
On top local homology modules

Abstract

Let R be a local ring, and let A be a non-zero Artinian R-module,
with Noetherian dimension equal to s. In this paper, we determine
the associated primes of the top local homology module of A, with
respect to unique maximal ideal of the ring R.

1 Introduction

Throughout this paper assume that (R,m) is a commutative Noetherian local
ring, with non-zero identity, a is an ideal of R and A is an R-module.

In [3], Cuong and Nam defined the local homology modules Ha
i (A), with

respect to a by
Ha

i (A) = lim←−
n∈N

TorRi (R/an, A).

This definition is dual to Grothendieck’s definition of local cohomology
modules. For more details about local cohomology modules, see [2].

For basic results about local homology we refer the reader to [3], and, [8].
In this paper, we study the top local homology module Hm

s (A), where A
is a non-zero Artinian R-module of Noetherian dimension s. The module
Hm

max {i : Hm
i (A) ̸= 0} ≤ s,

1

s (A) is called a top local homology module with respect to maximal ideal
m, because
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by [3, Proposition 4.8].
We use properties of commutative algebra and homological algebra for

the development of the results (see [1] and [11]).

2 Prerequisites

Definition 2.1. A non-zero R-module A is called secondary if the multi-
plication map by any element a of R is either surjective or nilpotent. A
secondary representation of the R-module A is an expression for A as a finite
sum of secondary modules. If such a representation exists, we will say that
A is representable.

Definition 2.2. A prime ideal p of R is said to be an attached prime of A if
p = (N :R A), for some submodule N of A. If A admits a reduced secondary
representation

A = S1 + S2 + . . .+ Sn,

then the set of attached primes AttR(A) is equal to{√
(0 :R Si), for i = 1, . . . , n

}
.

It is well known that if N is a submodule of Artinian R-module A, then

AttR(A/N) ⊆ AttR(A) ⊆ AttR(N) ∪ AttR(A/N) (see [7, Section 6]).

We now recall the concept of Noetherian dimension NdimR(A) of an R-
module A.

For A = 0, we define NdimR(A) = −1. Then by induction, for any
integer t ≥ 0, we define NdimR(A) = t when

(1) NdimR(A) < t is false, and

(2) for every ascending chain A1 ⊆ A2 ⊆ . . ., of submodules of A there
exists an integer m0 such that

NdimR(Am+1/Am) < t,

for all m ≥ m0.
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Thus, A is non-zero and finitely generated if and only if N dimR(A) = 0.
If A is Artinian R-module, then NdimR(A) <∞, according to [6].
In [4], for any R-module A, we define the cohomological dimension of A

with respect to a as

cd(a, A) = max
{
i : Hi

a(A) ̸= 0
}
.

By [2, Theorem 6.1.2] and by [2, Theorem 6.1.4],

cd(a, A) ≤ dimR(A),

and,
cd(m, A) = dimR(A).

We will call,
hd(a, A) := max {i : Ha

i (A) ̸= 0}
the homological dimension of A with respect to a. It follows from [3, Propo-
sitions 4.8 and 4.10] that if A is an Artinian R-module, then,

hd(a, A) ≤ NdimR(A),

and,
hd(m, A) = NdimR(A).

Throughout the paper, for an R-module A, E(R/m) denotes the injective
envelope of R/m and D(•) denotes the Matlis duality functor

HomR(•,E(R/m)).

It is well known that:

dimR(D(A)) = dimR(A).

Also, if A is an Artinian R-module, where R is complete ring, then

A ∼= D(D(A)),

and D(A) is a Noetherian R̂-module (see [2, Theorem 10.2.19], and, [10,
Theorem 1.6(5)]).

Note that if A is an Artinian R-module, then

Ha
i (A)

∼= D(Hi
a(D(A))),

for all i ≥ 0, according to [3, Proposition 3.3(ii)].
Therefore,

hd(a, A) = cd(a,D(A)).

Thus,
hd(a, A) ≤ dimR(D(A)) = dimR(A).
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3 The results

Lemma 3.1. Let (R,m) be a local ring, and let

0→ L→ A→ N → 0,

be an exact sequence of Artinian R-modules. Then,

hd(a, A) = max {hd(a, L), hd(a, N)} .

Proof. Since D(A) is Noetherian R̂-module, by [4, Corollary 2.3(i)], we have
that

cd(aR̂,D(N)) ≤ cd(aR̂,D(A)).

Hence by the Independence Theorem, [2, Theorem 4.2.1], it follows that

cd(a,D(N)) ≤ cd(a,D(A)).

Therefore, hd(a, N) ≤ hd(a, A). From the long exact sequence

Ha
i+1(L)→ Ha

i+1(A)→ Ha
i+1(N)→ Ha

i (L)→ Ha
i (A)→ . . . ,

we deduce that hd(a, L) ≤ hd(a, A).
Hence,

max {hd(a, L), hd(a, N)} ≤ hd(a, A).

