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ABSTRACT:The study addresses the critical issue of optimizing construction materials to enhance 

structural integrity, minimize cracks, and prevent building collapses in Nigeria. It utilizes 

fractional factorial design and response surface methodology (RSM) to systematically determine 

the optimal parameters for concrete mix design to achieve maximum compressive strength. The 

key factors studied included standard sand size, curing time, water-cement ratio, type of cement, 

and stone gravel size. Minitab software was employed for its powerful statistical analysis 

capabilities, enabling efficient execution of fractional factorial design and response surface 

methods to analyse the data. The analysis revealed that the type of cement, water-cement ratio, 

and standard sand size significantly influenced compressive strength. The optimal conditions 

identified were: standard sand size of 20 mm, water-cement ratio of 0.5, BUA cement type, stone 

gravel size of 20 mm, and curing time of 28 days, achieving a predicted compressive strength of 

44.175 MPa. The model demonstrated high reliability with an R-squared value of 99.50%..The 

findings offer valuable insights for enhancing the quality of building materials in the construction 

industry. By applying the optimized parameters, stakeholders can significantly improve structural 

integrity, reduce building failures, and ensure longer-lasting, safer constructions. This can lead to 

more durable infrastructure in Nigeria, addressing critical issues related to building safety and 

material performance. 

Index terms: Optimization, construction materials, fractional factorial design, response surface 

methodology, compressive strength, building safety. 

INTRODUCTION 



 

Experiments in engineering and science typically aim to observe system responses based on a 

series of controlled inputs. The goal is often to characterize outputs, model the system for 

prediction, and optimize its performance while minimizing errors and expediting the process. More 

experiments yield more data, improving system characterization. However, conducting multiple 

experiments can be costly, making efficient experimental design crucial (Montgomery, 2017). 

Factorial design involves experimenting with two or more variables (factors), each having distinct 

values called levels. Factors can be quantitative or qualitative, and their combinations are tested to 

study their effects. When the number of factors increases exponentially, leading to an impractical 

number of experiments, fractional factorial design (FFD) is used to reduce the experimental load 

by analyzing only a fraction of the full factorial combinations. This approach retains the ability to 

study main and interaction effects efficiently (Box and Hunter, 1961; Montgomery, 2012). FFD 

was first introduced by Box and Wilson (1951), providing a cost-effective method for studying 

multiple factors with fewer experiments. 

Several studies have successfully applied FFD across various fields. Shobha et al. (2021) used 

FFD to optimize the electroless nickel coating process, enhancing corrosion resistance. Jonna et al. 

(2023) employed FFD to optimize the formulation of extended-release tablets, while Bhavsar and 

Sharma (2021) applied it in the Quality by Design (QbD) framework to improve fermentation 

conditions for maximizing Ferulic Acid yield. These studies demonstrate FFD’s versatility in 

optimizing processes across industries. 

Complementary to FFD is Response Surface Methodology (RSM), introduced by Box and Draper 

(1959). RSM is a statistical technique used to model and optimize complex processes, identifying 

optimal input conditions to improve responses. In construction, RSM can predict relationships 

between input variables and construction outcomes, optimize resource allocation, and enhance 



 

structural integrity (Ferdosian et al., 2017; Luan et al., 2021). RSM’s strength lies in its ability to 

explore factor interactions and find optimal solutions with minimal experimentation. Hend et al. 

(2021) applied RSM to optimize nanoparticle synthesis, while Ferreira et al. (2019) compared 

various RSM approaches to optimize methods in food analysis. 

The construction industry, a key driver of global economic growth, constantly seeks to improve 

processes and materials to meet rising infrastructure demands. Concrete, a versatile and widely 

used building material, plays a critical role in this industry due to its strength, durability, and 

adaptability (Vishnupriyan and Annadurai, 2023). Enhancing the properties of concrete, especially 

its compressive strength, is essential for improving structural integrity and reducing building 

defects. 

This research aims to optimize the compressive strength of concrete mixtures using FFD to 

identify significant factors and RSM to optimize those factors. By investigating variables such as 

standard sand size, curing time, water-cement ratio, cement type, and gravel size, this study seeks 

to provide a robust framework for improving concrete quality and preventing structural failures. 

