Research on properties of zero points and poles of K-bianalytic functions*

Abstract

In this paper, we first prove that the set of zero points of a nonzero K-bianalytic function is not a region and the set of the second zero points has no accumulated point. Second, a sufficient and necessary condition is given for a K-bianalytic function to have a zero arc. Finally, the traits of a K-bianalytic function which has a zero arc, one of whose ends is a pole z=0, are discussed.

1 Introduction

Zhang [1] gave the definition of K-analytic functions and extended some properties of analytic functions to K-analytic functions [2]-[4]. Many works studied properties of bianalytic functions, see [5]-[7]. Li and Liu [8] put forward the concept of K-bianalytic functions and investigated Cauchy theorem, Cauchy integral formula, power series expansion, Fourier series expansion of K-bianalytic functions.

In this paper, we mainly explore the properties of zero points and poles, which generalize the corresponding results of [5] and [7].

Definition 1.1. [1] The forms of complex number as x + iky $(k \in \mathbb{R}, k \neq 0)$ are called K-complex number of x + iy, denoted by z(k).

Definition 1.2. [1] Let the function f(z) be defined in a neighborhood of z_0 . If

$$\lim_{\Delta z(k) \to 0} \frac{\Delta f}{\Delta z(k)} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z(k) - z_0(k)}$$

exists, then we call that f(z) is K-differential at z_0 , the limit is the K-derivative of f(z) at z_0 , denoted by $f'_{(k)}(z_0)$ or $\frac{df(z)}{z(k)}|_{z=z_0}$, i.e.,

$$f'_{(k)}(z_0) = \frac{df(z)}{dz(k)}\Big|_{z=z_0} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z(k) - z_0(k)}.$$

If f(z) is K-differential at each $z \in D$, then the second K-derivative of f(z) at $z_0 \in D$ is defined as

$$f_{(k)}''(z_0) = \frac{df_k'(z)}{dz(k)}\Big|_{z=z_0} = \lim_{z \to z_0} \frac{f_k'(z) - f_k'(z_0)}{z(k) - z_0(k)}.$$

Similarly, the nth K-derivative $f_{(k)}^{(n)}(z)$ can be defined as the same way.

Definition 1.3. [1] If f(z) is K-differential in a region D, we say that f(z) is analytic in D; If f(z) is K-analytic in a neighborhood of z_0 , then we say that f(z) is K-analytic at z_0 .

Keywords: K-bianalytic function; nonisolated zero; zero arc; pole

MSC (2010): 46E30, 46B42.

†

^{*}Supported by the National Natural Science Foundation of China (11961056).

Definition 1.4. [8] Let the function f(z) have the second partial derivative $\frac{\partial^2 f(z)}{\partial \overline{z}(k)^2}$ in a region D. If $\frac{\partial^2 f(z)}{\partial \overline{z}(k)^2} = 0$ for any $z \in D$, then f(z) is called a K- bianalytic function in D.

Denote $D(k) = \{\xi(k) | \xi \in D\}$ if D is a set of \mathbb{C} .

Lemma 1.1. [8, Theorem 1] If function f(z) is a bianalytic function in a region D, then the following is established

$$f(z) = \bar{z}(k)\phi_1(z(k)) + \phi(z(k)), \ z \in D$$

where $\phi_1(z)$ and $\phi_2(z)$ are arbitrary analytic functions in D(k).

Similar to the definition of the nth zero point of bianalytic function in [5], the nth zero point of a K-bianalytic function f(z) is defined as follows.

Definition 1.5. Let f(z) be a K-bianalytic function in a region D, $n \geq 1$, $z_0 \in D$. If $f(z_0) = 0$ and $\frac{\partial^{i+j}}{\partial^i z(k) \partial^j \overline{z}(k)} f(z) = 0$ for any $0 < i + j \leq n - 1, i, j \in \mathbb{N}$ and there exists $k, s \in \mathbb{N}$ such that s + t = n and $\frac{\partial^n}{\partial^s z(k) \partial^j \overline{z}(k)} f(z) \neq 0$, then z_0 is called a nth zero point of f(z).

2 The main results

The zero points of K-bianalytic function are not definitely isolated. For example, the points of

$$w(z) = z(k)\bar{z}(k) - 1, \quad w(z) = z(k) - \bar{z}(k)$$

are the ellipse $x^2 + k^2y^2 = 1$ and the imaginary axis, respectively, but they are not zero functions. Although zero points of K-bianalytic functions are not non-isolated, the distribution of zero points is not very wide.

