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Original Research Article 

A NEW LIFE-TIME MODEL WITH BATHTUB AND INVERTED BATHTUB 

FAILURE RATE FUNCTION. 

 

ABSTRACT 

In this paper, a three parameter model called Zubair- Kumaraswamy (Z-Kum) distribution is 

proposed. The extension was done using Zubair G-Family (2018) of continuous probability 

distribution to extend the well known Kumaraswamy distribution to make it more flexible in 

modeling and predicting real world phenomenon.  Some basic structural properties of the new 

distributions like cdf, pdf, quantile functions, moments, moment generating functions, 

characteristics functions and order statistics was obtained. Survival function, hazard function, 

reversed hazard rate function and a cumulative hazard rate function was also obtained. Behavior 

of the hazard rate plot exhibit increase, decrease, Bathtub and inverted Bathtub shape. Maximum 

likelihood estimate was used to estimate the Z-Kum distribution parameters. Monte Carlo 

simulation was carried out to evaluate the performance of MLE method adopted. Result of the 

simulation studies  indicates that MLE is good for the estimation of our distribution parameters. 

To compare the proposed model with the other fitted existing models, analytical measure of 

goodness of fit of some information criterion was considered using three real life data sets. From 

the results obtained, it is evident that our proposed model gives better fit than the other 

competing models and therefore, our proposed model provide greater flexibility in modeling real 

world phenomenon. 
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1. Introduction.  

The quality of the procedures used in statistical analysis depends heavily on the assumed 

probability model or distribution that the random variable follows. Many lifetime data used for 

statistical analysis follow a particular probability distribution and therefore knowledge of the 

appropriate distribution that any phenomenon follows greatly improves the sensitivity, reliability 

and efficiency of the statistical analysis associated with it. Furthermore, it is true that several 
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probability distributions exist for modeling lifetime data; however, some of these lifetime data do 

not follow any of the existing and well known standard probability distributions (models) or at 

least are inappropriately described by them. Due to change in the world population and rapid 

global development in science and technology, developing new distributions which could better 

describe some of these phenomena and provide greater flexibility and wider acceptability in the 

modeling of lifetime data become an inevitable. 

Recently, attempts have been made to define new models that extend well known distributions 

and provide a greater flexibility in modeling real data and to improve the goodness-of-fit of the 

generated family. For instance, Eugene et al. (2002) introduced a new class of distributions 

generated from the beta distribution. Zografos and Balakrishnan (2009) proposed the gamma 

generated family. Bourguignon et al. (2014) presented the Weibull-generated (W-G) family of 

distributions with two extra parameters, Kummer beta generalized family of distributions by 

Pescim et al. (2012), geometric exponential-Poisson family of distributions by Nadarajah et al. 

(2013), exponentiated T-X family of distributions by Alzaghal et al.(2013), weibull generalized 

family of distributins by Bourguignion et al. (2014); modified beta generalized family 

distributions by Nadarajah et al. (2014), kumaraswamy Weibul by Cordeiro et al. (2010) 

kumaraswamy gumbel by Cordeiro et al. (2012), Kumaraswamy Birnbaum-Saunders by Saulo 

and Bourguibnon (2012), Kumaraswamy Pareto by Bourguibnon et al. (2013), Kumaraswamy 

generalized Rayleigh by Gomes et al. (2014).  Kumaraswamy inverse by Rayleigh Roges et al. 

(2014), Kumaraswamy modified inverse Weibull by Aryal and Elbatal (2015), Kumaraswamy 

Laplace by Aryal (2015), Kumaraswamy exponential-Weibull by Cordeiro et al. (2016), 

Kumaraswamy exponentiated inverse Rayleigh by Haq (2016); 

2.0 Some Existing Probability Distributions 

2.1 Kumarasawamy Distribution 

The pdf and cdf of Kumarasawamy distribution are as given in (1) and (2) respectively. 

 ( ; , ) 1 1 , 0 1, 0, 0.
b

aG x a b x x a b        ,                   (1) 

 
1

1( ; , ) 1
b

a ag x a b abx x


    ,    0 1, 0, 0.x a b        (2) 

where a and b are two shape parameters. 
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2.2 Zubair G Family of distribution 

A family of life distributions, called the Zubair-G family was introduced by Zubair (2018). The 

benefit of using this family is that its cdf has a closed form solution and capable of data modeling 

with monotonic and non-monotonic failure rates. The CDF and PDF of the new family defined 

by Zubair (2018) for random Variable X  is given in (3) and (4) respectively. 