2. Statement of the Problem 

The optimization of construction materials to prevent building collapses, reduce cracks, and 

enhance overall structural integrity remains a significant challenge in construction engineering. 

Cracks not only affect the aesthetics of structures but also raise concerns about safety and 

longevity. Achieving the optimal material composition and processing conditions to minimize 

fractures while ensuring structural durability requires a systematic approach. The complex 

interplay between materials, environmental factors, and design specifications calls for a 

comprehensive method to address these challenges effectively.  



 

Research by Uduak et al. (2018) highlighted the issue of building collapses in Nigeria, with poor-

quality and substandard materials identified as critical factors contributing to these disasters. In 

several cases across Lagos, Ibadan, Enugu, and Abuja, substandard materials were the primary 

cause in 186 recorded building collapses, ranking third as a major factor. Improving the quality of 

building materials is essential to ensuring the safety of structures, protecting lives, and 

safeguarding property nationwide.  

A study by Abed et al. (2023) optimized concrete properties using three types of acetate 

admixtures (potassium, calcium, and ethyl acetate) through the response surface methodology 

(RSM). However, this narrow focus left unanswered questions regarding other critical parameters 

affecting structural integrity and crack prevention. To address these limitations, this study expands 

the scope by investigating five key factors (standard sand size, curing time, water-cement ratio, 

cement type, and stone gravel size) using both fractional factorial design and RSM. This broader 

approach provides a more complete analysis, aiming not only to optimize compressive strength but 

also to minimize cracks and prevent building collapses, thus offering a more holistic solution to 

material optimization in construction. 

METHODOLOGY 

3. PROBLEM SOLUTION  
3.1. Experimental 

There are five parameters involved in concrete mix design, which are Standard Sand (SS), Curing 

Time (CT), Water-Cement Ratio (WCR), Type of Cement (TC), and Stone Gravel (SG). Standard 

Sand has two levels, 16mm and 20mm, representing the particle size of the sand used in the mix. 

Curing Time varies between 7 days and 28 days, indicating the time period for which the concrete 

is allowed to harden. Water-Cement Ratio (WCR) includes levels of 0.4 and 0.5, which control the 



 

mix's water content relative to the cement. The Type of Cement includes Dangote (450g) and BUA 

(450g), representing two common brands used. Lastly, Stone Gravel (SG) includes two particle 

sizes, 16mm and 20mm.All the compositions of five parameters will be mixed together as 

tabulated in Table 1. In regression modeling or factorial designs, these factors can be coded into 

levels of -1 and +1, where -1 represents the lower level and +1 represents the higher level. This 

coding simplifies the statistical analysis by normalizing the variables, making it easier to detect the 

main, interaction, and quadratic effects among the factors. 

Table 1: Design parameters and their levels 

Parameters Level 1 Level 2 

standard sand particle size 16mm 20mm 

curing time 7 days  28days  

water cement ratio 0.4mm 0.5mm 

type of cement Dangote (450g)  BUA (450g) 

stone gravel particle size 16mm 20mm 

Source: BUA cement physical laboratory  

The table presents five factors influencing compressive strength in concrete mixtures, with each 

factor having two levels: Standard Sand (SS), Curing Time (CT), Water-Cement Ratio (WCR), 

Type of Cement (TC), and Stone Gravel (SG). Standard Sand has two levels, 16mm and 20mm, 

representing the particle size of the sand used in the mix. Curing Time varies between 7 days and 

28 days, indicating the time period for which the concrete is allowed to harden. Water-Cement 

Ratio (WCR) includes levels of 0.4 and 0.5, which control the mix's water content relative to the 

cement. The Type of Cement includes Dangote (450g) and BUA (450g), representing two common 

brands used. Lastly, Stone Gravel (SG) includes two particle sizes, 16mm and 20mm.  



 

3.2The 2m p design used as a factor screen 

2m p Fractional Factorial design in Design of Experiment (DOE) will be used to screenand find out 

the most significant factors influencing the compressive strength of a concrete mixture. 

The main use of fractional factorial designs is in screening experiments(Montgomery, 2017) 

described screening experiments as tests in which many factors are considered and the objective is 

to identify those factors that have significant effects. 

