𝑡)]  =  ∑  

𝑦=1 𝑡𝑜 𝑛

𝑦(𝑡) 𝑝𝑦(𝑡) 

 

Suppose 𝑦(𝑡)  =  𝑚(𝑡) and 𝑥(𝑡) = 𝑛(𝑡) has a discrete value then 
 

𝐸[𝑥(𝑡)] =  ∑ 𝑚

∞

𝑚=1

. 𝑝𝑚(𝑡)      𝑎𝑛𝑑         𝐸[𝑦(𝑡)]  =  ∑𝑛

∞

𝑛=1

. 𝑝𝑛(𝑡) 

 

Since m and n are positive integers 1,2,3… , take the derivative for specified values of M and N, of these relation 

with respect to 𝑡; 
 
𝑑𝐸𝑦

𝑑𝑡
= ∑ 𝑁∞

𝑛=1 .
𝑑𝑃𝑁(𝑡)

𝑑𝑡
     𝑎𝑛𝑑          

𝑑𝐸𝑥

𝑑𝑡
 =  ∑ 𝑀∞

𝑚=1 .
𝑑𝑃𝑀(t)

𝑑𝑡
      (17) 

 

If we substitute 
𝑑𝑝𝑁(t)

𝑑𝑡
 and 

𝑑𝑝𝑀(t)

𝑑𝑡
 from model, 1, 2, 𝑎𝑛𝑑 3, then we will find the expectation of the population of 

any of these models.  
 

Expectation of the probability density function of the predator y(t): Now let us substitute in 
𝑑𝐸𝑦

𝑑𝑡
, using model 

one: 

𝑑𝐸𝑦

𝑑𝑡
=  ∑𝑛{𝛽 [(𝑛 −  1) 𝑝𝑛−1

∞

𝑛=1

(𝑡)  − 𝑛𝑝𝑛(𝑡)]} = ∑𝛽 [(𝑛 −  1) 𝑝𝑛−1

∞

𝑛=1

(𝑡)  − 𝑛2𝑝𝑛(𝑡)]} 

=  𝛽∑  [𝑛 (𝑛 −  1) 𝑝𝑛−1

∞

𝑛=1

(𝑡)  − 𝑛2𝑝𝑛(𝑡)] 

𝑑𝐸𝑦

𝑑𝑡
=  𝛽∑[𝑛 (𝑛 −  1) 𝑝𝑛−1

∞

𝑁=1

(𝑡)  − 𝛽∑𝑛2𝑝𝑛(𝑡)

∞

𝑛=1
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= 𝛽. 𝑜. 𝑝−1 +  𝛽 ∑ [𝑛 (𝑛 −  1) 𝑝𝑛−1(𝑡)
∞
𝑁=2 + 𝛽∑ 𝑛2𝑝𝑛(𝑡)

∞
𝑛=1 = 𝛽∑ 𝑖𝑝𝑖(𝑡)  + 𝑖

2𝑝𝑖(𝑡) − 𝑖
2𝑝𝑖

∞
𝑖=1 . 

𝑑𝐸𝑦

𝑑𝑡
= 𝛽∑𝑖𝑝𝑖(𝑡) =

∞

𝑖=1

𝛽 𝐸(𝑦) 

𝑑𝐸𝑦

𝑑𝑡
=  𝛽 𝐸(𝑦), 𝐸𝑦(𝑡0)= 𝐸𝑦0   implies that  𝐸𝑦 (t) = 𝐸𝑦 (𝑡0) 𝑒

βt. 

 
𝑑𝐸𝑦

𝑑𝑡
=  𝛽 𝐸(𝑦), 𝐸𝑦(𝑡0) = 𝐸𝑦0   <==>     𝐸𝑦(𝑡) = 𝐸𝑦0 ∙ 𝑒

𝛽𝑡      (18) 

 

Solving the First Probabilistic Differential Equation for Prey: The probabilistic differential equation (5) for 

Pm(t) is the following: 

 
𝑑𝑃𝑚(𝑡)

𝑑𝑡
 = 𝛼 [(𝑚 − 1) 𝑝𝑚−1(𝑡) –  𝑚 𝑝𝑚  (𝑡)]  +  𝑛 𝛾 [(𝑚 + 1) 𝑝𝑚+1(𝑡) –  𝑚 𝑝𝑚(𝑡)] 

 
Given all fixed parameters 𝛼, 𝛾, 𝑎𝑛𝑑 𝑛. Substitute expectations E(x(t)) using relations (17) x(t): 

 

𝑑𝐸𝑥
𝑑𝑡

= ∑ 𝑚 
𝑑𝑃𝑚(𝑡)