 

 
2

{ ; } 1
( , ) , 0, .

exp( ) 1

exp G x
F x x

 
  




  


  (3) 

 

     
2

2 ; ; { ; }
( , , ) , 0, ,

exp( ) 1

g x G x exp G x
f x x

    
   


  


  (4) 

 

Where   is vector of the baseline distribution parameter,   is the parameter of Zubair G-family 

 ;g x   and  ;G x  are pdf and cdf of  the baseline distribution respectively. 

3.0 Proposed Distribution. 

 

3.1 Zubair-Kumarasawamy (Z-Kum) Distribution 

 

To obtain the CDF of Z-Kum distribution, we let ( )G x  be cdf of the Kumarasawamy random 

variable given by   ( ; , ) 1 1
b

aG x a b x    and substitute in (3). Then the CDF of Z-Kw 

distribution is obtained as in (4) 

   
1

1

; ,
1

b
a a

x a b
g abx x


   then the cdf of Zubair–Kumarasawamy (Z-Kum) distribution is given 

by 

 

 2exp (1 (1 ) ) 1
( ; , , )

exp( ) 1Z Kum

a bx
F x a b






  



 0 1, 0, 0.x a b      (4) 

 

The corresponding probability density function (pdf) of Zubair–Kumarasawamy (Z-Kum) 

distribution denoted by ( ; , , )
Z Kw

f x a b


  is obtained by differentiating (4) with respect to x . 

 

From the definition 

 

( ; , , )
( ; , , )

dF x a b
f x a b

dx


             (5) 
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To obtain  
( ; , , )Z BxdF x a b

dx

             

let,  1 (1 )a bU x           (6) 

So, 
 2exp ) 1

( ; , , )
exp( ) 1

U
F x a b










      (7) 

1 1(1 )a a bdu
abx x

dx

           (8) 

 

Then, 

( ; , , ) ( ; , , )
.

dF x a b du dF x a b

dx dx du

 
       (9) 

        

 22 exp (1 (1 ) )( ; , , )

exp( ) 1

a bu xdF x a b

du





 



     (10) 

Substitute (6), (8) and (10) in (9),  ( ; , , )
Z Kum

f x a b


is obtained as in (11). 

  

    
1

1 22 1 (1 (1 ) ) exp (1 (1 ) )
( ; , , )

exp( ) 1

b
a a a b a b

Z Kum

abx x x x
f x a b

 









    



 (11)  

  
 

        0 1, 0, 0.x a b     

Theorem 3.1 ( ; , , )Z Kumf x a b   is a pdf. Then 
1

0
( ; , , ) 1Z Kumf x a b dx     (12) 

Proof: Let 
1

2
0

( ; , , )Z KumT f x a b dx    , then 

    
1

1 2
1

2

0

2 1 (1 (1 ) ) exp (1 (1 ) )

exp( ) 1

b
a a a b a babx x x x

T dx
 




     




  (13)

 

    
1 2

1 1

2
0

2
. (1 (1 ) ) (1 ) exp (1 ) 1

1 exp( )

a b a b a b aab
T x x x x dx






          
  

(14) 

Applying u substitution method by let 

12
2 1

1 , , 0 1a a

a

du du
u x ax dx and u

dx ax




      

  

 

 1 2
1 2 2 2

2
0

( )exp ( 1)2

1 exp( )

b b bu u uab
T du

a





   
 
  

             (15) 
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1 1

2 2 2 2

2

1 , , 0 1b b bdv
By letting V u bu du bu dv and v

du

          

2
1

2
0

2 1 exp( )
.

1 exp( )

ab v v
T dv

a b

 



 
  
   

      (16) 

Let  
2 , 2 , 0

2

dw dw
w v v dv and w

dv ab
        

2
0

2 1 1 exp( )
. .

1 exp( ) 2

ab w
T dw

a b



 

 
  
   


     (17) 

 2 0

2 1 1 1
. . exp( )

1 exp( ) 2

ab
T w

a b



 

 
  
   

     (18)  

 

=
 

0
2

exp( )
1

1 exp( )

w
T




 
          (19) 

Hence, the proof. 

