
 

 

OPTIMIZATION OF EXPERIMENTAL PARAMETERS IN THE BUILDING CONSTRUCTION 
PROCESS WITH FRACTIONAL FACTORIAL DESIGN AND RESPONSE SURFACE 

METHODS 

 
ABSTRACT: The study addresses the critical issue of optimizing construction materials to 
enhance structural integrity, minimize cracks, and prevent building collapses in Nigeria. It 
utilizes fractional factorial design and response surface methodology (RSM), it also aimed to 
systematically determine the optimal parameters for concrete mix design to achieve maximum 
compressive strength. The key factors studied included standard sand size, curing time, water-
cement ratio, type of cement, and stone gravel size. The Minitab software was employed to 
analyse the data, revealing that the type of cement, water-cement ratio, and standard sand size 
significantly influenced compressive strength. the optimal conditions identified were: Standard 
sand size of 20 mm, water-cement ratio of 0.5, Bua cement type, stone gravel size of 20 mm, 
and curing time of 28 days, achieving a predicted compressive strength of 44.175 MPA. the 
model demonstrated high reliability with an r-squared value of 99.50%. The findings provide 
valuable insights for enhancing building materials' quality, ensuring structural safety, and 
reducing the incidence of building failures. This study not only fulfils its aim but also sets a 
foundation for future research in optimizing construction materials and methodologies.  
 
Index terms: Optimization, construction materials, fractional factorial design, response surface 
methodology, compressive strength, building safety. 

 
 
 
INTRODUCTION 

Experiments are typically performed by observing a system or process when a series of inputs 

are given. In general, the objective of an experiment is to recognize or characterize the output of 

a system, model the system to predict the output(s), and possibly optimize the system. It is also 

important to minimize the errors accumulated as part of the experimental process, while trying to 

speed up the entire process. With more experiments performed, we obtain more data, which 

makes it easier to properly characterize the system being studied. However, sometimes it is 

expensive to run the experiment several times, therefore, every run of the experiment should be 

designed effectively (Montgomery, 2017). 

In the factorial design, an experiment is conducted with at least two or more variables, which are 

called factors. Each factor has certain possible values called levels. The factors used in the 

experiments are not limited to quantitative values; they could also be qualitative measurements. 

The factorial design considers the combinations of the levels for the factors investigated. 

If the experiments are expensive or the number of factors increases, which leads to an 

exponential increase in the number of experiments, the number of experiments could be reduced 



 

 

by running a fraction of the full factorial design. This is called fractional factorial design (FFD). 

To perform the fractional factorial design, a design generator is needed, which shows how the 

fractional parts are generated in the fractional factorial design (box and hunter, 1961). 

The fractional factor design was originally developed by box and Wilson (1951), in the early 

1950s, provided an effective and cost-effective framework for simultaneously investigating the 

effect of multiple factors and significantly reduced the number of experiments performed. 

Fractional factorial design is a statistical technique used to study the effects of multiple variables 

on a process while minimizing the number of experiments required. It involves selecting a subset 

of factor combinations (fraction) from the complete factorial design. With this approach, the 

main and interaction effects of the factors can be assessed efficiently (Montgomery, 2012). 

The response surface method (RMS) was introduced by Box and draper (1959) also state that 

RSM are complementary to FFD by facilitating complex process modeling and optimization. In 

building construction, RSM can be used to develop predictive models linking input factors to 

output reactions, identify optimal conditions to minimize construction defects, improve structural 

integrity, and optimize resource to be used. 

The construction industry is a significant contributor to global economic growth and 

development. With the ever-growing demand for infrastructure and sustainable building 

solutions, there is an inherent need for continuous improvement in the construction process. One 

crucial avenue for enhancement lies in the optimization of experimental parameters during the 

building construction process. This research endeavors to explore this essential aspect of 

construction through the application of fractional factorial design (FFD) and response surface 

methodology (RSM) models, with the ultimate aim of achieving efficient resource utilization, 

cost reduction, and improved structural performance (Simon et al, 1999). 