From the above long exact sequence we also infer that

hd(a, A) ≤ max {hd(a, L), hd(a, N)} .

Thus, the proof is complete.

Lemma 3.2. Let (R,m) be a complete local ring, and let A be a non-zero
Artinian R-module. Then,

cd(a, R/p) ≤ hd(a, A),

for all p ∈ AttR(A).

Proof. Since D(A) is a Noetherian R-module and

SuppR(R/p) ⊆ SuppR(D(A)),
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for all p ∈ AssR(D(A)), by [4, Theorem 2.2] we infer that

cd(a, R/p) ≤ cd(a,D(A)),

for all p ∈ AssR(D(A)).
Since AttR(A) = AssR(D(A)) and cd(a,D(A)) = hd(a, A), we obtain

cd(a, R/p) ≤ hd(a, A),

for all p ∈ AttR(A).

Lemma 3.3. Let (R,m) be a local ring, and let A be an Artinian R-module.
Then,

hd(a, A) ≤ cd(a, R/AnnR(A)).

Proof. Let R
′
= R/AnnR(A). By [12, Theorem 3.3], we have

Ha
i (A)

∼= HaR
′

i (A),

for all i ≥ 0.
Thus, we have that hd(a, A) = hd(aR

′
, A). Since,

hd(aR
′
, A) ≤ cd(aR

′
, R

′
),

according to [5, Corollary 3.2], and

cd(aR
′
, R

′
) = cd(a, R

′
),

according to [4, Lemma 2.1], we conclude that

hd(a, A) ≤ cd(a, R
′
),

and this finishes the proof.

Lemma 3.4. Let (R,m) be a complete local ring, and let A be a non-zero Ar-
tinian R-module of finite Noetherian dimension s, with hd(a, A) = s. Thus,∑

=
{
N

′
: N

′
is a submodule of A and hd(a, A/N

′
) < s

}
,

has a smallest element N . The R-module N has the following properties:

(1) hd(a, N) = dim(N) = s.
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(2) N has no proper submodule L such that hd(a, N/L) < s.

(3) AttR(N) = {p ∈ AttR(A) : cd(a, R/p) = s}.

(4) Ha
s(N) ∼= Ha

s(A).

Proof. It is clear that A ∈
∑

, and thus
∑

is not empty. Since A is an
Artinian R-module, the set

∑
has a minimal member N . By Lemma 3.1, if

N1, N2 ∈
∑

, then hd(a, A/(N1∩N2)) < n. Since the intersection of any two
members of

∑
is again in

∑
, it follows that N is contained in every member

of
∑

implying that N is the smallest element of
∑

.

(1) Since hd(a, A/N) < s, from the exact sequence

0→ N → A→ A/N → 0,

and of the Lemma 3.1, we obtain that hd(a, N) = s. From,

s = hd(a, N) ≤ dim(N) ≤ dim(A) = s,

we derive dim(N) = s.

(2) Suppose that L is a submodule of N such that hd(a, N/L) < s. From
the exact sequence

0→ N/L→ A/L→ A/N → 0,

and of the Lemma 3.1, we infer hd(a, A/L) < s. Hence, L ∈
∑

, and
then L = N .

(3) If p ∈ AttR(N), then p = AnnR(N/L), where L is a submodule of N .
By item (2), we have that hd(a, N/L) = s. Hence,

s = hd(a, N/L) ≤ dimR(R/p) ≤ dimR(A) = s.

Thus,
dimR(R/p) = dimR(A).

Since dimR(A) = dimR(R/AnnR(A)), we conclude that p is a minimal
element of the set V (AnnR(A)). Thus, p ∈ AttR(A).

On the other hand, using Lemma 3.3, we derive

s = hd(a, N/L) ≤ cd(a, R/p) ≤ dimR(R/p) ≤ dimR(A) = s.
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Therefore, we have that cd(a, R/p) = s.

Now, suppose that
p ∈ AttR(A)

and
cd(a, R/p) = s.

Since, hd(a, A/N) < s, and, also cd(a, R/p) = s, Lemma 3.2, implies
that p /∈ AttR(A/N).

Therefore, we have that p ∈ AttR(N).

(4) The exact sequence

0→ N → A→ A/N → 0,

induces the exact sequence

. . .→ Ha
s+1(A/N)→ Ha

s(N)→ Ha
s(A)→ Ha

s(A/N)→ . . . .

Since, hd(a, A/N) < s, it follows that we have

Ha
s+1(A/N) = Ha

s(A/N) = 0.

Therefore, Ha
s(N) ∼= Ha

s(A).