𝑑𝑡

∞

𝑚=1

 = ∑ 𝛼[𝑚 (𝑚 − 1)𝑝𝑚−1(𝑡) − 𝑚
2𝑝𝑚

∞

𝑚=1

(𝑡) + ∑ 𝑛 𝛾[𝑚 (𝑚 + 1)𝑝𝑚+1(𝑡)

∞

𝑚=1

−𝑚2𝑝𝑚(𝑡)] 

=  𝛼 ∑  𝛼[𝑚 (𝑚 − 1)𝑝𝑚−1(𝑡)

∞

𝑚=1

− 𝛼 ∑ 𝑚2𝑝𝑚(𝑡)

∞

𝑚=1

+ 𝑛𝛾 ∑ 𝑚 (𝑚 + 1)𝑝𝑚+1(𝑡) − 𝑛𝛾 ∑ 𝑚2
∞

𝑚=1

∞

𝑚=1

𝑝𝑚(𝑡) 

=  𝛼∑ (𝑗 + 1)𝑗 𝑝𝑗(𝑡) − (𝛼 + 𝑛𝛾) ∑ 𝑚2𝑝𝑚

∞

𝑚=1

∞

𝑗=1

(𝑡) + 𝑛𝛾 ∑(𝐾 − 1)𝐾𝑝𝐾(𝑡)

∞

𝑚=2

 

 

Assume and substitute j+1=m then j=m-1, m+1=k, then m=k-1. 

 

𝑑𝐸𝑥
𝑑𝑡

= 𝛼. 2𝑝1(𝑡) − (𝛼 + 𝑛𝛾) 𝑝1(𝑡) + ∑{𝛼 (𝑚 + 1)𝑚 𝑝𝑚(𝑡) − (𝛼 + 𝑛𝛾)𝑚
2𝑝𝑚(𝑡) + 𝑛𝛾 (𝑚 − 1)𝑚𝑝𝑚(𝑡)}

∞

𝑚=2

 

𝑑𝐸𝑥

𝑑𝑡
 = 𝑝1[2𝛼 - 𝛼 −  𝑛𝛾]+∑ [𝑚 (𝑚 + 1)𝛼 − 𝑚2(𝛼 + 𝑛𝛾) + 𝑛𝛾.𝑚(𝑚 − 1)]𝑝𝑚(𝑡)

∞
𝑚=2 + 

∑  +𝑚𝛼 − 𝑛𝛾.𝑚2 + 𝑛𝛾.𝑚2 − 𝑛𝛾.𝑚]𝑝𝑚(𝑡)  

∞

𝑚=2

 

= 𝑝1(𝑡). [𝛼 − 𝑛𝛾] + [𝛼 − 𝑛𝛾]∑ 𝑚 𝑝𝑚(𝑡)
∞
2 = = 𝑝1(𝑡). [𝛼 − 𝑛𝛾] + [𝛼 − 𝑛𝛾]∑ 𝑚 𝑝𝑚(𝑡)

∞
2  

= [𝛼 − 𝑛𝛾]. {1. 𝑝1(𝑡)} +∑𝑚 𝑝𝑚(𝑡)

∞

2

 

= [𝛼 − 𝑛𝛾]∑𝑚 𝑝𝑚(𝑡)       
𝑦𝑖𝑒𝑙𝑑𝑠
→   

∞

1

= [𝛼 − 𝑛𝛾] 𝐸𝑥(𝑡) 

 

Thus, we have the following differential equation 

 
𝑑𝐸𝑥
𝑑𝑡
 = [𝛼 − 𝑛𝛾]𝐸𝑥(𝑡)      

𝑦𝑖𝑒𝑙𝑑𝑠
→       

𝑑𝐸𝑥
𝐸𝑥
 =  [𝛼 − 𝑛𝛾] 𝑑𝑡 

𝑙𝑛 𝐸𝑥 = [𝛼 − 𝑛𝛾]𝑡 + ∁  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐸𝑥(𝑡) = 𝑒

[𝛼−𝑛𝛾]𝑡 . ∁ 

𝐸𝑥(𝑡)  =  𝐸𝑥(𝑡0) . 𝑒
[𝛼 − 𝑛 𝛾] 𝑡  
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Fig. 1(a). Phase diagram for the prey growth with 

the values of the given parameters: 

𝜶 =. 𝟕𝟓, 𝜷 =. 𝟒𝟓, 𝜸 =. 𝟎𝟎𝟐, 𝒏 = 𝟐𝟒 

 

Fig. 1(b). Phase diagram for the predator 

growth with the given values of the parameters: 

𝜶 =. 𝟕𝟓, 𝜷 =. 𝟒𝟓, 𝜸 =. 𝟎𝟎𝟐, 𝒏 = 𝟐𝟒 
 

 

 

Fig. 2. The expected values of predator - prey with coexisting 

 

 
 

Fig. 3. The graph of the expected values of x(t) and y(t) with randomly selected parameters in the same 

coordinate system 

 

To find more applications of Computer Algebra Systems (CAS) for numerical approximation see [17] and [18]. 