Figures 1 and 2 below displayed the plots of the pdf and cdf of the Z-Bx distribution  for some 

selected parameter values respectively. 

 

Figure 1: Plot of Z-Kw PDF   Figure 2: Plot of Z-Kw CDF 

4.0 Properties of the Z-Kum distribution. 

 

This section studies the statistical properties Z-Kum distribution such as the quintile function, 

order statistics and moments. Survival functions, Hazard rate function, Reversed Hazard rate 

function, Cumulative hazard rate functions are also discussed in details. 

4.1 Quantile Function of Z-Kum Distribution. 
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The quantile function of Z-Kum distribution is obtained by inverting (4) as given in (20) 

         

  

1
1

1

21
l 1 ln( (exp( ) 1) 1)

a
b

Q U u 


 
             
  

 

 (20) 
 

 

~ (0,1)where u U  

To obtain the first quartile, the median, and the third quartile, we replace u with 0.25, 0.5 and 

0.75 in (20) respectively. .   

4.2 Order Statistics 

 

The order statistics and their moments have great importance in many statistical problems and 

applications in reliability analysis and life testing. Suppose 1 2, ,............., nX X X  is a random 

sample from a distribution with pdf, f(x), and let 1 2, ,.............,n n inX X X  denote the corresponding 

order statistic obtained from this sample. The 
thi   order statistic of the proposed distributions can 

be using (21) 

   

  
 1!

( ) ( ) ( ) 1 ( )
( 1)!( )!

n ii

in

n
f x f x F x F x

i n i

 
 

   (21) 

Using bionomial expansion, 

 

  
 

1

0

1 ( ) ( 1) ( )
n i n

n i k k

k
k

F x F x
 





 
    

 
     (22) 

  

  

1
1

0

!
( ) ( ) ( ) ( 1) ( )

( 1)!( )!

n i n
i k k

in
k

k

n
f x f x F x F x

i n i

 




 
   

   
  (23) 

  

Inserting (3) and (11) in (21), the pdf of the i
th

 order statistics can be given as in (24) 

    
1

1 2 1 22 1 (1 ) exp (1 (1 ) )
!

( )
( 1)!( )! exp( ) 1

b
a a a b a b

in

abx x x x
n

f x
i n i

 




      

 
     

 
 

   
1

2 2
1

0

exp (1 (1 ) ) 1 exp (1 (1 ) ) 1
( 1)

exp( ) 1 exp( ) 1

i k
a b a b

n i n
k

k
k

x x 

 


 



         
      
     
   

 (24) 

 

4.3 Moments. 

 

The moments of a random variable are important in statistical inference. They are used to 

investigate important characteristics of a distribution such as the measures of central tendency, 

measures of dispersion and measures of shapes. In this subsection, the r
th

 non-central moment of 

the Z-Kum random variable is derived. 
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By definition, 

 

1 ( ) ( , )r r

r E X X f x dx 



            (25) 

 
 

Using (25), we have 

    
1

1 2

1

2 1 (1 (1 ) ) exp (1 (1 ) )
( ) .

exp( ) 1

b
a a a b a b

r r

r

abx x x x
E X X dx

 











    
 

  (26) 

 

 

    
1 1

1 1 2

0

2
( ) 1 (1 (1 ) ) exp (1 (1 ) )

exp( ) 1

b
r a r a a b a b

r

ab
E X x x x x dx


 




       

    (27) 

 

Let   1
b

y x     
1

11 .
b

a ady
b x ax

dx


     

 
1

11 .
b

a a

dy
dx

b x ax




 

    1/ 1
a

bx y   

    
1

1 1/ 2

0

2
( ) 1 exp (1 )

exp( ) 1

r
a

r b

r E X y y dy


 



   

 
      (28)

 

 

Using power series 

 

      1/ 1/

0

1 1
rr

a j
b b r j

j

r
y y

j





 
   

 
  

 

 
  2

2

0

1
exp (1 )

!

j

j

y
y

j









   

 

 
1 (2 2) 11 (1/ 1) 1

0
0 0

2
( ) 1

!exp( ) 1

j r
jr b

r

j j

a
E X y y dy

j







  

 


  




   (29)

 

 

Finally  

 

 1

0 0

2
( ) / 1,2( 1)

!exp( ) 1

j r
r

r

j j

a
E X B j b j

j








 


   




   (30)

 

 

where 
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   
1 (2 2) 1(1/ 1) 1