Theorem 2.1. Let w(z) be a nonzero K-bianalytic function in a region D. Then the set of zero points is not a region.

Proof. Let w(z) = 0, $z \in \sigma$, where σ is a subregion of D. By Lemma 1,

$$w(z) = \bar{z}(k)\phi_1(z(k)) + \phi_2(z(k)),$$

where $\phi_1(z)$ and $\phi_2(z)$ are arbitrary analytic functions in D(k). If $\phi_1(k(z)) = 0$ for $z \in \sigma$, by the isolation of zero points of K-analytic functions [3], we know that $\phi_1(k(z)) = 0$ for $z \in D$ and thus $\phi_2(k(z)) = 0$ for $z \in D$. This contradicts the condition of the theorem. If $\phi_1(k(z)) \not\equiv 0$ for $z \in \sigma$, then there exists $z_0 \in \sigma$ such that $\phi_1(k(z_0)) \not\equiv 0$ and thus there is a neighborhood of $z_0, U(z_0) \in \sigma$, such that $\phi_1(k(z)) \not\equiv 0$ for $z \in U(z_0)$. Since

$$w(z) = \bar{z}(k)\phi_1(z(k)) + \phi_2(z(k)) = 0, \quad z \in \sigma,$$

it follows that

$$\bar{z}(k) = -\frac{\phi_2(z(k))}{\phi_1(z(k))}, \quad z \in \sigma,$$

which is wrong obviously.

Theorem 2.2. The second zero points of a K-bianalytic function has no accumulated point.

Proof. Suppose that

$$w(z) = \bar{z}(k)\phi_1(z(k)) + \phi_2(z(k)),$$

where $\phi_1(z)$ and $\phi_2(z)$ are arbitrary analytic functions in D(k). If the set of the second zero points z_n , n = 1, 2, ..., has a accumulated point $z_0 \in D$. In the light of

$$w(z_n(k)) = \phi_1(z_n(k)) = 0, \quad n = 1, 2, ...,$$

we have that

$$\phi_2(z_n(k)) = 0, \quad n = 1, 2...$$

Uniqueness of K-analytic function [3] gives that

$$\phi_1(z(k)) = \phi_2(z(k)) = 0, \quad z \in D,$$

which contradicts the fact that w is a nonzero function in D.

Definition 2.1. If the points of an arc γ are zero points or the accumulated points of zero points of a K-bianalytic function w(z), then γ is called a zero arc of the K-bianalytic function w(z). If w(z) = C for $z \in \gamma$ where C is a constant, then γ is called a constant arc of the K-bianalytic function w(z).

Theorem 2.3. Let the curve $\widehat{\gamma}$ has a parameter equation $\overline{z}(k) = \gamma(z(k))$ where γ is a analytic function in a region D(k). Then $\widehat{\gamma}$ is a zero arc of a K-bianalytic function in $D(w(z)) = \overline{z}(k)\phi_1(z(k)) + \phi_2(z(k))$ if and only if

$$\phi_2(z(k)) = -\gamma(z(k))\phi_1(z(k)), \quad z \in D.$$
(2.1)

Proof. Necessity. If

$$\phi_1(z(k)) = 0$$
, $w(z) = 0$, $z \in \widehat{\gamma}$,

then

$$\phi_2(z(k)) = 0, \quad z \in \widehat{\gamma}.$$

Therefore by uniqueness of K-analytic function [3] we know that

$$w(z) = \phi_1(z(k)) = \phi_2(z(k)) = 0, \quad z \in D.$$

If there exists $z_0 \in \widehat{\gamma}$ such that $\phi_1(z_0(k)) \neq 0$, $z_0 \in \widehat{\gamma}$, then there is a neighborhood of z_0 , $U(z_0) \in \sigma$, such that $\phi_1(k(z)) \neq 0$ for $z \in U(z_0)$. If $z \in \gamma \cap U(z_0)$, then

$$\begin{split} w(z) &= \bar{z}(k)\phi_{1}(z(k)) + \phi_{2}(z(k)) \\ &= \left(\bar{z}(k) + \frac{\phi_{2}(z(k))}{\phi_{1}(z(k))}\right)\phi_{1}(z(k)) \\ &= \left(\gamma(z(k)) + \frac{\phi_{2}(z(k))}{\phi_{1}(z(k))}\right)\phi_{1}(z(k)). \end{split}$$

Thus

$$\gamma(z(k)) + \frac{\phi_2(z(k))}{\phi_1(z(k))} = 0, \ z_0 \in \widehat{\gamma} \cap U(z_0).$$

Uniqueness of K-analytic function [3] yields (2.1).

