Original Research Article # Ecofriendly management of dry root rot in Black gram Caused by Macrophomina phaseolina #### **ABSTRACT** In the present study Trichoderma asperellum (ECK), Trichoderma asperellum (TNAU), Streptomyces sp (native) and Pseudomonas fluorescens (TNAU) were tested in vitroby dual culture technique. Among the six treatments Trichoderma asperellum (ECK) and Streptomyces sp (native) was found to be more effective as compared to other bio-control agents and inhibited maximum fungal growth (100 %) of Macrophomina phaseolina followed by Trichoderma asperellum (TNAU)(81.6 %). The disease incidence controlled by all other isolates was ranged from 67.72 to 81.66%. The growth promoting activity of various bio-control agents and chemical was assessed based on seedling vigour index by standard Roll Towel Method (ISTA,1993). The treated seeds and controls are placed on the pre-soaked germination paper. After one-week various growth parameters like root length, shoot length, vigour index are determined by using the formulae. The seeds treated with Trichoderma asperellum (ECK) and Streptomyces sp (native) exhibited increased yield parameters like increased germination percentage, root length, shoot length, and Seedling vigour index 2562.0. Under field conditions the seeds are treated with different biocontrol agents and carbendazim. The various growth parameters like root length, shoot length and seedling vigour index observed under field conditions. Streptomyces sp (native) was found to be most effective in reducing pre and post emergence mortality and also it enhances the yield than other treatments. In field trail among the six treatments, treatment containing seed treatment of Streptomycessp (native) was found to be most effective in reducing pre and post emergence mortality withgermination of 87.0 %. Streptomyces sp(native) was found to be more effective as compared to other bio-control agents in increasing the yield parameters like root length, shoot length, and seedling vigour and also it enhances the yield (322.8 Kg/ha)compared to other treatments. Streptomyces sp(native) needs further species level characterization and other biotrophic and tritrophic interaction studies for developing commercial formulation. **Keywords:**Biological control, *Macrophomina phaseolina*, *Pseudomonas fluorescens*, *Streptomyces sp.*, *Trichoderma asperellum*. #### 1. INTRODUCTION Black gram is one of the most important pulse crops.Blackgrampopularly known as urdbean or mash, is a grainlegume domesticated from V. mungo var silvestris. Blackgram, is the fourth important pulsecrop cultivated in India[4,5]. India is the world's largest producer and consumer of black gram.In India 1.5 to 1.9 million tons of black gram annually from about 3.5 million hectares of area with a average productivity of 500 kg/ha and India's total pulse production is about 10%. In Tamilnadu the average area of cultivation 2.88 lakh hectare, production of 1.41 lakh tonnes and productivity of 463.67kg per hectare in black gram. The production is constrained by higher incidence of disease and pest attack. Black gram is affected by several fungal diseases among which dry root rot is the major fungal disease in black gram. Root rot is caused by virulent and destructive pathogen Macrophomina phaseolina. Macrophomina is primarily soil borne in nature with heterogeneous host specificity. The dry root rot symptoms are most commonly observed in chickpea during post-floweringstage which include drooping and chlorosis of petioles and leaflets, initially confined to topleaves of the plant. Leaves and stems of affected plants are usually straw coloured and in somecases, the lower leaves and stems are brown[6-8]. This infection is due to high soil temperature and low soil moisture, particularly the regions with warm and dry weather conditions challenging severe yield loss during their growing season. It causes 28.6 % yield loss in black gram. The pathogen was isolated from the affected portion of the diseased plants collected from different places. The pathogen was isolated from the diseased plants separately purified and maintained. Present study was planned to formulate a suitable black gram root rot management technology through isolation of location specific biocontrol agents and to investigate unexplored microorganisms for root rot management as an alternate for existing biocontrol agents. #### 2. METHODOLOGY #### 2.1. ISOLATION OF PATHOGEN The pathogen was isolated from the affected portion of the diseased plants collected from different places. The infected plant with root rot symptom were pulled out and infected portions were cut into small pieces of 1cm to 1.5 cm which is surface sterilized by using 0.1% mercuric chloride for 1min and washed in sterile distilled water thrice and cut portions placed on the solidified petri dish (9mm) containing Potato dextrose agar (PDA) medium. These plates were incubated at room temperature of $28 \pm 2^{\circ}$ C for five days and observed for the radial growth of the fungi after 2-3 days. #### 2.2. DUAL CULTURE TECHNIQUE In vitro efficacy of four resident fungal and bacterial antagonists are TNAU *Trichoderma asperellum*, ECK *Trichoderma asperellum*, *Pseudomonas fluorescence*, *Streptomyces sp* was tested using this method. Transfer of 15-20ml Autoclaved PDA to each sterilized petri plates under aseptic condition and allowed to solidify. A 7mm disc of actively growing pathogenic fungal culture is placed on one side at one cm away from the edge of the petri plate and incubated under laboratory conditions. 