The Full Factorial Designs or Fractional Factorial Designs are first-degree models and their 

response equations at two levels have an inherent assumption of linearity. 

The response of an experiment could be modelled using an empirical model as 

iy                3.1 

..........
k

i j j ij i j
j i j

x x x  

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Where ݕ is the experimental response, ߤ is the mean population, ߬ is the treatment effect and ߳ is 

the experimental error. The treatment effect will correspond to the response of the factors; it will 

not always have to be linear because it depends on the complexity of the system.  

The figure below shows a multivariate linear regression model (that includes interaction 

terms)based on at two-level factorial design: 

 

 

 

Y is the response variable  

0  Is the mean  

i  Represent the main effect of the factor ix  

ij Represents the interactioneffect between factors ix and jx  

0 1 1 1 1 1
... ... ... ... ..k k k k k
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y x x x x x x x    
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....i jkl Represent higher-order interaction terms involving factors , , , ......i j k lx x x x  

, , , ......i j k lx x x x  Are the levels or settings of the factors. 

,i jx x  Represent the error term. 

3.3 TheResponse surface methodology  

Response Surface Methodology is a collection of mathematical and statistical techniques useful for 

modeling and analyzing problems in which a response of interest is influenced by several variables 

and the objective is to optimize this response and find the optimising parameter combination to 

improve compressive strength of concrete mixture. 

For two independent variables, the first order model is given as  

0 1 1 2 2X X              3.3 

This is called a main effect model, because it represents the main effects of two variables 1X and 

2X  

If there is an interaction, we have  

0 1 1 2 2 12 1 2X X X X              3.4 

A second-order model will likely be required in this situation for the case of two variables, which 
is 

2 2
0 1 1 2 2 11 1 22 2 12 1 2X X X X X X                3.5 

The General first-order model   

0 1 1 2 2 ......... K KX X X              3.6 

The General Quadratic Response Surface Methodology (RSM) Model  

The model encompasses linear, quadratic and interaction terms for a system with k factors. 

2
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Where  

Y is the response variable  



 

0  Is the intercept 

i  Represent the linear coefficient for factor ix  

ii  Represents the quadratic coefficient for factor ix  

i j  Represent the interaction coefficient between factors ix and jx  

,i jx x And jx  are the levels or setting of the factors i and j respectively. 

Table 2: Design layout and experiment result 

Standard sand Curing 
time 

Water-cement 
Ratio 

Type of 
cement 

Stone gravels Compressive 
strength 

16 7 0.4 -1 20 20.8 

20 7 0.4 -1 16 19.7 

16 28 0.4 -1 16 19.5 

20 28 0.4 -1 20 19.8 

16 7 0.5 -1 16 22.9 

20 7 0.5 -1 20 27.4 

16 28 0.5 -1 20 23.7 

20 28 0.5 -1 16 27.8 

16 7 0.4 1 16 40.0 

20 7 0.4 1 20 41.5 

16 28 0.4 1 20 41.3 

20 28 0.4 1 16 42.5 

16 7 0.5 1 20 41.8 

20 7 0.5 1 16 43.0 

16 28 0.5 1 16 42.0 

20 28 0.5 1 20 44.0 

Source: BUA cement physical laboratory    

 



 

 

4. RESULTS AND DISCUSSION  

This section present the result obtained using the method discussed above by fractional factorial 

design and response surface methodology.  

4.1 Analysis of Variance (ANOVA) 

Table 3: Analysis of variance  

Source DF Adj SS Adj MS F-Value P-Value 
Model 14 1582.29 113.02 3690.47 0.013 
Linear 5 1540.91 308.18 10063.09 0.008 

  standard sand 1 11.12 11.12 363.20 0.033 
curing time 1 3.85 3.85 125.73 0.057 

water cement ratio 1 33.52 33.52 1094.54 0.019 
type of cement 1 1491.89 1491.89 48714.80 0.003 

stone gravel 1 0.53 0.53 17.16 0.151 
2-way interactions 9 30.11 3.35 109.24 0.074 

standard sand*curing time 1 0.14 0.14 4.59 0.278 
standard sand*water cement ratio 1 6.13 6.13 200.02 0.045 

standard sand*type of cement 1 0.23 0.23 7.37 0.225 
standard sand*stone gravel 1 0.77 0.77 25.00 0.126 

curing time*water cement ratio 1 0.11 0.11 3.45 0.314 
curing time*type of cement 1 0.77 0.77 25.00 0.126 

curing time*stone gravel 1 4.95 4.95 161.65 0.050 
water cement ratio*type of cement 1 17.02 17.02 555.61 0.027 

water cement ratio*stone gravel 1 0.02 0.02 0.51 0.605 
Error 1 0.03 0.03   
Total 15 1582.32    