Sufficiency. Since $\phi_2(z(k)) = -\gamma(z(k))\phi_1(z(k)), \bar{z}(k) = \gamma(z(k)), z \in \widehat{\gamma}$, we have

$$\bar{z}(k)\phi_1(z(k)) + \phi_2(z(k)) = 0, \ z \in \widehat{\gamma},$$

and thus

$$w(z) = \overline{z}(k)\phi_1(z(k)) + \phi_2(z(k)) = 0, \ z \in \widehat{\gamma},$$

i.e., γ is a zero arc of w.

Corollary 2.1. Under the assumptions of Theorem 2.3, $\widehat{\gamma}$ is a constant arc of a K-bianalytic function $w(z) = \overline{z}(k)\phi_1(z(k)) + \phi_2(z(k))$ if and only if there exists a constant C such that

$$\phi_2(z(k)) - C = -\gamma(z(k))\phi_1(z(k)), \quad z \in D.$$

Definition 2.2. Let $w(z) = \bar{z}(k)\phi_1(z(k)) + \phi_2(z(k))$ be a K-bianalytic function in a region D, where ϕ_1 , ϕ_2 are analytic functions in D(k) and z = a is the c_i -th pole of ϕ_i , i = 1, 2, respectively (if z = a is a removable singular point of ϕ_i , then z = a is called a 0-th pole of ϕ_i). If $0 \le c_i < \infty$ (i = 1, 2) and $c_1^2 + c_2^2 \ne 0$, then z = a is called (c_1, c_2) -th pole of w(z).

Without loss of generality, we only need to discuss the behavior near z=0 of w(z). If $a\neq 0$, under the transformation $z(\zeta)=\zeta+a$, we can similarly investigate the behavior near $\zeta=0$ of the function

$$w(z(\zeta)) = \overline{\zeta + a(k)}\phi_1(z(\zeta)(k)) + \phi_2((z(\zeta))(k))$$

$$= \bar{\zeta}(k)\phi_1(z(\zeta)(k)) + [\bar{a}(k)\phi_1(z(\zeta)(k)) + \phi_2((z(\zeta))(k))].$$

Obviously, if ϕ_i , i=1,2, have c_i -th poles of $\phi(z)$ at z=0, respectively, then ϕ_i , i=1,2, can be expressed by Laurent expansions as follows:

$$\phi_1(z) = \frac{a_{-c_1}}{z^{c_1}} + \frac{a_{-c_1+1}}{z^{c_1-1}} + \dots + a_0 + a_1 z + \dots = \frac{1}{z^{c_1}} \psi_1(z); \tag{2.2}$$

$$\phi_2(z) = \frac{b_{-c_2}}{z^{c_2}} + \frac{b_{-c_2+1}}{z^{c_2-1}} + \dots + b_0 + b_1 z + \dots = \frac{1}{z^{c_2}} \psi_2(z), \tag{2.3}$$

respectively. If $c_1 \ge 1$, then $a_{-c_1} \ne 0$ as well as c_2 does. The notations of (2.2) and (2.3) are used in the remaining part.

Theorem 2.4. Let a K-bianalytic function

$$w(z) = \bar{z}(k)\phi_1(z(k)) + \phi_2(z(k))$$

have (c_1, c_2) -th pole at z = 0. If there is an arc γ with an end z = 0 such that

$$w(z) = 0, \quad z \in \gamma \setminus \{0\}, \tag{2.4}$$

then

$$c_1 = c_2 + 1, \quad |a_{-c_1}| = |b_{-c_2}|.$$

Proof. By contradiction. If $c_1 \leq c_2$, by (2.2) and (2.3) we have

$$w(z) = \frac{\bar{z}(k)z(k)^{c_2 - c_1}\psi_1(z(k)) + \psi_2(z(k))}{z(k)^{c_2}}, \quad z \in \gamma \setminus \{0\}.$$

By (2.4), we have

$$\bar{z}(k)z(k)^{c_2-c_1}\psi_1(z(k)) + \psi_2(z(k)) = 0, \quad z \in \gamma \setminus \{0\}.$$