0
/ 1,2( 1) 1

jbB j b j y y dy
       

Where Mean=
2/ / /

1 2 1( ) , ( ) ,x V x     Skewness 

3

2

/ / / /

3 2 1 1

3

/ / 2
2 1

3 4
,

( )

   

 

 




 

Kurtosis 

2 4/ / / / / /

4 3 1 1 2 1

/ / 2

3 1

4 6 3

( )

     

 

  



 

4.4 Moment generating function of Z-Kum distribution. 

 

Theorem 4.1 Let X has a Z-kum distribution. Then the moment generating function is given by 

 

 
0 0

2
( ) / 1,2( 1)

!exp( ) 1 !

j rr

X

j j

a t
M t B j b j

j r







 


  


                (31) 

 

Proof:  By definition 

 
0

( ) ( )tx tx

XM t e e f x dx



           (32) 

 

Using Taylor series expansion, the moment generating function can be given as     

 

0

( )
!

r

X r
r

t
M t u

r





           (33) 

 

where ur is the  r
th

 non-central moment. Substituting the r
th

 non-central moment as in (30) gives 

the moment generating function of Z-kum distribution  as 

 

 
0 0

2
( ) / 1,2( 1)

!exp( ) 1 !

j rr

X

j j

a t
M t B j b j

j r







 


  


      (34) 

 

Hence the proof. 

 

4.5 Characteristic Function of Z-Ikum distribution 

 

Theorem 4.2 Let X has a Z-kum distribution. Then the characteristic function is given by 

 

 
0 0

2 ( )
( ) / 1,2( 1)

!exp( ) 1 !

j rr

X

j j

a it
t B j b j

j r








 


  


                                (35) 

 

Proof: By definition 

 

 
0

( ) ( )itx itx

X t e e f x dx


            (36) 
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Using Taylor series expansion, the moment generating function can be given as  

 

0

( )
( )

!

r

X r
r

it
t u

r






           (37) 

 

where ur is the  r
th

 non-central moment. Substituting the r
th

 non-central moment as in (30) gives 

the characteristics function of Z-kum distribution  as 

 

 
0 0

2 ( )
( ) / 1,2( 1)

!exp( ) 1 !

j rr

X

j j

a it
t B j b j

j r








 


  


      (38) 

 

Hence the proof. 

 

4.6 Survival Function of Z-Kum distribution. 

 

Using (39) the survival function of Z-Kum distribution is obtain as in (40) 

 

    1S x F x          (39) 

  

    2

exp( ) exp 1 2 1
( )

exp( ) 1

b b
a ax x

S x
   



      



               (40)

 
 

4.7 Hazard Rate Function of Z-Kum distribution. 
 

The hazard rate functions of Z-Kum distribution is obtain using (41) as given in (42) 

     
 

 

f x
h x

S x
                   (41)

 

 

    

 

   

 

 

    

    

1
1 2

2

2 1 (1 (1 ) ) exp (1 (1 ) )
( )

exp( ) exp 1 2 1

b
a a a b a b

b b
a a

abx x x x
h x

x x

 

   


     


      

    (43) 
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Figure 3: Plot of of Z-kum hr.    

Plot of the hazard rate function of Z-Kum distribution for specific sets of parameter values is of 

Bath-Tub shape, inverted Bath-Tub shape, increasing and decreasing shape.   

 

4.8 Reverse Hazard Rate Function of Z-Kum distribution. 

 

The Reverses hazard rate functions of Z-Kum distribution is obtain using (43) as in (44) 

 

     

   
 

( )
( )

f x
r x

F x
        (43)  

   

 

 

    

 

1
1 2 1 2

2

2 1 (1 ) exp (1 (1 ) )
( )

exp (1 (1 ) ) 1

b
a a a b a b

a b

abx x x x
r x

x

 




     


  

  (44)  

  

 

4.9 Cumulative Hazard Rate Function of Z-Kum distribution.  

 

The cumulative hazard rate function of Z-Kum distribution is obtain using (45) as given in (46) 

 

      log 1H x F x         (45)
 

             

 
 

          
2

ln exp( ) exp 1 2 1 ln exp( ) 1
b b

a aH x x x                (46)
 

 

5.0 Parameters Estimation and Simulation Studies of Z-Burr Distribution.  

5.1 Parameter Estimation 
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To illustrate the applications of the developed distributions with regards to modeling real data 

sets, it is vital to develop estimators for estimating the parameters of the distributions. In this 

section, estimators are developed for estimating the parameters of the new distributions using the 

well known method of maximum likelihood estimate (MLE). 

