
Solving a Relaxed Min-Cost Redundancy
Allocation Model with a Lagrange Multiplier

and Newton’s Method

Abstract

Redundancy allocation is a valuable technique that system engineers

can use to design high level of reliability into complex systems. Broadly

however, redundancy allocation problems are NP-hard. The main goal

of this paper is to solve a relaxed minimum-cost problem by proving

that Newton’s method finds the optimal value of the Lagrange multi-

plier.
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1 Introduction

The desire to improve the reliability of products or complex systems in a

competitive market has been of paramount interest to industries (Leon and

Cascaval [1]). As Rice et al [2] and Kuo and Wan [3] pointed out, redun-

dancy allocation can be used to improve the reliability of a structure with

inadequate reliability. In fact, since the birth of the industrial revolution,

manufacturers have been finding ways to build trust in their products. But

it was not until after the Second World War that the scholarly foundations

of reliability were developed (Japan Standard Association [4] and Tillman et

al [5]).

To meet this desired need, industrial system designers have turned to re-

dundancy allocation techniques (Rice et al [2], Tillman et al [6], and Devi

et al [7]). Redundancy allocation is a useful and practical technique that

engineering designers use when designing engineering systems that need high

levels of system reliability while satisfying limitations on cost, weight, vol-

ume, etc.(Rice et al [2]). It is done during the design phase where system

designers install additional identical redundant components arranged in par-

allel. Thus, redundancy allocation models may be viewed as system designs

in which system engineers built component redundancies into the system.

Both Elsayed [8] and Chern [9] pointed out that, in general, redundancy al-

location models are NP-hard.

One of the initial methods for solving optimal redundancy allocation prob-

2

UNDER PEER REVIEW



lems was based on the classical Lagrange multiplier method (Ushakov [10]).

Li and Zio [11], Devi et al [7] as well as Tillman et al [5], respectively, gave in-

depth and comprehensive literature reviews of various redundancy allocation

models. Both Li et al [11] and Leon et al [12] considered several optimiza-

tion methods for redundancy allocation in large systems and did an excellent

study of series-parallel reliability models. Recently, the use of redundancy

allocation models has entered into the space of artificial intelligence Devi et

al [7].

This paper deals with non-linear optimization problems of the form

min
n∑

i=1

cixi (1)

subject to
n∏

i=1

(1− ρxi
i ) ≥ R and xi > 0, i = 1, . . . , n.

The size of the model, n, is an integer greater than 1 and the values of

the decision variables, x1, xx, . . . , xn, are restricted to positive real numbers.

The objective coefficients are positive real numbers c1, c2, . . . , cn. Since the

objective is linear, it can be scaled so that min1≤i≤n ci = 1. The constraint

parameters are real numbers, R, the predetermined system reliability, and

ρi, i = 1, 2, 3, · · · , n, the unreliability component at the ithstage, for which

0 < R < 1 and 0 < ρi < 1 for i = 1, 2, . . . , n.

Model (1) can be solved by the method of Lagrange multipliers. Nmah ([13]

and [14]) showed that there is a unique optimal solution (x∗
1, x

∗
2, . . . , x

∗
n) of
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the form

x∗
i = ln(ci/(ci + λ∗R ln(ρ−1

i )))/ ln(ρi), (2)

where λ∗ is the unique positive root of the equation

n∏
i=1

λRln(ρ−1
i )/(ci + λR ln(ρ−1

i )) = R. (3)

The classic redundancy allocation model is a discrete optimization model

that differs from (1) only in that the values of the decision variables, xi, are

restricted to positive integers. In the context of redundancy allocation, the

optimal values of the decision variables for the discrete optimization model

show the levels of redundancy for each subsystm in a series system that will

achieve a required level of reliability, while minimizing a competing charac-

teristic, such as cost or weight.

The purpose of this work is to show that Equation (3) can be solved by New-

ton’s method from an initial value determined by the model’s parameters.

The main result of Section 2 gives upper and lower bounds for the root λ∗.