2. Statement of the Problem 

Optimization of construction materials to minimize building collapses and cracks and improve 

overall structural integrity is a key challenge in construction engineering. Cracks are not only 

harmful to aesthetics, but also pose concerns about safety and longevity. To achieve the best 

material composition and processing conditions to reduce fractures while maintaining structural 

strength and durability, a systematic approach is required. The complex interactions 



 

 

amongmaterials, environmental conditions, and design specifications require a comprehensive 

method to effectively address this challenge. In a comprehensive investigation by Uduak et al 

(2018) into the persistent issue of building collapses in Nigeria, it became evident that poor 

quality building materials and the use of substandard materials play a pivotal role in these 

disasters. Numerous instances, including collapses in Lagos, Ibadan, Enugu, Abuja, and other 

regions, were identified as directly attributed to inadequate building materials. Among the 186 

recorded cases of building collapses, poor quality materials ranked as the third major cause, 

underscoring the urgent need to enhance the quality and strength of building materials 

nationwide. Addressing this critical issue is paramount for ensuring the safety of structures in 

Nigeria, preserving lives, and safeguarding property. Abed et al. (2023) conducted a study on 

optimizing concrete mixtures to attain the desired compressive strength with minimal material 

usage. The methodology used is carried out by using appropriate design and analysis of 

experiments in an empirical way based on a two-factorial central composite design followed by 

the response surface methodology. The focus is on factors such as water-cement ratio, aggregate 

size, and curing time. The study focuses on concrete strength optimization; it doesn't directly 

address the imperative goal of minimizing collapsing and cracking in buildings. The gap lies in 

the need to consider a wider array of factors (Type of cement, sand, gravels, water cement ratio 

and curing time) that contribute to collapsing and cracking, beyond just strength enhancement. 

3. PROBLEM SOLUTION (METHODOLOGY) 
3.1. Experimental 

There are five parameters involved in concrete mix design, which are Standard Sand (SS), 

Curing Time (CT), Water-Cement Ratio (WCR), Type of Cement (TC), and Stone Gravel (SG). 

Standard Sand has two levels, 16mm and 20mm, representing the particle size of the sand used in 



 

 

the mix. Curing Time varies between 7 days and 28 days, indicating the time period for which 

the concrete is allowed to harden. Water-Cement Ratio (WCR) includes levels of 0.4 and 0.5, 

which control the mix's water content relative to the cement. The Type of Cement includes 

Dangote (450g) and BUA (450g), representing two common brands used. Lastly, Stone Gravel 

(SG) includes two particle sizes, 16mm and 20mm.All the compositions of five parameters will 

be mixed together as tabulated in Table 1. In regression modeling or factorial designs, these 

factors can be coded into levels of -1 and +1, where -1 represents the lower level and +1 

represents the higher level. This coding simplifies the statistical analysis by normalizing the 

variables, making it easier to detect the main, interaction, and quadratic effects among the 

factors. 

 

 

 

 

 

Table 1: Design parameters and their levels 

Parameters Level 1 Level 2 

STANDARD SAND(SS) 

PARTICLE SIZE 

16mm 20mm 

CURING TIME(CT) 7 days  28days  

WATER CEMENT RATIO(WCR)  0.4mm 0.5mm 



 

 

TYPE OF CEMENT(TC)  Dangote (450g)  BUA (450g) 

STONE GRAVEL(SG) PARTICLE 

SIZE 

16mm 20mm 

Source: BUA cement physical laboratory  

3.2The 2m p design used as a factor screen and response surface methodology  

2m p Fractional Factorial design and Response surface methodology in Design of Experiment 

(DOE) will be used to screen and find the optimising parameter combination to improve 

compressive strength of concrete mixture.  

