Review Form 1.7

Journal Name:	Journal of Advances in Mathematics and Computer Science
Manuscript Number:	Ms_JAMCS_111022
Title of the Manuscript:	Probabilistic Population Modeling with Interactions between Species
Type of the Article	Original Research Article

Created by: DR Checked by: PM Approved by: MBM Version: 1.7 (15-12-2022)

Review Form 1.7

PART 1: Review Comments

	Reviewer's comment	Author's comment (if agreed with reviewer, correct the manuscript and highlight that part in the manuscript. It is mandatory that authors should write his/her feedback here)
<u>Compulsory</u> REVISION comments		
Is the manuscript important for scientific community? (Please write few sentences on this manuscript)	Section 1- Conditions, Assumptions, and Parameters for Probabilistic Model:	
	Suppose $that x(t)$ and $y(t)$ are the populations of two species at time t, and to find the	
2. Is the title of the article suitable?	probability distributions of these populations at time $(t, t + \Delta t]$ will accept the following axioms:	
(If not please suggest an alternative title)	Axiom 1 : The probability that the incidence of species x(t) will be killed by the predator y(t) in a very	
3. Is the abstract of the article comprehensive?	short time interval is directly proportional to:	
4. Are subsections and structure of the manuscript appropriate?	i) the length of the interval Δt ;	
5. Do you think the manuscript is scientifically correct?	ii) ii) the predator – prey population densities.	
6. Are the references sufficient and recent? If you have suggestion of additional references, please mention in the review form.	Let alpha $lpha$ be a constant of proportionality, then the probability of reproduction of m-individual is	
(Apart from above mentioned 6 points, reviewers are free to provide	$p_m = p[one \ birth \ in \ \Delta t \ for \ x(t) = m] = \alpha.m. \Delta t < 1$	
additional suggestions/comments)	and $p_n = p[$ one reproduction of $y(t) = n$ individuals $] = \beta . n. \Delta t < 1$	
	Notice that: α is the growth rate of one individual of x in a unit of time and	
	β is the rate on one reproduction of predator y in a unit of time.	
	Axiom 2: The probability that there is exactly one kill-contact between predator and prey in a very	
	short period of time is proportional to the number n of the predators and m preys at time t and the	
	length of the interval, $p[one\ contact\ during\ (t,t+\Delta t)] = \gamma.\frac{p_m\cdot p_n}{p_m\cdot p_n}nm.\Delta t < 1$	
	Axiom 3: Prey uses natural resources to grow, and prey is the only resource of food available for	
	predators. When the kill-contact between prey and predator happens, the prey population will be	
	reduced from m to $m-1$.	
	Axiom 4: We will take time increment (Δt) sufficiently small, so that no individual can have more	
	than one event like incidence to kill or reproduce one individual during that time interval $(t, t + \Delta t]$.	
	Axiom 5: The probability of more than one kill-contact, or one contact and one birth, is negligible.	
	Notes:	
	1. By axiom 1, the probability of no birth prey during $(t, t + \Delta t]$ is	
	$p[no\ birth\ for\ prey\ x(t)=m]=1-\alpha.m.\Delta t$	
	By the same reason for the probability of no offspring during the time interval $(t,t+\Delta t]$	
	for predator is $p[no\ offspring\ for\ predator\ y(t)=n]=1-eta.n.\Delta t$	
	2. In a more complicated model one may assume that the probability of one birth of predator	
	is proportional to the probability density of prey population at time t, that is in Axiom 1 there	

Created by: DR Checked by: PM Approved by: MBM Version: 1.7 (15-12-2022)

Review Form 1.7

	can be
	$p[one\ reproduction\ of\ predator] = \beta.\frac{p_{m}(t)}{m}.n.\Delta t$
	3. Probability of kill-incidence in small time interval is = $\gamma \cdot p_m(t) \cdot p_n \cdot \Delta t$
	4. Probability of no kill-incidence in small time interval is = $1 - \gamma \cdot p_m(t) \cdot p_n \cdot \Delta t$
Minor REVISION comments	
Is language/English quality of the article suitable for scholarly communications?	
Optional/General comments	

PART 2:

		Author's comment (if agreed with reviewer, correct the manuscript and highlight that part in the manuscript. It is mandatory that authors should write his/her feedback here)
Are there ethical issues in this manuscript?	(If yes, Kindly please write down the ethical issues here in details)	The recased here;

Reviewer Details:

Name:	Guy Cirier
Department, University & Country	France

Created by: DR Checked by: PM Approved by: MBM Version: 1.7 (15-12-2022)