

CI/CD and Automation in DevOps Engineering

Abstract The article discusses the key principles and best practices of

implementing continuous integration and continuous deployment (CI/CD) in the

context of DevOps engineering. Special attention is paid to the design of CI/CD

pipelines, their optimization and automation of software development processes,

including automated testing, version control and deployment processes. The use of

CI/CD helps to improve the quality of software and accelerate its delivery, which is

an important factor in highly competitive market conditions. The article analyzes

various tools and technologies used to implement CI/CD, and discusses security

measures aimed at protecting code and infrastructure at all stages of development.

Thus, the work highlights the importance of integrating CI/CD into DevOps

processes to improve the efficiency and reliability of software solutions.

Keywords: CI/CD, DevOps engineering, automation, continuous integration,

continuous deployment, automated testing, version control, software security, CI/CD

tools, CI/CD pipelines.

Introduction

In today's world of information technology, the speed of software development

and deployment plays a crucial role in the competitiveness of companies. With the

increasing complexity of software and growing user expectations, traditional

development methods are becoming less effective, leading to delays in the release of

new features and a decline in the overall quality of the final product. As a result,

DevOps practices, which focus on integrating development and operations processes,

are gaining significant importance. A key component of DevOps engineering is the

implementation of CI/CD (Continuous Integration/Continuous Delivery) practices,

which ensure continuous integration and delivery of software [13-15].

The relevance of this topic is driven by the need to accelerate and automate

development processes, which requires efficient management of code changes,

automated testing, and reliable deployment [16,17]. The application of CI/CD allows

developers to quickly adapt to changing market demands and improve the quality of

software products by identifying errors at early stages of development [18-20].

The aim of this work is to study the principles and best practices of CI/CD in

the context of DevOps engineering, analyze existing tools and technologies for

implementing these practices, and discuss security issues in the automation of

software development and deployment processes.

1. Principles and Best Practices of CI/CD in DevOps Engineering

CI/CD (Continuous Integration/Continuous Deployment) is a concept that

unites continuous integration and continuous delivery. While these two components

are closely related, each has its own distinct features and goals. Below, we will

explore these concepts in detail.

Continuous Integration (CI) is a software development practice where team

members regularly integrate their work into the shared codebase, often several times

a day. Each time a developer adds changes, an automated build and testing process is

triggered. This process ensures that new changes do not conflict with the existing

code, thereby preventing integration errors.

CI allows teams to identify and resolve potential issues promptly, maintaining

the relevance of the code throughout the development process. Without CI, code

developed by different team members can become highly unsynchronized, ultimately

affecting quality and performance. This occurs because, without regular checks and

tests, developers might work on code for extended periods before merging it with the

main branch. If conflicts arise during merging, significant time may be required to

resolve these issues, potentially slowing down the entire development process [1].

Despite the potential inconveniences associated with fixing integration errors,

the regular use of CI provides significant benefits. Teams can quickly address

emerging issues, automate testing, and minimize the risks of major integration

failures.

Continuous Delivery (CD) is the logical extension of the CI process. After

passing tests within CI, the code is deployed in a staging environment. At this stage,

additional automated tests, including integration checks, are conducted. If all tests

pass, the code is considered ready for production deployment, but it is usually

released to the production environment only after manual testing and approval. CD

helps accelerate the deployment process and reduce errors through automated checks.

In addition to continuous delivery, there is another approach called Continuous

Deployment, which goes beyond CD. In this case, if all tests pass successfully, the

code is automatically deployed to the production environment.

The primary advantage of continuous deployment is that users receive the

latest code updates that have passed all necessary tests and checks.

The value of CI/CD lies in automating the entire development cycle, from

writing code to its final deployment. This approach allows developers to implement

new features and updates more quickly, enabling the product to respond more rapidly

to user demands. Moreover, thanks to the automated testing and integration process,

defects and errors are identified early, reducing downtime and improving the

reliability and quality of the final product.

CI/CD also enhances collaboration between development teams and other

stakeholders, enabling rapid feedback and allowing the product to be adapted to real

user needs. Thus, this methodology becomes an essential tool for those striving for

high development speed and flawless software quality [2].