The main use of fractional factorial designs is in screening experiments(Montgomery,2017) 

described screening experiments as tests in which many factors are considered and the objective 

is to identify those factors that have significant effects. 

The Full Factorial Designs or Fractional Factorial Designs are first-degree models and their 

response equations at two levels have an inherent assumption of linearity. 

The response of an experiment could be modelled using an empirical model as 

iy                3.1 

..........
k

i j j ij i j
j i j

x x x  


     

Where ݕ is the experimental response, ߤ is the mean population, ߬ is the treatment effect and ߳ is 

the experimental error. The treatment effect will correspond to the response of the factors; it will 

not always have to be linear because it depends on the complexity of the system.  

The figure below shows a multivariate linear regression model (that includes interaction 

terms)based on at two-level factorial design: 



 

 

 

 

 

Y is the response variable  

0  Is the mean  

i  Represent the main effect of the factor ix  

ij Represents the interactioneffect between factors ix and jx  

....i jkl Represent higher-order interaction terms involving factors , , , ......i j k lx x x x  

, , , ......i j k lx x x x  Are the levels or settings of the factors. 

,i jx x  Represent the error term. 

Response surface methodology is a collection of mathematical and statistical techniques useful 

for modeling and analyzing problems in which a response of interest is influenced by several 

variables and the objective is to optimize this response. 

For two independent variables, the first order model is given as  

0 1 1 2 2X X              3.3 

This is called a main effect model, because it represents the main effects of two variables 1X and 

2X  

If there is an interaction, we have  

0 1 1 2 2 12 1 2X X X X              3.4 

A second-order model will likely be required in this situation for the case of two variables, which 
is 

2 2
0 1 1 2 2 11 1 22 2 12 1 2X X X X X X                3.5 

The General first-order model   

0 1 1 2 2 ......... K KX X X              3.6 

The General Quadratic Response Surface Methodology (RSM) Model  
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The model encompasses linear, quadratic and interaction terms for a system with k factors. 

2
0 1 1

k k k k
i i ii i ij i ji i i j i

Y x x x x    
  

            3.7
 

Where  

Y is the response variable  

0  Is the intercept 

i  Represent the linear coefficient for factor ix  

ii  Represents the quadratic coefficient for factor ix  

i j  Represent the interaction coefficient between factors ix and jx  

,i jx x And jx  are the levels or setting of the factors i and j respectively. 

 

 

 

 

 

 

 

 

Table 2: Design layout and experiment result 

Standard sand Curing time Water-cement 
Ratio 

Type of 
cement 

Stone gravels Compressive 
strength 

      
      

16 7 0.4 -1 20 20.8 

20 7 0.4 -1 16 19.7 

16 28 0.4 -1 16 40.0 

20 28 0.4 -1 20 41.5 



 

 

16 7 0.5 -1 16 19.5 

20 7 0.5 -1 20 19.8 

16 28 0.5 -1 20 41.3 

20 28 0.5 -1 16 42.5 

16 7 0.4 1 16 22.9 

20 7 0.4 1 20 27.4 

16 28 0.4 1 20 41.8 

20 28 0.4 1 16 43.0 

16 7 0.5 1 20 23.7 

20 7 0.5 1 16 27.8 

16 28 0.5 1 16 42.0 

20 28 0.5 1 20 44.0 

Source: BUA cement physical laboratory   

 

 

 

 

 

4. RESULTS AND DISCUSSION 

This section present the result obtained using the method discussed above by using 
fractional factorial design and response surface methodology.  

