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Abstract

In this paper, we first prove that the set of zero points of a nonzero K-bianalytic function is not
a region and the set of the second zero points has no accumulated point. Second, a sufficient and
necessary condition is given for a K-bianalytic function to have a zero arc. Finally, the traits of a
K-bianalytic function which has a zero arc, one of whose ends is a pole z = 0, are discussed.

1 Introduction

Zhang [1] gave the definition of K-analytic functions and extended some properties of analytic functions
to K-analytic functions [2]-[4]. Many works studied properties of bianalytic functions, see [5]-[7]. Li
and Liu [8] put forward the concept of K-bianalytic functions and investigated Cauchy theorem, Cauchy
integral formula, power series expansion, Fourier series expansion of K-bianalytic functions.

In this paper, we mainly explore the properties of zero points and poles, which generalize the corre-
sponding results of [5] and [7].

Definition 1.1. [1] The forms of complex number as x + iky (k € R, k # 0) are called K-complex
number of = + iy, denoted by z(k).

Definition 1.2. [1] Let the function f(z) be defined in a neighborhood of zy. If

¢ . f(2) = f(20)
AP AR A R = 2o k)

exists, then we call that f(z) is K-differential at zg, the limit is the K-derivative of f(z) at zo, denoted
by f(’k)(zo) or %|Z:ZO7 ie.,

df (2)

ot - £ 1) = £(0)

= lim .
z2=2z0 Z—2z0 Z(k) — Zo(/{i)

If f(z) is K-differential at each z € D, then the second K-derivative of f(2) at 29 € D is defined as

Figteo) = T

amzy  2mz0 2(K) — 20(K)
Similarly, the nth K-derivative f((,?))(z) can be defined as the same way.

Definition 1.3. [1] If f(z) is K-differential in a region D, we say that f(z) is analytic in D; If f(z) is
K-analytic in a neighborhood of zg, then we say that f(z) is K-analytic at zg.
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Definition 1.4. [8] Let the function f(z) have the second partial derivative gz{é)zz) in a region D. If

22{]5‘)22) =0 for any z € D, then f(z) is called a K- bianalytic function in D.

Denote D(k) = {£(k)|€ € D} if D is a set of C.

Lemma 1.1. [8, Theorem 1] If function f(z) is a bianalytic function in a region D, then the following
is established

f(z) = 2(k)dr1(2(F)) + 6(2(k)), z€ D

where ¢1(z) and ¢2(z) are arbitrary analytic functions in D(k).

Similar to the definition of the nth zero point of bianalytic function in [5], the nth zero point of a
K-bianalytic function f(z) is defined as follows.

Definition 1.5. Let f(z) be a K-bianalytic function in a region D, n > 1, zo € D. If f(z9) = 0 and

mﬂz):0f0rany0<i+jSn—l,i,jeNandthereexists k,s € N such that s +t =n and

W}E(k)ﬂz) # 0, then zq is called a nth zero point of f(z).

2 The main results

The zero points of K-bianalytic function are not definitely isolated. For example, the points of
w(z) = 2(k)z(k) — 1, w(z) = z(k) — 2(k)

are the ellipse 22 4+ k29> = 1 and the imaginary axis, respectively, but they are not zero functions.
Although zero points of K-bianalytic functions are not non-isolated, the distribution of zero points is not
very wide.

Theorem 2.1. Let w(z) be a nonzero K-bianalytic function in a region D. Then the set of zero points
18 not a region.

Proof. Let w(z) =0, z € o, where o is a subregion of D. By Lemma 1,

w(z) = 2(k)p1(2(k)) + ¢2(2(K)),

where ¢1(z) and ¢o(z) are arbitrary analytic functions in D(k). If ¢1(k(z)) = 0 for z € o, by the isolation
of zero points of K —analytic functions [3], we know that ¢1(k(z)) = 0 for z € D and thus ¢2(k(z)) =0
for z € D. This contradicts the condition of the theorem. If ¢;(k(z)) # 0 for z € o, then there exists
2o € o such that ¢1(k(z0)) # 0 and thus there is a neighborhood of zg, U(zg) € o, such that ¢1(k(z)) # 0
for z € U(zp). Since

w(z) = 2(K)o1((k)) + 2 (+(K) = 0, =€ 0,

it follows that

which is wrong obviously. O
Theorem 2.2. The second zero points of a K-bianalytic function has no accumulated point.

Proof. Suppose that

w(z) = z(k)p1(2(k)) + ¢2(2(k)),
where ¢1(z) and ¢2(z) are arbitrary analytic functions in D(k). If the set of the second zero points z,,
n = 1,2, ..., has a accumulated point zg € D. In the light of

w(zn(k)) = d1(zn(k)) =0, n=1,2,...,

we have that



Uniqueness of K —analytic function [3] gives that

¢1(2(k)) = ¢2(2(k)) =0, z€ D,
which contradicts the fact that w is a nonzero function in D. O

Definition 2.1. If the points of an arc v are zero points or the accumulated points of zero points of a
K —bianalytic function w(z), then ~ is called a zero arc of the K —bianalytic function w(z). If w(z) = C
for z € -y where C' is a constant, then + is called a constant arc of the K —bianalytic function w(z).