The CI/CD process includes several key components that ensure the efficiency

of the entire development cycle. These elements cover all stages, from development

to deployment of the software product. Incorporating these elements into the DevOps

workflow can significantly improve the performance and quality of software

delivery. For clarity, the main aspects of CI/CD processes are presented in Table 1.

Table 1. Main Aspects of CI/CD Processes [3].

Aspects of
CI/CD Processes Description of Key Features

Unified Code
Repository

This repository should contain all the resources necessary for building the
project, including source code, libraries, database structures, configuration
files, and version control. It should also include scripts for testing and building
to simplify the automation process.

Regular Merges
with the Main
Branch

Code should be regularly integrated into the main branch of the project. This
minimizes the risk of conflicts during code merging and simplifies the process
of tracking changes. The more frequently integration occurs, the more stable
and predictable the development becomes.

Build Automation

To successfully implement CI/CD, scripts that automate the application build
process, including all stages of code compilation and packaging, are necessary.
This accelerates the process and reduces the likelihood of errors due to human
factors.

Automated Testing

Automated testing is an integral part of CI/CD, allowing for error detection
during the build stage. The use of static and dynamic tests before compilation
ensures high quality and security of the final product.

Frequent Iterations
and Updates

Regular, small code updates help to quickly identify and fix errors, and also
prevent the accumulation of technical debt. This also facilitates rollback
processes in case of unforeseen issues.

Stable Testing
Environments

For proper testing of new code versions, an environment that closely resembles
the production environment is required. This allows potential problems to be
identified and resolved before they reach actual production.

Transparency and
Accessibility

All development team members should have access to up-to-date information
about the project and changes in the repository. This enhances team
collaboration and enables a prompt response to any emerging issues.

Planned and
Secure
Deployments

Deployment procedures should be as automated and secure as possible,
allowing them to be carried out at any time with minimal risks. Regular updates
with small changes reduce the likelihood of problems and simplify the rollback
process.

Integration of CI/CD with other DevOps practices, such as early-stage security

and rapid feedback, helps create more scalable and secure applications, which is

particularly important given the growing complexity of modern software solutions

[3]. For successful CI/CD implementation, it is crucial to consider key principles that

ensure the efficiency and stability of the process.

When transitioning to automated CI/CD, many organizations move away from

slow manual methods towards faster and more efficient solutions. This often results

in a significant increase in release frequency, which previously might have occurred

only a few times a year but now takes place weekly or even daily. It is important to

base the creation of the first CI/CD pipeline on the real needs of your business.

Implement the necessary set of tools and resources to minimize the risk of project

overload.

Next, the foundation of the CI/CD pipeline should be built from basic elements

that will serve as the groundwork for further development. These elements include

continuous integration, which involves code merging, building, and automated

testing, as well as continuous testing at each stage, ensuring early and frequent

quality checks. Continuous delivery allows updates to be deployed to the target

environment, while continuous deployment automates this process without the need

for manual intervention. An important component is continuous monitoring, which

provides oversight of your application's performance and infrastructure stability. Start

by automating processes, gradually introducing new tools and approaches as the

pipeline evolves.

The third aspect is the careful formation of the team responsible for CI/CD.

This will enable you to experiment and optimize processes while minimizing risks.

As experience is gained, you can move on to more complex tasks and integrate other

components. Special attention should be given to automated testing in the early

stages, which will ensure the high quality and stability of the CI/CD pipeline [4].

To better understand the practical application of CI/CD, let's consider an

approximate operation of the CI/CD pipeline, presented schematically in Figure 1.

Fig.1. Approximate operation of the CI/CD pipeline [5].

Thus, the CI/CD pipeline ensures a continuous process of code development,

testing, and deployment, enabling teams to deliver software products quickly and

with high quality. Organizations that implement the CI/CD methodology report

significant improvements in the quality and speed of development. The main

advantages are described in Table 2.

Table 2. The Main Advantages of the Implementation of CI/CD Methodologies

[6].

 Running tests

Automatic

testing of code
for problem

Automatic

creation of a
new assembly

 Fixing
changes

Modification

by the
developer of

If the tests or

analysis fail, the
code is returned to
the developer for

If all checks

pass, the build
is considered

Advantage Description of Advantage

User Satisfaction

Reducing errors and improving product quality increases customer
trust and satisfaction, which directly impacts the company's
reputation.