 

7. Conclusion: 
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The probabilistic model of the predator and prey by Differential Equation approach can be presented in the 

following system: Where α, n, and γ are constant parameters. 

{

𝑑𝐸𝑥

𝑑𝑡
 = [𝛼 − 𝑛𝛾]𝐸𝑥(𝑡),      𝐸𝑥(𝑡0) = 𝐸𝑥0

𝑑𝐸𝑦

𝑑𝑡
=  𝛽 𝐸(𝑦),             𝐸𝑦(𝑡0) = 𝐸𝑦0 

       (19) 

 

And the expectation solution also can be described by the following:  

 

𝐸𝑥(𝑡) =  𝐸𝑥(𝑡0). 𝑒
[𝛼 − 𝑛 𝛾]𝑡  𝑎𝑛𝑑    𝐸𝑦(𝑡) = 𝐸𝑦0 ∙ 𝑒

𝛽𝑡         (20) 

 

where 𝐸𝑥(𝑡0) is the initial mean population of the prey and 𝐸𝑦(𝑡0) is the initial mean population of predator. The 

natural birth rates for prey and predator are 𝛼 𝑎𝑛𝑑 𝛽. The death rate for prey is 𝛾 which is not the natural death, 

and it is the rate of capture and kill by predator. 

 

This is an interaction modeling between species to create a nonlinear stochastic system. A predator prey model 

with some special assumptions were used as a vehicle in modeling. Some of these assumptions are considered for 

convenient computation and understanding the behaviors of the system. For prey, we considered only the natural 

birth process and ignored the natural death process due to the predator consuming prey as the only food available.   

Since beta in (18) is a positive growth rate, the predator is growing exponentially. Predators will consume more 

and more of the prey leading to the extinction of one species. As a result, the power [𝛼 −  𝑛 𝛾] can be either 

positive or negative. For certain values of n: 

 

[𝛼 −  𝑛 𝛾] > 0  𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑛 <
𝛼

𝛾
        (21) 

 

This ratio indicates how long this exploitation of prey by the predator can continue? The integer part of this 

fraction indicates that if we can teach the wolf to be careful on consumption of rabbits in closed environments 

because it is gravely dangerous to grow that fast and the ceiling population number will be 𝑛 < ⌊
𝛼

𝛾
⌋.  

 

This approach will assure us to validate the conclusion of the model process in comparison to deterministic model 

(1). 

 

Our next step in developing this research is to assume that all interactions between two species with natural birth-

death process. The ideal will be the interaction case of both species with logistic growth. The variance of this 

probabilistic distribution also needs to be calculated. 

 

The final step will be interesting to compare two models in deterministic and stochastic cases. 

 

> with(DEtools); 

> DEplot(diff(X(t), t) = r*X(t), X(t), t = 0 .. 15, {[0, 1], [0, 5], [0, 10]}, color = green); 

> DEplot(diff(Y(t), t) = b*Y(t), Y(t), t = 0 .. 15, {[0, 1], [0, 5], [0, 10]}, color = blue); 

 

In the next Maple program, we will demonstrate randomly selected parameters to show the behavior of the 

expected values of the predator-prey population model 

 

> with(DEtools); 

> with(plots); a := (1/100)*(rand(10 .. 100))(); b := (1/100)*(rand(10 .. 80))(); c := (1/100)*(rand(1 .. 10))(); n := 

(rand(1 .. 5))(); 

 

> r := a-n*c; 

> X(0) := X0 = (rand(1 .. 100))(); # for random initial values 

> Y(0) := Y0 = (rand(1 .. 100))(); 

> xde := diff(x(t), t) = r*x(t); 

> yde := diff(y(t), t) = b*y(t); 

> dsolve({xde, yde}, {x(t), y(t)}); 

> soln := dsolve({xde, yde, x(0) = 10, y(0) = 500}, {x(t), y(t)}); 
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> soln1 := dsolve({xde, yde, x(0) = 50, y(0) = 60}, {x(t), y(t)}, type = numeric, output = listprocedure, abserr = 

0.1e-2); 

> seq(soln1(t), t = 0 .. 5); 

> with(plots); 

> odeplot(soln1, [[t, x(t)], [t, y(t)]], t = 0 .. 10, color = blue, thickness = 3); 
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