48 hrs later, actively growing 48 hrs old culture of test antagonist is streaked on the medium at the opposite side of the plate. The PDA petri plates inoculated with the pathogen alone served as control. Inoculated petri plates were incubated at 25 ±1oC in the incubator for 7 days. For each treatment 3 replication taken. The radial growth of the pathogen and the antagonist was measured and the percent inhibition was recorded after 7 days of incubation. #### Percent inhibition over control (%) = Dc-Dt/Dc*100 Dc - Average radial growth of the pathogen in control (cm). Dt - Average radial growth of the pathogen in treatment (cm). #### 2.3. POISONED FOOD TECHNIQUE A known quantity of test fungicide dissolved in 100 ml of sterile molten PDA medium to get a final concentration of 0.05, 0.1, 0.2% and poured into sterile Petri plates under aseptic conditions and allowed to solidify. Then mycelial discs of 7 mm diameter test pathogen are cut from 7 days old culture plate and place it in the Centre of petri plates containing PDA medium amended with fungicide. The PDA medium (without fungicide) inoculated with test fungus alone served as control. The plates are incubated at room temperature for 7 days until the control plate completely covered by test fungus. Each treatment is replicated for three times. After the incubation period depending upon the pathogen, the radial growth of the fungus is measured separately. The percent inhibition of growth of the test pathogen was calculated by using the formula Percent inhibition over control = C-T/C*100 Where, C = growth of fungus (cm) in control T = growth of fungus (cm) in treatment **TABLE 1**Mycelial growth of the pathogen | Measurements | Mycelial growth of the pathogen(cm) | | | | | |--------------|-------------------------------------|-----|-----|--------|--| | Treatment | | | | | | | Control | R1 | R2 | R3 | PI (%) | | | T1 | 1.5 | 1.3 | 2.0 | 81.66 | | | T2 | 2.5 | 2.2 | 2.7 | 100.0 | | | T3 | 2.9 | 3.0 | 2.8 | 67.72 | | | T4 | 2.6 | 3.0 | 2.9 | 68.00 | | | T5 | 3.1 | 3.6 | 4.2 | 59.33 | | | T6 | 9cm | 9cm | 9cm | 00.0 | | ### 2.4. ROLL TOWEL METHOD The growth promoting activity of various bio-control agents and chemical was assessed based on seedling vigour index by standard Roll Towel Method (ISTA,1993). The treated seeds T1, T2, T3, T4, T5, and control are placed on the pre-soaked germination paper. The seeds are rolled up along with the polythene sheet and incubated in growth chamber for one week. After one-week seedling vigour index are determined by using the below formulae. Seedling vigour index = (Average root length+ Average shoot length) *germination (%) #### TREATMENT DETAILS T1-TNAU Trichoderma sp T2-ECK Trichoderma sp T3-Pseudomonas fluorescens T4-Streptomyces sp T5-Carbendazim T6-Control **TABLE 2**Seedling Vigour Index for different treatments | Measurement | Average | Average | Germination (%) | Seedling Vigour | | |-------------|-------------|--------------|-----------------|-----------------|--| | | Root length | Shoot length | | Index | | | Treatment | (cm) | (cm) | | | | | Control | 8.5 | 13.0 | 60 | 1290.0 | | | T1 | 10.0 | 15.5 | 76 | 1938.0 | | | T2 | 12.5 | 18.0 | 84 | 2562.0 | | | Т3 | 9.3 | 14.6 | 68 | 1002.1 | | | T4 | 8.5 | 12.0 | 64 | 1312.0 | | | T5 | 8.0 | 13.3 | 56 | 1192.8 | | **TABLE 3 Yield attributes for different treatments** | Measurement | Average | Average | SEEDLING | Germination | Disease | YIELD | |-------------|-------------|--------------|----------|-------------|-----------|---------| | | Root length | Shoot length | VIGOUR | (%) | incidence | (Kg/ha) | | Treatments | (cm) | (cm) | | | (%) | | | | | | | | | | | T1 | 13.75 | 8.25 | 1650.0 | 85 | 18.85 | 296.4 | | | | | | | | | | T2 | 13.25 | 7.00 | 1440.5 | 83 | 20.55 | 291.6 | | | | | | | | | | Т3 | 12.5 | 8.25 | 1431.75 | 80 | 22.23 | 264.0 | | | | | | | | | | T4 | 13.75 | 9.25 | 1805.25 | 87 | 15.00 | 322.8 | |----|-------|------|---------|----|-------|-------| | T5 | 13.5 | 8.5 | 1298.0 | 78 | 28.33 | 256.8 | | T6 | 12.75 | 6.5 | 1212.75 | 73 | 63.00 | 234.0 | #### 3. RESULTS AND DISCUSSION Present study was planned to formulate a suitable black gram root rot management technology through isolation of location specific biocontrol