Reduced Time to Market

Fast delivery of new features and products gives the company a
competitive advantage and allows for quicker achievement of
commercial goals.

Reduction in Incidents

Regular testing and frequent small updates help avoid crisis
situations, making the development process easier and reducing team
stress.

More Accurate Planning
Automation and predictability of the deployment process help meet
deadlines and reduce uncertainty in the project.

Resource Allocation
Automating routine tasks allows developers to focus on more creative
and complex tasks, increasing their productivity.

Reduced Employee Burnout
The CI/CD process reduces the workload on the team, decreasing the
likelihood of burnout and increasing overall job satisfaction [6].

2. Designing and Optimizing CI/CD Pipelines

The CI/CD process consists of sequential steps aimed at efficiently integrating,

testing, and deploying software code. For successful implementation of the CI/CD

process, it is essential to consider the following key elements:

1. Regular Code Commits: Developers regularly commit changes to the

repository using version control systems like GitHub. Each new change triggers the

CI procedure.

2. Code Analysis with Static Tools: The use of static analysis tools helps

assess code quality at early stages of development, preventing potential errors.

3. Automated Testing: Before final assembly, the code goes through

automated tests, including unit and integration testing. The main goal is to create a

standardized process that automates the development, testing, and assembly of

software products.

4. Transition to Continuous Delivery After Integration: Continuous

delivery begins once the continuous integration stage is complete. This ensures that

all code changes are automatically implemented in the required environments.

5. Sequential Testing and Code Release: The CI/CD pipeline provides the

capability to send updated code through a series of testing stages, such as building,

release preparation, and deployment, ultimately leading to a product ready for use.

6. Quality Control at Every Stage: Each stage of the CI/CD pipeline serves

as a checkpoint for verifying specific code characteristics. As the code progresses

through the pipeline, it undergoes increasingly rigorous scrutiny, which helps

enhance its quality.

7. Immediate Feedback on Test Results: Test results are provided instantly,

and if an error occurs at any stage, further code assembly and deployment are halted.

8. Flexibility and Adaptability: The CI/CD process must be customizable

to accommodate the specific needs of the organization, such as quality, security, and

performance requirements. Regular review and updating of the process help improve

its efficiency [7].

The Continuous Integration and Continuous Delivery (CI/CD) pipeline begins

with the source code management stage, which can also be referred to as version

control. At this stage, the source code is systematically organized and stored, with an

emphasis on version tracking. Developers create and modify code on their local

machines and then commit it to a version control system such as Git or Subversion.

This process ensures meticulous tracking of every change in the code, allowing for

easy restoration of previous versions or rollback of changes if necessary.

A key element at this stage is the use of branching strategies, such as GitFlow

or trunk-based development. These methods allow development teams to work

concurrently on different parts of the project without the risk of conflict or

overwriting each other's changes. Additionally, they facilitate the successful

development of new features, bug fixes, and experimental research without

compromising the stability of the main codebase.

In the CI/CD process, the source code management stage also serves as the

starting point for initiating the entire pipeline, typically triggered by a new commit or

the creation of a pull request. Moreover, initial quality checks, such as linting or

syntax verification, can be performed at this stage to ensure the code adheres to

defined standards and stylistic rules.

Next, at the build stage, the source code is transformed into a ready-to-run

product in the target environment. This process depends on the type of application.

For example, for Java applications, it involves compiling the code into bytecode and

packaging it into a JAR or WAR file. For applications intended for a Docker

environment, a Docker image is created based on the Dockerfile. The build stage also

includes tasks such as dependency resolution, transpilation, and resource bundling,

resulting in an artifact ready for deployment.

An integral part of this stage is the execution of preliminary tests, including

unit tests and static code analysis. These checks ensure the correctness and quality of

individual application components. If the build or testing process fails, the pipeline is

halted, and developers are notified, allowing them to quickly address the issue and

prevent more serious errors in the future.

At the testing stage, the application undergoes comprehensive automated

testing to ensure it meets all specified requirements. This stage verifies the quality of

the build before it becomes available to end users. The tests conducted may include

integration tests, functional checks, performance tests, and security tests, providing a

thorough assessment of the application's operational capabilities.