Let  1 2, ....... nX X X  be a random sample from Z-Kum distribution with unknown parameter 

vector ( , , , )Ta b  ,  the likelihood function of the distribution is obtain using (47) 

    
1

,
n

i
i

L f x 


         (47) 

 
    

1
1 2 1 2

1

2 1 (1 ) exp (1 (1 ) )

exp( ) 1

b
a a a b a b

n

i

abx x x x
L

 





 



    
 

   
 

    (48)

 

 
 

 

1
1 2 1 2

1 1 1 1
2 1 (1 ) exp (1 (1 ) )

exp( ) 1

n n n nb
n n n n a a a b n a b

i
i i i i

n

a b x x x x

L

 





 

   

    
           

    
 

 
 

  (49)

 

 
 

 

 

1 1 1

2

ln 2 ln ln ln ( 1) ln ( 1) ln 1 (2 1) ln(1 )

log ( )

ln 1 (1 )

ln exp( ) 1

n n n
a a

i
i i i

a b

i

n n n a n b a x b x b x

L

n x

n









  

    
                 

    
 
   
 

 



……………………………………………………………………………… (50)      

 

 
 

2

1

log( ) exp( )
1 (1 )

2 exp( ) 1

n
a b

i

i

n n
x

 

 


    

 
      (51)  

 

 
2

1

exp( )
1 (1 )

2 exp( ) 1

n
a b

i

i

n n
x





 
    

 
  = 0        (52) 

 

 
  1

1 1 1 1

log( ) 1 1
ln ( 1) ln (2 1) ln 2 1 (1 ) (1 ) ln

1 1

n n n n
a a b a b a

i i i i ia a
i i i ii i

n
x b x a b a x b x x a

a a x x


 

   


         

  
   

 

…………………………………………………………………………………… (53)  

  1

1 1 1 1

1 1
ln ( 1) ln (2 1) ln 2 1 (1 ) (1 ) ln 0

1 1

n n n n
a a b a b a

i i i i ia a
i i i ii i

n
x b x a b a x b x x a

a x x
 

   

 
          

  
   

 

………………………………………………………………………………………………………………………………… (54) 
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 
  

1 1 1

log( )
ln(1 ) 2 ln(1 ) 2 1 (1 ) (1 ) ln

n n n
a a a b a b

i i i i

i i i

n
x x x x b

b b




  


        


    (55) 

 

  
1 1 1

ln(1 ) 2 ln(1 ) 2 1 (1 ) (1 ) ln 0
n n n

a a a b a b

i i i i

i i i

n
x x x x b

b


  

 
         

 
     (56) 

 

Equations (52), (54) and (56) cannot be solved analytically, statistical software like R can be 

used to simultaneously solve them numerically using iterative methods. Solutions of these 

equations provides the maximum likelihood estimate ˆˆ ˆ ˆ( , , )a b   of  ( , , )Ta b   

5.2. Simulation Studies 

The performance of the maximum likelihood estimates for the Z-Kum distribution parameters 

was evaluated using Monte Carlo simulation for a three parameter combinations. Different 

sample sizes (n = 50, 75 and 100) and some selected parameter values ( = 0.09, a = 0.08,b = 0.09)  

were used to perform the simulation. Result of the simulation is presented in the table below. 

Table 1.  Average MLEs, Variance and MSE of the MLEs of parameters of Z-Kum 

distribution with actual parameter values ( = 0.09, a = 0.08,b = 0.09)   

N Estimates Variance MSE 

̂       â               b̂  ̂       â               b̂  ̂       â               b̂  

50 

75 

100 

0.0724   0.0880     0.0980 

0.0735   0.0874    0.0975 

0.0767   0.0860   0.0964 

0.0012    0.0003     0.0003 

0.0011     0.0002    0.0002 

0.0009     0.0002    0.0002 

0.0015    0.5071      0.0003 

0.0014     0.5069     0.0003 

0.0011      0.5061    0.0002 

 

5.3 Model Comparison and Selection Criteria 

To show how applicable and flexible our proposed model is, its performance is compared with 

other established models with reference to information lost. So, we tend to use information 

criteria techniques and goodness-of-fit statistics that correct model for complexity, to constrain 

the model from over fitting to assess the most effective model from a range  different models 

which can have different number of parameters. 
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In this case, we will consider the generally well known criteria such as Akaike Information 

Critareion (AIC), the Bayesian Information Criterion (BIC), the Consistant Akaike Information 

Cretarion (CAIC) and Hannan-Quinn Information Criterion (HQIC) and illustrate the flexibility 

and applicability Z-Kum distribution, using three (3) real life data set. 