4.1 Analysis of Variance (ANOVA) 

Table 3: Analysis of variance  

Source DF Adj SS Adj MS F-Value P-Value 
Model 14 1582.29 113.02 3690.47 0.013 



 

 

Linear 5 1540.91 308.18 10063.09 0.008 
STANDARD SAND 1 11.12 11.12 363.20 0.033 

CURING TIME 1 3.85 3.85 125.73 0.057 
WATER CEMENT RATIO 1 33.52 33.52 1094.54 0.019 

TYPE OF CEMENT 1 1491.89 1491.89 48714.80 0.003 
STONE GRAVEL 1 0.53 0.53 17.16 0.151 
2-Way Interactions 9 30.11 3.35 109.24 0.074 

STANDARD SAND*CURING TIME 1 0.14 0.14 4.59 0.278 
STANDARD SAND*WATER 

CEMENT RATIO 
1 6.13 6.13 200.02 0.045 

STANDARD SAND*TYPE OF 
CEMENT 

1 0.23 0.23 7.37 0.225 

STANDARD SAND*STONE 
GRAVEL 

1 0.77 0.77 25.00 0.126 

CURING TIME*WATER CEMENT 
RATIO 

1 0.11 0.11 3.45 0.314 

CURING TIME*TYPE OF CEMENT 1 0.77 0.77 25.00 0.126 
CURING TIME*STONE GRAVEL 1 4.95 4.95 161.65 0.050 

WATER CEMENT RATIO*TYPE OF 
CEMENT 

1 17.02 17.02 555.61 0.027 

WATER CEMENT RATIO*STONE 
GRAVEL 

1 0.02 0.02 0.51 0.605 

Error 1 0.03 0.03   
Total 15 1582.32    

      

Table 3 revealed that the model has an f-value of 3690.47 with a p-value of 0.013, indicating that 
the model is statistically significant and can explain the variability in compressive strength 
effectively, type of cement (p = 0.003) and water cement ratio (p = 0.019) are highly significant. 
Standard sand * water cement ratio (p = 0.045) is significant, indicating an interactive effect on 
compressive strength, curing time * stone gravel (p = 0.050) and water cement ratio * type of 
cement (p = 0.027) also show significant interactions, emphasizing their combined impact on 
strength. 

4.2 Optimal Factor Settings 

Parameters 

Response Goal Lower Target Upper Weight Importance 
COMPRESSIVE 
STRENGHT 

Maximum 19.5 44   1 1 

 

Variable Ranges 

 
Variable Values 



 

 

STANDARD SAND (16, 
20) 

WATER CEMENT 
RATIO 

(0.4, 
0.5) 

TYPE OF CEMENT (-1, 1) 
Multiple Response Prediction 

Variable Setting 
STANDARD SAND 20 
WATER CEMENT 
RATIO 

0.5 

TYPE OF CEMENT 1 

Response Fit 
SE 
Fit 95% CI 95% PI 

COMPRESSIVE 
STRENGHT 

44.175 0.558 (42.933, 
45.417) 

(41.796, 
46.554) 

Optimal Compressive Strength: The highest predicted compressive strength is 44.175 MPa at 
20 mm standard sand, 0.5 water cement ratio, and BUA cement and Desirability Scores: 
Solutions 1, 2, and 3 achieve a desirability of 1.00000, indicating that all target criteria are met 
perfectly. Solutions 4 to 7 also show high desirability, making them practical for implementation. 

Table 4 Model Summary 

Standard 
Error(S) R-squared( 2R ) 

Adjusted R-Squared( 2R
adj) 

Predicted R Squared ( 2R  
Pred) 

0.175 100.00% 99.97% 99.50% 

Table 4 Statistical Summary revealed the standard error of 0.175 indicates the average deviation 
of the observed values from the fitted regression line. This low value suggests that the model fits 
the data well, with minimal error, R-squared (R²): 100.00 this perfect value indicates that 100% 
of the variance in the compressive strength is explained by the model. It suggests that all the 
factors included in the model are well-represented, Adjusted R-squared (R² adj): 
99.97%Adjusted R², which accounts for the number of predictors in the model, is also very high 
at 99.97%. This confirms that the model's explanatory power is robust even when considering 
the number of predictors and Predicted R-squared (R² pred): 99.50%, the predicted R² value of 
99.50% indicates that the model has a high predictive accuracy. This suggests that the model is 
reliable for predicting the compressive strength of concrete for new data sets. 
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Figure 1: Normal plot of the standardized effects  