The final stage of the CI/CD pipeline is deployment, where the application is

implemented in the production environment, making it accessible to users. This

process is automated and depends on the specifics of the application and production

environment. For example, it could involve deploying a Docker container in

Kubernetes or updating a web application on a cloud service like AWS. After

deployment, additional checks are performed to confirm the application's proper

functioning in the production environment, thereby completing the CI/CD cycle.

To optimize CI/CD processes, it is recommended to centralize the storage of all

source codes and configurations, fully automate all stages of the pipeline, use a

sequential build process, parallelize tasks, effectively manage build artifacts and

environment configurations, and implement comprehensive testing and monitoring.

Another important aspect is fostering a culture of collaboration and ensuring security

at all stages of development [8].

3. Tools and Technologies for Implementing CI/CD Strategies

A variety of tools are widely used for effective management of software

integration, delivery, and deployment processes. These tools support the execution of

continuous integration and delivery (CI/CD) pipelines, with each having its own

strengths and weaknesses. The choice of a particular tool depends on several factors,

including ease of integration, scalability, and compatibility with different

development systems [9]. Let’s explore some of the key tools commonly used in

CI/CD processes:

Jenkins: Jenkins is one of the most widely used open-source automation

servers designed to support continuous integration and delivery processes. This

server is notable for its flexibility, achieved through an extensive library of plugins

that allow Jenkins to be adapted to virtually any CI/CD need. Its versatility and

expandability make it highly popular among developers.

Travis CI: Travis CI is a cloud-based service popular among developers of

open-source projects. It supports various build environments and programming

languages and integrates closely with the GitHub platform. Travis CI allows

applications to be tested and deployed without significant configuration changes,

simplifying the development and deployment processes [10].

GitLab CI/CD: Integrated into the GitLab ecosystem, the CI/CD tool provides

means for continuous integration and delivery within both the enterprise and

community versions of GitLab. A particular advantage of GitLab CI/CD is its deep

integration with other GitLab services, enabling users to perform CI/CD processes

without relying on external solutions. These processes are configured through the

`.gitlab-ci.yml` file located in the root directory of the repository.

CircleCI: CircleCI is a powerful platform that provides continuous integration

and delivery in both local and cloud environments. Known for its efficiency and

speed due to high-speed source code compilation and dependency caching, CircleCI

allows the configuration of processes to implement complex CI/CD pipelines and

supports work with Docker containers.

Bamboo: Developed by Atlassian, Bamboo is a continuous integration and

deployment solution that integrates seamlessly with other Atlassian products, such as

Bitbucket and Jira Software. In addition to standard continuous integration features,

Bamboo offers tools for delivery, making it useful for more complex and multi-tiered

projects [11].

Conclusion

In conclusion, it can be stated that CI/CD and automation play a crucial role in

modernizing software development and operations processes within DevOps

engineering. The implementation of CI/CD pipelines significantly enhances the speed

and quality of development, reduces time to market, and decreases the number of

errors through automated testing and checks. The analysis of tools and technologies

demonstrates that successful CI/CD implementation requires a comprehensive

approach, including the correct selection of tools, careful process design, and

ensuring security at all stages. As a result, integrating CI/CD into DevOps not only

contributes to the creation of higher-quality and more reliable products but also

improves team collaboration, thereby increasing overall development efficiency.

COMPETING INTERESTS DISCLAIMER:

Authors have declared that they have no known competing financial interests

OR non-financial interests OR personal relationships that could have appeared to

influence the work reported in this paper.

References

1. Thatikonda V. K. Beyond the buzz: A journey through CI/CD principles

and best practices //European Journal of Theoretical and Applied Sciences. – 2023. –

Vol. 1. – No. 5. – pp. 334-340.

2. Bobbert Y., Chtepen M. Research Findings in the Domain of CI/CD and

DevOps on Security Compliance //Strategic Approaches to Digital Platform Security

Assurance. – IGI Global, 2021. – pp. 286-307.

3. Bobbert Y., Chtepen M. Research Findings in the Domain of CI/CD and

DevOps on Security Compliance //Strategic Approaches to Digital Platform Security

Assurance. – IGI Global, 2021. – pp. 286-307.