      
      

Table 3 revealed that the model has an f-value of 3690.47 with a p-value of 0.013, indicating that 

the model is statistically significant and can explain the variability in compressive strength 

effectively; alsothe ANOVA table presents the statistical analysis of factors influencing 

compressive strength in concrete, highlighting both main effects and two-way interactions. The 

model is highly significant, with a p-value of 0.013, indicating a strong relationship between the 



 

factors and the response (compressive strength). Among the main effects, type of cement has the 

most significant impact (p = 0.003), showing that the choice of cement, such as BUA or Dangote, 

is crucial for achieving higher compressive strength in construction. The water-cement ratio (p = 

0.019) and standard sand size (p = 0.033) are also significant factors, emphasizing the importance 

of proper mix design to optimize strength. Although curing time has a relatively high F-value, it is 

not statistically significant at the 0.05 level (p = 0.057), suggesting it plays a role but is less 

influential compared to the other factors.  

Regarding two-way interactions, standard sand size and water-cement ratio (p = 0.045) and water-

cement ratio and type of cement (p = 0.027) show significant interactions, indicating that the 

combined effect of these factors is critical to achieving optimal compressive strength. For instance, 

choosing the right water-cement ratio in conjunction with the appropriate type of cement can 

significantly enhance concrete performance in construction. However, other interactions, such as 

standard sand size and stone gravel (p = 0.126), do not show statistical significance. Overall, the 

ANOVA results demonstrate that the type of cement, water-cement ratio, and their interaction are 

the most impactful factors in construction practice, and further consideration of these elements can 

help improve material quality and structural durability in real-world applications. 

4.2 Parameter Optimization  

Table 4: Parameter Optimization  

Response Goal  Lower  Target    

Compressive 
strength  

Maximum  19.5 44   

Variable  Range    
Standard sand size  (16,20)    

Water-cement ratio  (0.4,0.5)    
Type of cement  (-1,1)    



 

 

The table 4 above presents an analysis of key parameters impacting the compressive strength of 

concrete, with a focus on optimizing the mix design. The goal was to maximize compressive 

strength, with a target of 44 MPa and a lower limit of 19.5 MPa. Optimization was successfully 

achieved through the adjustment of three critical variables: standard sand size, water-cement ratio, 

and type of cement. The optimal standard sand size was determined to be 20 mm, within the tested 

range of 16 to 20 mm, suggesting that larger sand particles contribute to increased strength. The 

water-cement ratio was optimized at 0.5, the upper limit of its range (0.4 to 0.5), which balanced 

hydration and minimized excess water that could weaken the mix. The type of cement, represented 

as (-1, 1), was optimized at 1, corresponding to the BUA cement type, which had the most positive 

impact on compressive strength. These adjustments led to a predicted compressive strength of 

44.175 MPa, with high reliability (R-squared = 99.50%), confirming that optimization did indeed 

take place and significantly improved the strength and quality of the concrete mix design. The 

predicted values align closely with the confidence intervals, further validating the optimization 

process. 