4 Applications

Theorem 4.1. Let (R,m) be a complete local ring, and let A be a non-zero
Artinian R-module of Noetherian dimension s. Then,

AssR(H
m
s (A)) = {p ∈ AttR(A) : cd(m, R/p) = s} .

Proof. If s = 0, then A has a finite length and therefore mkA = 0, for some
k ∈ N. Hence,

AssR(H
m
s (A)) = AssR(A) = {m} = AttR(A) =
{p ∈ AttR(A) : cd(m, R/p) = 0}.
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Thus, s > 0. If Hm
s (A) = 0, then hd(m, A) < s. By Lemma 3.2,

cd(m, R/p) < s for all p ∈ AttR(A).

This implies that,

{p ∈ AttR(A) : cd(m, R/p) = s} = ∅ = AssR(H
m
s (A)),

and the result has been proved in this case. Now assume that s > 0, and
Hm

s (A) ̸= 0. Then,
hd(m, A) = dimR(A) = s.

By Lemma 3.4, A has no proper submodule L with hd(m, A/L) < s, and
we must show that AssR(H

m
s (A)) = AttR(A). If

r /∈
⋃

p∈AttR(A)

p,

then the exact sequence

0→ (0 :A r)→ A
r→ A→ 0,

induces the exact sequence

Hm
s ((0 :A r))→ Hm

s (A)
r→ Hm

s (A).

Using [8, Lemma 4.7],

N dimR((0 :A r)) ≤ s− 1,

and therefore Hm
s ((0 :A r)) = 0. Since

0→ Hm
s (A)

r→ Hm
s (A)

is exact, we infer that

r /∈
⋃

p∈AssR(Hm
s (A))

p,

and ⋃
p∈AssR(Hm

s (A))

p ⊆
⋃

p∈AttR(A)

p.
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Since AttR(A) is a finite set, every

p ∈ AssR(H
m
s (A))

is included in some
q ∈ AttR(A).

For such q there exists a submodule L of A satisfying q = AnnR(A/L).
Hence,

s = hd(m, A/L) ≤ dimR(A/L) ≤ dimR(R/q) ≤ dimR(R/p) ≤ s.

This shows p = q, and, also,

AssR(H
m
s (A)) ⊆ AttR(A).

To prove the reverse inclusion, assume that p ∈ AttR(A). There exists
a submodule L of A such that AttR(L) = p. Since we have assumed that
A has no proper submodule U with hd(m, A/U) < s, Lemma 3.4 implies
that cd(m, R/p) = s. By Lemma 3.2, hd(m, L) = s, and, Hm

s (L) ̸= 0. Since
cd(m, R/p) = s, and,

AttR(L/U) ⊆ AttR(L) = {p} ,

for all submodules U , Lemma 3.2 shows that L cannot have any proper
submodule U such that hd(m, L/U) < s. Analogously,

AssR(H
m
s (L)) ⊆ AttR(L) = {p} .

Since Hm
s (L) ̸= 0, we establish that AssR(H

m
s (L)) = {p}. However, from

the exact sequence

0→ Hm
s (L)→ Hm

s (A)→ Hm
s (A/L),

we see that
{p} = AssR(H

m
s (L)) ⊆ AssR(H

m
s (A)).

Therefore,
p ∈ AssR(H

m
s (A)),

that completes the proof.
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Theorem 4.2. Let (R,m) be a complete local ring, and let A be a non-zero
Artinian R-module with NdimR(A) = s. Then,

AssR(H
m
s (A)) =

{
B ∩R : B ∈ AttR̂(A) and cd(mR̂, R̂/B) = s

}
.

Proof. Since dimR̂(D(A)) = dimR̂(A) = NdimR(A) = s, (for details consult
[9]), by [2, Theorem 7.1.6],

Hs
mR̂

(D(A)),

is an Artinian local cohomology module and

D(Hs
mR̂

(D(A))) ∼= HmR̂
s (A),

is a Noetherian R̂-module. It is well known that

AssR(L) = {B ∩R : B ∈ AssR̂(L)} ,

for each finitely generated R̂-module L (see [7, Exercise 6.7]. Thus,

AssR(H
mR̂
s (A)) =

{
B ∩R : B ∈ AssR̂(H

mR̂
s (A))

}
.

Since by [13, Proposition 4.3],

Hm
s (A)

∼= HmR̂
s (A),

as R-modules, we conclude that

AssR(H
m
s (A)) =

{
B ∩R : B ∈ AssR̂(H

mR̂
s (A))

}
.

According to Theorem 4.1,

AssR̂(H
mR̂
s (A)) =

{
B : B ∈ AttR̂(A) and cd(mR̂, R̂/B) = s

}
.

Therefore,

AssR(H
m
s (A)) =

{
B ∩R : B ∈ AttR̂(A) and cd(mR̂, R̂/B) = s

}
.

This finishes the proof.
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