Theorem 2.3. Let the curve v has a parameter equation zZ(k) = v(z(k)) where v is a analytic function
in a region D(k). Then 7 is a zero arc of a K —bianalytic function in D w(z) = Z(k)¢q(2(k)) + p2(2(k))
if and only if

$2(2(k)) = —(2(k))p1(2(k)), =z € D. (2.1)

Proof. Necessity. If _
d1(2(k)) =0, w(z)=0, z€~,
then _
d2(2(k)) =0, z€ .
Therefore by uniqueness of K —analytic function [3] we know that

w(z) = ¢1(2(k)) = ¢a(2(k)) =0, z€D.

If there exists zop € 7 such that ¢1(z0(k)) # 0, zo € 7, then there is a neighborhood of z, U(zg) € o,
such that ¢1(k(z)) # 0 for z € U(zp). If z € yNU(2p), then

w(z) = z(k)¢1 (2(k

Thus

Sufficiency. Since ¢o(2(k)) = —y(2(k))p1(2(k)), 2(k) = v(z(k)), z € 7, we have

2(k)p1(2(K)) + da(2(K)) = 0, z € 7,
and thus n
w(z) = z(k)g1(2(k)) + ¢2(2(k)) =0, 2 € v,

i.e., v is a zero arc of w. O

Corollary 2.1. Under the assumptions of Theorem 2.3, 7 is a constant arc of a K—bianalytic function
w(z) = z2(k)d1(2(k)) + ¢2(2(k)) if and only if there exists a constant C such that

$a(2(k)) — C = —v(2(k))p1(2(k)), z€D.

Definition 2.2. Let w(z) = z(k)¢1(2(k)) + ¢2(z(k)) be a K—bianalytic function in a region D, where
@1, ¢2 are analytic functions in D(k) and z = a is the ¢;-th pole of ¢;, i = 1,2, respectively (if z = a is
a removable singular point of ¢;, then z = a is called a 0-th pole of ¢;). If 0 < ¢; < 0o (i = 1,2) and
c? +c3 # 0, then 2 = a is called (cy, c2)-th pole of w(z).



Without loss of generality, we only need to discuss the behavior near z = 0 of w(z). If a # 0, under
the transformation z(¢) = ¢ + a, we can similarly investigate the behavior near ¢ = 0 of the function

w(z(¢)) = ¢+ a(k)pr(2(0) (k) + 62((2(0)) (k)

= C(k)o1(2(O) (k) + [a(k)dr(=(C) (k) + ¢2((2(C)) (k)]

Obviously, if ¢;, i = 1,2, have ¢;-th poles of ¢(z) at z = 0, respectively, then ¢;, i = 1,2, can be
expressed by Laurent expansions as follows:

a_c A—cq+1 1
$1(z) = chl + chl_l +tootapt+arz+... = 271¢1(Z)§ (2.2)
bc, Doy 1
¢2(z):7;+2T’f1+...+bo+blz+...= —rta(2), (2.3)

respectively. If ¢; > 1, then a_., # 0 as well as ¢ does. The notations of (2.2) and (2.3) are used in the
remaining part.

Theorem 2.4. Let a K—bianalytic function
w(z) = Z(k)d1(2(k)) + ¢2(2(k))

have (c1,c2)—th pole at z = 0. If there is an arc v with an end z = 0 such that

w(z) =0, ze~\{0}, (2.4)

then
cr=ca+1, |a_e| = |b—cy]-

Proof. By contradiction. If ¢; < cq, by (2.2) and (2.3) we have

ofe) = LTI Tl o

By (2.4), we have

2(k)2(k)= "1 (2(k)) + 2(2(K)) = 0, 2 € y\{0}.
But

limy (2(K)2(k)° 1 o (2(K)) + a(2(k))) = b_ey £0,

z—0

which is a contradiction. The similar method is suitable for explaining incorrectness of the case co < ¢1—1.
Thus ¢; = ¢o + 1. In this case we obtain

_ 2(k)n (z(k)) + 2(k)a(=(k))

w(z) i . 2o},
which yields that
Z(k)Y1(2(k)) + 2(k)a(z(k)) = 0, z € y\{0}. (2.5)
> (k) Ua(e(k)| _[b
. z . 2(2 —c
| = 1 — = 2l =1.
by | (k) ‘ =beey | U (2(F)) '
O
Theorem 2.5. Let a K—bianalytic function
w(z) = Z(k)¢1(2(k)) + ¢2(2(k))
have a (c1,co)—th pole at z = 0. Then there exists a line segment n with an end z = 0, such that
w(z) =0, ze€n\{0}, (2.6)



if and only if there exists a neighborhood U(0) of z =0 such that

92:(k) _ ooy e 0(0),

¢1(2(k))

b
where 0y = arg—:=%.
_

a

Proof. Sufficiency. If ifgg:gg = e z(k), then there exists a line segment 7 with an end z = 0, such that

(2.6) holds, where the line segment 7 satisfies the equation y = % (cot %0) x for x + iy € n.

Necessity. By assumptions and the proof of Theorem 2.4, we get ¢; = ¢2 + 1 and (2.5) holds with ~
replaced by 7. Let the inclination of the line segment {n(k) = z(k) : z € n} is a. Hence there exists a
deleted neighborhood U°(0) of = 0 such that

M = —e7% L ennU%0).

U1 (z(k))

The fact that :ﬁfgzggg is K —analytic, uniqueness of K —analytic function and (2.5) implies that there

exists a neighborhood U(0) of z = 0 such that

$a(2(k)) _ ¢2(z(k))z(k) — (k) zeU(0).

P1(2(k))  n(z(k))

3 Conclusion

In the present paper, we extend some properties of zero points, zero arcs and poles of bianalytic functions
to K-bianalytic functions.
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