Table 5Model Summary 

Multiple response 
prediction  

    

Variable  Setting     
Standard sand size  20mm    

Water –cement ratio  0.5mm    
Type of cement  1 (BUA)    

Response 
prediction  

Fit  SE Fit 95%C.I 95% Fit 

Compressive 
strength  

44.175 0.558 (42.933,45.417) (41.796,46.554) 

     



 

Standard 
Error(S) R-squared( 2R ) 

Adjusted R-Squared( 2R
adj) 

Predicted R Squared ( 2R  
Pred) 

0.175 100.00% 99.97% 99.50% 

Table 5 Statistical Summary revealed the standard error of 0.175 indicates the average deviation of 

the observed values from the fitted regression line. This low value suggests that the model fits the 

data well, with minimal error, R-squared (R²): 100.00 this perfect value indicates that 100% of the 

variance in the compressive strength is explained by the model. It suggests that all the factors 

included in the model are well-represented, Adjusted R-squared (R² adj): 99.97%Adjusted R², 

which accounts for the number of predictors in the model, is also very high at 99.97%. This 

confirms that the model's explanatory power is robust even when considering the number of 

predictors and Predicted R-squared (R² pred): 99.50%, the predicted R² value of 99.50% indicates 

that the model has a high predictive accuracy. This suggests that the model is reliable for 

predicting the compressive strength of concrete for new data sets. 
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Figure 1: Normal plot of the standardized effects  

The above graph is a normal plot of the standardized effects this illustrate that Factor D (Type of 

Cement) has the strongest positive effect on compressive strength, indicating that the choice of 

cement type plays a crucial role in determining the strength of the concrete mix. This means that 

selecting the right type of cement, such as Dangote or BUA, can significantly enhance the 

compressive strength of the material. The interaction between CD (Water-Cement Ratio × Type of 

Cement) also shows a significant influence, suggesting that the impact of the water-cement ratio on 

compressive strength is strongly dependent on the type of cement used. In contrast, Factor C 

(Water-Cement Ratio) and interactions like AC (Standard Sand × Water-Cement Ratio) are not 

statistically significant, indicating that their contributions to compressive strength are minimal or 

negligible under the given experimental conditions. This implies that while the water-cement ratio 

and sand size are important parameters, their effects may not be as pronounced unless paired with 

other critical factors such as the type of cement. Therefore, careful consideration should be given 

to the choice of cement and its interaction with other factors to optimize compressive strength. 



 

 

Figure 2: Pareto chart of the standardized effects 

The Pareto Chart visually confirms that Type of Cement (D) and the interaction between Water-

Cement Ratio and Type of Cement (CD) are the most influential factors affecting compressive 

strength. The chart effectively ranks the factors based on their impact, showing that optimizing the 

type of cement and its interaction with the water-cement ratio is crucial for achieving significant 

improvements in compressive strength. Less significant factors, such as Standard Sand (A), Curing 

Time (B), and their interactions, are not statistically significant, meaning their effects on 

compressive strength are minimal. The Pareto chart, an essential tool in quality improvement and 

experimental analysis, provides a clear visual summary of which factors require the most focus. 

Based on the chart, attention should be primarily directed toward selecting the appropriate type of 

cement and managing the water-cement ratio to optimize compressive strength, while other factors 

may be considered but are unlikely to lead to substantial changes. 

 



 

 

Figure 3: contour plot of compressive strength Vs. curing time, standard sand  

The contour plot of "Compressive Strength vs Curing Time, Standard Sand" provides a visual 

representation of how compressive strength varies with different levels of curing time and the 

amount of standard sand used in the concrete mix. The x-axis represents the amount of standard 

sand, ranging from 16mm to 20mm, while the y-axis indicates the curing time, ranging from 7 

days to 28 days. The colour gradient in the plot, from blue to green to dark green, indicates varying 

levels of compressive strength, with blue representing lower strength and dark green representing 

higher strength. 

From the plot, it's clear that compressive strength increases as both curing time and the amount of 

standard sand increase. The contour lines are relatively parallel and slope upwards from left to 

right, signifying a strong and positive correlation between these factors and compressive strength. 

Specifically, at lower sand levels (around 16mm) and shorter curing times (7 days), the 

compressive strength is significantly lower (blue area) but increases markedly (transitioning 

through green shades) as either the curing time or sand amount increases. 

The steep gradient suggests that even a small increase in either curing time or sand content can 

lead to a noticeable improvement in compressive strength, especially when both factors are at 



 

higher levels (28 days and 20mm, respectively), where the maximum compressive strength is 

observed. This implies that for optimizing concrete strength, extending the curing period and using 

a larger amount of standard sand are effective strategies.  

The plot clearly indicates that curing time has a slightly more dominant effect on compressive 

strength than the amount of standard sand, as evidenced by the more pronounced vertical gradient. 