agents and to investigate unexplored microorganisms for root rot management as an alternate for existing biocontrol agents. The results of this study are discussed hereunderin the present study *Trichoderma asperellum ECK*, *Trichoderma asperellum TNAU*, *Streptomyces* sp and *Pseudomonas fluorescens* were tested *in vitro*. Among the six treatments *Trichoderma asperellum ECK was* found to be more effective as compared to other bio-control agents and inhibited maximum fungal growth (100 %) of *Macrophomina phaseolina* followed by *Trichoderma asperellum TNAU* (81.6 %) followed by *Streptomyces* sp (native) (68.0 %) In field trail among the six treatments, treatment containing seed treatment of *Streptomyces* was found to be most effective in reducing pre and post emergence mortality by (15.0 %), *Streptomyces* sp was found to be more effective as compared to other bio-control agents in increasing the yield parameters like root length, shoot length, and seedling vigour and also it enhances the yield (322.8 *Kg/ha*) compare to other treatments. Biological control is one of the sustainable and ecofriendly methods for suppressing plant diseases. Seed treatment and soil application of *Trichoderma* species has been reported as most effective for the management of dry root rot disease in black gram. Most of these studies were carried out in the laboratories to evaluate the antagonistic effects of *Trichoderma* (biocontrol fungi) to inhibit growth of root rot pathogens, *Macrophomina*, few are in the glasshouse and field. In the field study, [1] examined that mixed application of vermicompost (10%) + bavistin (0.1%) + *T. harzianum* (4%) reduced seedling mortality caused by *M. phaseolina* where 5.74 and 5.04% mortality of seedlings were reported during pre and post emergence, respectively. [2]In greenhouse, application of *T. harzianum* (4 g/kg seeds) with 25 g/kg of phosphate solubilizing bacteria (PSB) as seed dresser reduced 26% incidence of dry root rot. *T. viride* and *T. harzianum* reduced the mycelial growth (42.33 and 44.25 mm, respectively) of *Macrophomina* in dual culture method and combined application of *T. harzianum* at 4 g kg-1 + PSB at 25 g/kg seed as seed dresser with FYM in field trials had minimum dry root rot incidence in seedlings (26.0%) [3] #### 4. CONCLUSION The results revealed that *Streptomyces* sp (native) was found to be most effective in reducing pre and post emergence mortality and also it enhances the yield than other treatments. In field trail among the six treatments, treatment containing seed treatment of *streptomyces*sp (native) was found to be most effective in reducing pre and post emergence mortality withgermination of 87.0 %. *Streptomyces* sp(native) was found to be more effective as compared to other bio-control agents in increasing the yield parameters like root length, shoot length, and seedling vigour and also it enhances the yield (322.8 kg/ha)compared to other treatments. *Streptomyces* sp(native) needs further species level characterization and other biotrophic and tritrophic interaction studies for developing commercial formulation. Macrophomina Pseudomonas fluorescens Pf1 Trichoderma asperellum ECK Plate 1. Screening of Streptomyces against Macrophomina by Dual Culture Technique #### **REFERENCES** - 1. Kumar S, Sharma S, Pathak, DV and Beniwal J. 2011. Integrated management of jatropha root rot caused by rhizoctoniabataticola. Journal of Tropical Forest Science, 23(1): 35–41. - Deshmukh, D. K., Kawamura, K., Lazaar, M., Kunwar, B., and Boreddy, S. K. R.: Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes, Atmos. Chem. Phys., 16, 5263-5282 https://doi.org/10.5194/acp-16-5263-2016. - 3. Ebenezer, E. G. and Yesuraja, I. (2000). Effect of fungal and bacterial antagonist on Macrophomina phaseolina (Tassi) Goid causing root rot in green gram. J. of Tropical Agri., 38(1/2): 73-76. - 4. Dambal G, Rashmi D, Revanappa SB, Suma M, Saabale PR. Identification for resistant sources against dry root rot in black gram germplasm (Vigna mungo L.). International Journal of Chemical Studies. 2019;7:990-2. - 5. Elmerich C, Pandey AK, Vemula A, Rathore A, Nair RM. Blackgram-Macrophomina phaseolina Interactions and Identification of Novel Sources of Resistance. Plant Disease. 2022 Nov 1;106(11):2911-9. - 6. Choudhary S, Choudhary AK, Sharma OP. Screening of mungbean (Vigna radiata) genotypes to identify source of resistance to dry root rot. Journal of Food Legumes. 2011;24(2):117-9. - 7. Kumari N, Katoch S. Wilt and root rot complex of important pulse crops: their detection and integrated management. Management of Fungal Pathogens in Pulses: Current Status and Future Challenges. 2020:93-119. - 8. Sethuraman K, Revathy N, Manivannan M. Efficacy of biocontrol micro organisms on root rot of black gram caused by Macrophomina phaseolina (Tassi) gold. Legume Research-An International Journal. 2003;26(3):218-20.