The above graph is a normal plot of the standardized effects this illustrate that Factor D (Type of 

Cement) has the strongest positive effect on compressive strength, indicating that the choice of 

cement type plays a crucial role in determining the strength of the concrete mix. This means that 

selecting the right type of cement, such as Dangote or BUA, can significantly enhance the 

compressive strength of the material. The interaction between CD (Water-Cement Ratio × Type 

of Cement) also shows a significant influence, suggesting that the impact of the water-cement 

ratio on compressive strength is strongly dependent on the type of cement used. In contrast, 

Factor C (Water-Cement Ratio) and interactions like AC (Standard Sand × Water-Cement Ratio) 

are not statistically significant, indicating that their contributions to compressive strength are 

minimal or negligible under the given experimental conditions. This implies that while the water-

cement ratio and sand size are important parameters, their effects may not be as pronounced 

unless paired with other critical factors such as the type of cement. Therefore, careful 



 

 

consideration should be given to the choice of cement and its interaction with other factors to 

optimize compressive strength. 

 

Figure 2: Pareto chart of the standardized effects 

The Pareto Chart visually confirms that Type of Cement (D) and the interaction between Water-

Cement Ratio and Type of Cement (CD) are the most influential factors affecting compressive 

strength. The chart effectively ranks the factors based on their impact, showing that optimizing 

the type of cement and its interaction with the water-cement ratio is crucial for achieving 

significant improvements in compressive strength. Less significant factors, such as Standard 

Sand (A), Curing Time (B), and their interactions, are not statistically significant, meaning their 

effects on compressive strength are minimal. The Pareto chart, an essential tool in quality 

improvement and experimental analysis, provides a clear visual summary of which factors 

require the most focus. Based on the chart, attention should be primarily directed toward 

selecting the appropriate type of cement and managing the water-cement ratio to optimize 

compressive strength, while other factors may be considered but are unlikely to lead to 

substantial changes. 

 



 

 

 

Figure 3: contour plot of compressive strength Vs. curing time, standard sand  

The contour plot of "Compressive Strength vs Curing Time, Standard Sand" provides a visual 
representation of how compressive strength varies with different levels of curing time and the 
amount of standard sand used in the concrete mix. The x-axis represents the amount of standard 
sand, ranging from 16mm to 20mm, while the y-axis indicates the curing time, ranging from 7 
days to 28 days. The colour gradient in the plot, from blue to green to dark green, indicates 
varying levels of compressive strength, with blue representing lower strength and dark green 
representing higher strength. 

From the plot, it's clear that compressive strength increases as both curing time and the amount 
of standard sand increase. The contour lines are relatively parallel and slope upwards from left to 
right, signifying a strong and positive correlation between these factors and compressive 
strength. Specifically, at lower sand levels (around 16mm) and shorter curing times (7 days), the 
compressive strength is significantly lower (blue area) but increases markedly (transitioning 
through green shades) as either the curing time or sand amount increases. 

The steep gradient suggests that even a small increase in either curing time or sand content can 
lead to a noticeable improvement in compressive strength, especially when both factors are at 
higher levels (28 days and 20mm, respectively), where the maximum compressive strength is 
observed. This implies that for optimizing concrete strength, extending the curing period and 
using a larger amount of standard sand are effective strategies.  

The plot clearly indicates that curing time has a slightly more dominant effect on compressive 
strength than the amount of standard sand, as evidenced by the more pronounced vertical 
gradient. This suggests that while both factors are important, ensuring sufficient curing time may 
be more critical in achieving higher compressive strength in concrete mixes. 