Data set 1 

This data was used and analyze by Musa et al. (2021) 

0.68879, 0.50813, 0.66621, 0.74526, 0.86947, 0.88076, 0.84688, 0.91463, 0.75655, 0.55329, 

0.79042, 0.82429, 0.92593, 0.80172, 0.79042, 0.83559, 0.68879, 0.74526, 0.80172, 0.93722, 

0.85818, 0.98238, 0.29359, 0.99368, 0.67751, 0.80172, 0.93722, 0.63234, 0.64363, 0.73397, 

0.89205, 0.64363, 0.77913, 0.41779, 0.58717, 0.88076, 0.91463, 0.80172, 0.68879, 0.72267, 

0.90334, 0.76784, 0.93722, 0.21454, 0.38392 

Data set 2 

This data was used and analyze by Musa et al (2021) 

0.42909, 0.83559, 0.85818, 0.79042, 0.67751, 0.99368, 0.88076, 0.88076, 0.93722, 0.74526, 

0.76784, 0.82429, 0.77913, 0.68879, 0.98238, 0.71138, 0.76784, 0.51942, 0.77913, 0.70009, 

0.54200, 0.75655, 0.86947, 0.99368, 0.76784, 0.92593, 0.80172, 0.46296, 0.76784, 0.76784, 

0.48555, 0.89205, 0.36134, 0.65492, 0.79042, 0.84688, 0.80172, 0.64363, 0.42909, 0.74526, 

0.80172, 0.48555, 0.67751, 0.75655, 0.47425, 0.94851, 0.92593, 0.63234, 0.93722, 0.73397, 

0.71138, 0.90334, 0.72267, 0.99368, 0.63234, 0.45167, 0.65492, 0.92593, 0.41779, 0.72267, 

0.75655, 0.47425, 0.94851, 0.48555, 0.63234, 0.54201, 0.89205, 0.80172, 0.65492, 0.46296, 

0.75655, 0.84688, 0.47425, 0.65492, 0.51942, 0.39521, 0.91463, 0.37263, 0.66621, 0.49684, 

0.86947, 0.82429, 0.63234, 0.41779, 0.74526, 0.80172, 0.12421, 0.16938, 0.15808, 0.09033, 

0.88076, 0.37263, 0.66621, 0.18067, 0.85818, 0.83559, 0.64363, 0.49684, 0.76784, 0.77913, 

0.89205, 0.35005, 0.99368, 0.60976, 0.75655, 0.77913, 0.65492, 0.39521, 0.74526, 0.82429, 

0.92593, 0.97109, 0.68879, 0.94851, 0.7904, 0.99368, 0.71138, 0.49684, 0.06775, 0.91463, 

0.97109, 0.91463, 0.86947, 0.76784, 0.86947, 0.79042, 0.79042, 0.41779, 0.77913, 0.99368, 

0.51942, 0.67751, 0.84688, 0.80172, 0.90334, 0.80172, 0.90334, 0.71138, 0.63234, 0.74526, 

0.54201, 0.39295, 0.76784, 0.71138, 0.67751, 0.63234, 0.77913, 0.85818, 0.63234, 0.99368, 

0.55329, 0.75655, 0.82429, 0.37263, 0.56459, 0.15808, 0.45167, 0.64363, 0.67751, 0.99368, 

0.92593, 0.67751, 0.84689, 0.68879, 0.76784, 0.50813, 0.68879, 0.82429, 0.67751, 0.28229, 
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0.49684, 0.62105, 0.66621, 0.62105, 0.86947, 0.89205, 0.68879, 0.50813, 0.66621, 0.74526, 

0.86947, 0.88076, 0.84688, 0.91463, 0.75655, 0.55329, 0.79042, 0.82429, 0.92593, 0.80172, 

0.79042, 0.83559, 0.68879, 0.74526, 0.80172, 0.93722, 0.85818, 0.98238, 0.29359, 0.99368, 