But

$$\lim_{z \to 0} \left(\bar{z}(k)z(k)^{c_2 - c_1} \psi_1(z(k)) + \psi_2(z(k)) \right) = b_{-c_2} \neq 0,$$

which is a contradiction. The similar method is suitable for explaining incorrectness of the case $c_2 < c_1 - 1$. Thus $c_1 = c_2 + 1$. In this case we obtain

$$w(z) = \frac{\bar{z}(k)\psi_1(z(k)) + z(k)\psi_2(z(k))}{z(k)^{c_1}}, \quad z \in \gamma \setminus \{0\},$$

which yields that

$$\bar{z}(k)\psi_1(z(k)) + z(k)\psi_2(z(k)) = 0, \quad z \in \gamma \setminus \{0\}.$$
 (2.5)

So

$$\lim_{z\to 0, z\in \gamma} \left|\frac{\bar{z}(k)}{z(k)}\right| = \lim_{z\to 0, z\in \gamma} \left|-\frac{\psi_2(z(k))}{\psi_1(z(k))}\right| = \left|\frac{b_{-c_2}}{a_{-c_1}}\right| = 1.$$

Theorem 2.5. Let a K-bianalytic function

$$w(z) = \bar{z}(k)\phi_1(z(k)) + \phi_2(z(k))$$

have a (c_1, c_2) -th pole at z = 0. Then there exists a line segment η with an end z = 0, such that

$$w(z) = 0, \quad z \in \eta \setminus \{0\}, \tag{2.6}$$

if and only if there exists a neighborhood U(0) of z = 0 such that

$$\frac{\phi_2(z(k))}{\phi_1(z(k))} = e^{i\theta_0} z(k), \quad z \in U(0),$$

where $\theta_0 = arg \frac{b_{-c_2}}{a_{-c_1}}$.

Proof. Sufficiency. If $\frac{\phi_2(z(k))}{\phi_1(z(k))} = e^{i\theta_0}z(k)$, then there exists a line segment η with an end z = 0, such that (2.6) holds, where the line segment η satisfies the equation $y = \frac{1}{k}\left(\cot\frac{\theta_0}{2}\right)x$ for $x + iy \in \eta$.

Necessity. By assumptions and the proof of Theorem 2.4, we get $c_1 = c_2 + 1$ and (2.5) holds with γ replaced by η . Let the inclination of the line segment $\{\eta(k) = z(k) : z \in \eta\}$ is α . Hence there exists a deleted neighborhood $U^0(0)$ of = 0 such that

$$\frac{\psi_2(z(k))}{\psi_1(z(k))} = -e^{-2i\alpha}, \quad z \in \eta \cap U^0(0).$$

The fact that $\frac{\psi_2(z(k))}{\psi_1(z(k))}$ is K-analytic, uniqueness of K-analytic function and (2.5) implies that there exists a neighborhood U(0) of z=0 such that

$$\frac{\phi_2(z(k))}{\phi_1(z(k))} = \frac{\psi_2(z(k))}{\psi_1(z(k))} z(k) = e^{i\theta_0} z(k), \quad z \in U(0).$$

3 Conclusion

In the present paper, we extend some properties of zero points, zero arcs and poles of bianalytic functions to K-bianalytic functions.

References

- [1] Jianyuan Zhang, K-analytic functions and the conditions for their existence, Journal of Yunnan Minzu University (Sience edition) 16 (2007), 298-302.
- [2] Jianyuan Zhang, Yinmin Zhang, Ruiwu Zhang and Chengping Liu, K-integral of complex functions, Journal of Yunan Normal University 29 (2009), 24-28.
- [3] Jianyuan Zhang, Yimin Zhang, Chengping Liu and Ruiwu Jiang, *Power series expansion of K-analytic function*, Journal of Dali University (science edition) 8 (2009), 14-18.
- [4] Jianyuan Zhang, Yimin Zhang and Shaowu Xiong, Two-side power series of K-analytic function and isolated singular points, Journal of Yunnan Minzu University (Sience edition) 18 (2009), 198-201.
- [5] Jingwen Zhu, Xinmin Huang, Shihuan Liu and Xianyang Zhu, *Properties of bianalytic functions*, Journal of North University of China (Natural Science Edition) 34 (2013), 213-217.

- [6] Yuzhuang Fu, Research of the related Problems of analytic and bianalytic functions, Dissertation of Xian University of Architecture and Technology, 2015.
- [7] Fei Wang, Xinmin Huang and Hua Liu, *The properties of bianalytic functions with zero arc at a pole*, Journal of Mathematical Research and Exposition 29 (2009), 623-628.
- [8] Hong Li and Tongbo Liu, *K-bianalytic functions and their related theorems*, International Journal of Statistics and Applied Mathematics 3 (2018), 36-40.