 



 

 

 

Figure 4: contour plot of compressive strength Vs water cement-ratio, standard sand  

The contour plot illustrates the relationship between compressive strength, the water-cement 

ratio, and the quantity of standard sand in the concrete mix. Lower water-cement ratios (closer to 

0.4) generally correspond to higher compressive strengths, as indicated by the darker green 

regions, while higher ratios lead to lower strengths. The amount of standard sand also positively 

impacts compressive strength, particularly at lower water-cement ratios, with the plot showing a 

significant increase in strength as sand content rises from 16 mm to 20 mm. This interaction is 

more pronounced at lower water-cement ratios, suggesting that increasing sand content has a 

stronger effect on compressive strength when less water is used. The plot underscores the 

importance of balancing the water-cement ratio and sand content to optimize compressive 

strength in concrete, making it a valuable tool for guiding concrete mix formulations in 

construction. By carefully selecting these factors, one can achieve the desired compressive 

strength, highlighting the practical implications of this analysis in ensuring the structural 

integrity of concrete. 



 

 

 

Figure 5: contour plot of compressive strength VS stone gravel, curing time   

The contour plot illustrates the relationship between compressive strength, stone gravel size, and 

curing time in the concrete mix. The plot shows that longer curing times generally lead to higher 

compressive strengths, as indicated by the darker green regions, especially at curing times closer 

to 28 days. The size of the stone gravel also impacts compressive strength, with larger gravel 

sizes (closer to 20 mm) contributing to higher strength levels, particularly when combined with 

longer curing times. The interaction between these two factors is evident, as the effect of curing 

time on compressive strength becomes more pronounced with larger gravel sizes. In contrast, at 

shorter curing times and smaller gravel sizes, the compressive strength is significantly lower, as 

shown by the lighter green and blue areas. This suggests that for optimal compressive strength, 

both larger gravel sizes and extended curing times are beneficial. The plot highlights the 

importance of balancing these factors to achieve the desired concrete strength, making it a 

practical tool for guiding decisions in concrete mix design, particularly in ensuring that the 

curing process and gravel size are optimized for structural integrity 

5.1 Summary  

This study focused on optimizing experimental parameters in the building construction process 
to enhance structural integrity, minimize cracks, and reduce the risk of building collapses. 
Through the application of fractional factorial design and response surface methodology (RSM), 
the study aimed to identify the optimal conditions for achieving maximum compressive strength 
in concrete, among the factors tested, the type of cement had the most substantial impact on 
compressive strength, followed by the water-cement ratio, standard sand size, curing time, and 
stone gravel size and Significant interactions were identified, particularly between standard sand 
and water-cement ratio, curing time and type of cement, and water-cement ratio with type of 
cement also the model effectively captures the complex interactions and impacts of various 
factors on compressive strength. The insights from this model can guide targeted improvements 



 

 

in material selection and mix design, significantly enhancing the structural integrity and 
durability of building materials lastly The optimal settings for achieving maximum compressive 
strength were identified as: Standard Sand: 20 mm Water-Cement Ratio: 0.5 Type of 
Cement:BUA Stone Gravel: 20 mm and Curing Time: 28 days Under these conditions, the 
predicted compressive strength was approximately 44.175 MPa, demonstrating the effectiveness 
of the optimized parameters in enhancing concrete strength. 

5.2 Conclusion 

This study effectively identifies and optimizes the critical factors affecting compressive strength 
in concrete. its show the Effectiveness of Fractional Factorial Design and RSM in identifying 
and optimizing the key factors affecting concrete compressive strength. The high R-squared 
values (99.50% predicted) and significant F-values confirm the robustness and reliability of the 
model. The critical Factor Type of cement, water-cement ratio, and standard sand size were 
identified as the most influential factors. Specifically, using BUA cement and maintaining a 
water-cement ratio of 0.5 were critical for achieving optimal compressive strength. The findings 
offer valuable insights for enhancing construction materials’ quality, safety, and efficiency, 
contributing significantly to the field of civil engineering. 
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