0.67751, 0.80172, 0.93722, 0.63234, 0.64363, 0.73397, 0.89205, 0.64363, 0.77913, 0.41779, 

0.58717, 0.88076, 0.91463, 0.80172, 0.68879, 0.72267, 0.90334, 0.76784, 0.93722, 0.21454, 

0.38392 

Data set 3 

The following data was used and analyze by Saboor et al (2021).  It consist 48 rock samples 

from petroleum reservoir obtained from the measurements on petroleum rock samples   

0.0903296, 0.2036540, 0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220, 0.1623940, 

0.2627270, 0.1794550, 0.3266350, 0.2300810, 0.1833120, 0.1509440, 0.2000710, 0.1918020, 

0.1541920, 0.4641250, 0.1170630, 0.1481410, 0.1448100, 0.1330830, 0.2760160, 0.4204770, 

0.1224170, 0.2285950, 0.1138520, 0.2252140, 0.1769690, 0.2007440, 0.1670450, 0.2316230, 

0.2910290, 0.3412730, 0.4387120, 0.2626510, 0.1896510, 0.1725670, 0.2400770, 0.3116460, 

0.1635860, 0.1824530, 0.1641270, 0.1534810, 0.1618650, 0.2760160, 0.2538320, 0.2004470 

Table 2. Performance of Z-Kum distribution’s goodness of fit using data set 1 

  

MODEL 

Z-KUM LIB-KUM KUM 

AIC -101.1618 -97.37334 -79.19838 

 CAIC -99.82845 -96.04001 -77.86504 

 

BIC -97.88865 -94.10021 -75.92525 

HQIC -100.3907 -96.60229 -78.42733 

Rank 1 2  3 
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Table  3. Performance of Z-Kum distribution’s goodness of fit using data set 2 

  

MODEL 

Z-KUM LIB-KKUM KUM 

AIC -977.89 -670.72 -816.81 

 CAIC -977.78 -670.61 -816.70 

BIC -967.70 -660.52 -806.61 

HQIC -973.78 -666.61 -812.69 

Rank 1 2 3 

 

Table 4. Performance of Z-Kum distribution’s goodness of fit using data set 3 

  

MODEL 

Z-KUM LIB-KUM KUM 

AIC -134.4426 -126.1913 -118.3165 

 CAIC -134.3220 -126.0807 -118.2060 

BIC -124.2481 -115.9968 -108.1221 

HQIC -130.3263 -122.0749 -114.2002 

Rank 1 2 3 

 

It can be seen from Table 2, 3 and 4  that   based on the values of  the information criterion from 

the three different real life data sets, Z-Kum distribution having the less values performed better 

than the other two distributions in term of  fitting/modeling real life data.  

6. Discussion and Conclusion 

In this paper, we developed new three parameter model called Zubair- Kumaraswamy (Z-Kum) 

distribution. The extension was done using Zubair  G-Family (2018) of continuous probability 

distribution was used to extend well known Kumaraswamy distribution to make it more flexible 
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in modeling and predicting real world phenomenon. Some basic structural properties of the new 

distributions like Quantile functions, moments, moment generating functions, characteristics 

functions and order statistics were obtained. Survival function, hazard function, reversed hazard 

rate function and a cumulative hazard rate function was also obtained. Behaviour of the hazard 

rate plot exhibit increase, decrease, Bathtub and inverted Bathtub shape. Maximum likelihood 

estimate was used to estimate the Z-Kum distribution parameters, Monte Carlo simulation also 

was carried out to evaluate the performance of MLE in estimating our distribution parameters. 

Result of the simulation studies revealed that as the sample size increases, the estimate values 

approaches actual parameter values, while the values of mean square errors approaches zero, this 

indicates that MLE is good for the estimation of our distribution parameters. To show how 

flexible and more efficient our proposed model is over some existing distributions, we compare 

the model with the other fitted existing models. Analytical measure of goodness of fit of some 

information criterion such as Akaike information criterion (AIC), consistent Akaike information 

criterion (CAIC), Bayesian information criterion (BIC), and Hannan-Quinn information criterion 

(HQIC) was considered using three real life data sets. From the results obtained, it is evident that 

our proposed model give better fit than the other competing models and is therefore, more 

flexible in modeling  and predicting real world phenomenon. 
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