4. Debroy V., Miller S., Brimble L. Building lean continuous integration

and delivery pipelines by applying devops principles: a case study at varidesk

//Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering. - 2018. – pp. 851-856.

5. An introduction to DevOps and CI/CD. [Electronic resource] Access

mode: https://jfrog.com/devops-tools/article/an-introduction-to-devops-and-ci-cd /

(accessed 08/23/2024).

6. Fluri J., Fornari F., Pustulka E. Measuring the Benefits of CI/CD

Practices for Database Application Development //2023 IEEE/ACM International

Conference on Software and System Processes (ICSSP). – IEEE, 2023. – pp. 46-57.

7. Zampetti F. et al. CI/CD pipelines evolution and restructuring: A

qualitative and quantitative study //2021 IEEE International Conference on Software

Maintenance and Evolution (ICSME). – IEEE, 2021. – pp. 471-482.

8. CI/CD Process: Flow, Stages, and Critical Best Practices. [Electronic

resource] Access mode: https://codefresh.io/learn/ci-cd-pipelines/ci-cd-process-flow-

stages-and-critical-best-practices / (accessed 08/23/2024).

9. Indriyanto R., Purnama D. G. CI/CD Implementation Application

Deployment Process Academic Information System (Case Study Of Paramadina

University) //Jurnal Indonesia Sosial Teknologi. – 2023. – Vol. 4. – No. 9. – pp.

1503-1516.

10. Mowad A. M., Fawareh H., Hassan M. A. Effect of using continuous

integration (ci) and continuous delivery (cd) deployment in devops to reduce the gap

between developer and operation //2022 International Arab Conference on

Information Technology (ACIT). – IEEE, 2022. – pp. 1-8.

11. Cowell C., Lotz N., Timberlake C. Automating DevOps with GitLab

CI/CD Pipelines: Build efficient CI/CD pipelines to verify, secure, and deploy your

code using real-life examples. – Packt Publishing Ltd, 2023.

12. Maragathavalli P, Seshankkumar M. Automation Pipeline and Build

Infrastructure using DevOps. Int. J. Res. Appl. Sci. Eng. Technol. 2020

Nov;8(11):882-6.

13. Chatterjee PS, Mittal HK. Enhancing Operational Efficiency through the

Integration of CI/CD and DevOps in Software Deployment. In2024 Sixth

International Conference on Computational Intelligence and Communication

Technologies (CCICT) 2024 Apr 19 (pp. 173-182). IEEE.

14. Mowad AM, Fawareh H, Hassan MA. Effect of using continuous

integration (ci) and continuous delivery (cd) deployment in devops to reduce the gap

between developer and operation. In2022 International Arab Conference on

Information Technology (ACIT) 2022 Nov 22 (pp. 1-8). IEEE.

15. Cowell C, Lotz N, Timberlake C. Automating DevOps with GitLab

CI/CD Pipelines: Build efficient CI/CD pipelines to verify, secure, and deploy your

code using real-life examples. Packt Publishing Ltd; 2023 Feb 24.

16. Kusumadewi R, Adrian R. Performance Analysis of Devops Practice

Implementation Of CI/CD Using Jenkins. MATICS: Jurnal Ilmu Komputer dan

Teknologi Informasi (Journal of Computer Science and Information Technology).

2023 Oct 24;15(2):90-5.

17. Nogueira AF, Ribeiro JC, Zenha-Rela MA, Craske A. Improving la

redoute's ci/cd pipeline and devops processes by applying machine learning

techniques. In2018 11th international conference on the quality of information and

communications technology (QUATIC) 2018 Sep 4 (pp. 282-286). IEEE.

18. Makani ST, Jangampeta S. The evolution of CICD tools in DevOps from

Jenkins to GitHub Actions. International Journal of Computer Engineering and

Technology (IJCET). 2022 May 30;13(02):166-74.

19. Thatikonda VK. Beyond the buzz: A journey through CI/CD principles

and best practices. European Journal of Theoretical and Applied Sciences. 2023 Sep

1;1(5):334-40.

20. Jammeh B. DevSecOps: Security Expertise a Key to Automated Testing

in CI/CD Pipeline. Bournemouth University. 2020.