This suggests that while both factors are important, ensuring sufficient curing time may be more 

critical in achieving higher compressive strength in concrete mixes. 

 

 

 

 

Figure 4: contour plot of compressive strength Vs water cement-ratio, standard sand  

The contour plot illustrates the relationship between compressive strength, the water-cement ratio, 

and the quantity of standard sand in the concrete mix. Lower water-cement ratios (closer to 0.4) 

generally correspond to higher compressive strengths, as indicated by the darker green regions, 

while higher ratios lead to lower strengths. The amount of standard sand also positively impacts 

compressive strength, particularly at lower water-cement ratios, with the plot showing a significant 



 

increase in strength as sand content rises from 16 mm to 20 mm. This interaction is more 

pronounced at lower water-cement ratios, suggesting that increasing sand content has a stronger 

effect on compressive strength when less water is used. The plot underscores the importance of 

balancing the water-cement ratio and sand content to optimize compressive strength in concrete, 

making it a valuable tool for guiding concrete mix formulations in construction. By carefully 

selecting these factors, one can achieve the desired compressive strength, highlighting the practical 

implications of this analysis in ensuring the structural integrity of concrete. 

 

 

Figure 5: contour plot of compressive strength VS stone gravel, curing time   

The contour plot illustrates the relationship between compressive strength, stone gravel size, and 

curing time in the concrete mix. The plot shows that longer curing times generally lead to higher 

compressive strengths, as indicated by the darker green regions, especially at curing times closer to 

28 days. The size of the stone gravel also impacts compressive strength, with larger gravel sizes 

(closer to 20 mm) contributing to higher strength levels, particularly when combined with longer 

curing times. The interaction between these two factors is evident, as the effect of curing time on 



 

compressive strength becomes more pronounced with larger gravel sizes. In contrast, at shorter 

curing times and smaller gravel sizes, the compressive strength is significantly lower, as shown by 

the lighter green and blue areas. This suggests that for optimal compressive strength, both larger 

gravel sizes and extended curing times are beneficial. The plot highlights the importance of 

balancing these factors to achieve the desired concrete strength, making it a practical tool for 

guiding decisions in concrete mix design, particularly in ensuring that the curing process and 

gravel size are optimized for structural integrity 

5.1 Summary  

This study focused on optimizing experimental parameters in the building construction process to 

enhance structural integrity, minimize cracks, and reduce the risk of building collapses. Through 

the application of fractional factorial design and response surface methodology (RSM), the study 

aimed to identify the optimal conditions for achieving maximum compressive strength in concrete, 

among the factors tested, the type of cement had the most substantial impact on compressive 

strength, followed by the water-cement ratio, standard sand size, curing time, and stone gravel size 

and Significant interactions were identified, particularly between standard sand and water-cement 

ratio, curing time and type of cement, and water-cement ratio with type of cement also the model 

effectively captures the complex interactions and impacts of various factors on compressive 

strength. The insights from this model can guide targeted improvements in material selection and 

mix design, significantly enhancing the structural integrity and durability of building materials 

lastly The optimal settings for achieving maximum compressive strength were identified as: 

Standard Sand: 20 mm Water-Cement Ratio: 0.5 Type of Cement:BUA Stone Gravel: 20 mm and 

Curing Time: 28 days Under these conditions, the predicted compressive strength was 



 

approximately 44.175 MPa, demonstrating the effectiveness of the optimized parameters in 

enhancing concrete strength. 

5.2 Conclusion 

This study effectively identifies and optimizes the critical factors affecting compressive strength in 

concrete. Its show the Effectiveness of Fractional Factorial Design and RSM in identifying and 

optimizing the key factors affecting concrete compressive strength. The high R-squared values 

(99.50% predicted) and significant F-values confirm the robustness and reliability of the model. 

The critical Factor Type of cement, water-cement ratio, and standard sand size were identified as 

the most influential factors. Specifically, using BUA cement and maintaining a water-cement ratio 

of 0.5 were critical for achieving optimal compressive strength. The findings offer valuable 

insights for enhancing construction materials’ quality, safety, and efficiency, contributing 

significantly to the field of civil engineering. 
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