The results of Section 3 show how to approximate λ∗ by Newton’s method,

and Section 4 presents examples and conclusions.
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2 Upper and Lower Bounds on the Optimal

Lagrange Multiplier

Constants a1, a2, . . . , an can be computed from the parameters ci, ρi, and

R of Model (1) with the equations

ai = ci/R ln(ρ−1
i ). (4)

These strictly positive constants determine a rational function f defined on

[0,∞) as

f(λ) =
n∏

i=1

λ/(ai + λ). (5)

When Equation (3) is rewritten in terms of a1, a2, . . . , an, the result is

f(λ∗) = R. (6)

Let amin and amax denote the smallest and largest of the constants in Equa-

tion (4) and let the constants λmin and λmax be given by the equations

λmin = amin
R1/n

1−R1/n
and λmax = amax

R1/n

1−R1/n
.

Proposition 1 The optimal Lagrange multiplier λ∗ satisfies the inequalities

λmin ≤ λ∗ ≤ λmax.
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Proof. The function f is strictly increasing on [0,∞) and its range is the

interval [0, 1). Since 0 < R < 1, Equation (6) has a unique, strictly positive

solution. Clearly, 0 < λmin ≤ λmax and

(
λmin

amin + λmin

)n

= R =

(
λmax

amax + λmax

)n

.

Since f(λ) ≤ (λ/(amin + λ))n, it follows that f(λmin) ≤ R and λmin ≤ λ∗.

Likewise, f(λ) ≥ (λ/(amax + λ))n, so λmax ≥ λ∗. ■

Corollary 1 Either amin = amax, in which case λ∗ = λmin and f(λmin) = R,

or amin < amax, in which case λ∗ > λmin, and f(λmin) < R.

Proof. If amin = amax, then the proposition shows that λ∗ = λmin and so

f(λmin) = R. If amin < amax, then f(λ) < (λ/(amin + λ))n on (0,∞). In

particular, f(λmin) < R, so λ∗ > λmin. ■

Corollary 2 For ρ and R in (0, 1), set ci = 1 and ρi = ρ for 1 ≤ i ≤ n.

Then the solution of Model (1) is

λ∗ = R1/n/ ln(ρ−1)R(1−R1/n),

and

x∗
i = ln(1−R1/n)/ ln(ρ) for 1 ≤ i ≤ n.

Proof. For these parameters, amin = amax = 1/R ln(ρ−1). Then, the optimal

value λ∗ is given by the previous proposition and the optimal values of the
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coordinates x∗
i are given by Equation (2). ■

3 Using Newton’s Method

The purpose of this section is to establish that Newton’s method, applied to

a transformation of the function f of Equation (5) and initialized with λmin,

generates an increasing sequence that converges to the optimal Lagrange

multiplier.

Definition 1 For the constants a1, a2, . . . , an, of Equation (4), the function

h is defined on (0,∞) as

h(λ) = ln(f(λ))− ln(R) =
n∑

i=1

ln(λ/(ai + λ))− ln(R).

Lemma 1 Let h be as defined on (0,∞) in Definition 1. Then

h(k)(λ) = (−1)k−1(k − 1)!
n∑

i=1

(
1

λk
− 1

(ai + λ)k

)
, k = 1, 2, 3, · · · .

Proof. The proof follows from the Principle of Mathematical Induction. To

begin, let k = 1; then:

h′(λ) =
d

dλ

(
n∑

i=1

ln

(
λ

(ai + λ)

)
− ln(R)

)

=
n∑

i=1

d

dλ
(ln(λ)− ln(ai + λ))

=
n∑

i=1

(
1

λ
− 1

ai + λ

)

7

UNDER PEER REVIEW



Now assume that it is true for k. That is,

h(k)(λ) = (−1)k−1(k − 1)!
n∑

i=1

(
1

λk
− 1

(ai + λ)k

)
.

Then for k + 1, we have h(k+1)(λ) =
d

dλ
h(k)(λ),

which by the induction hypothesis is equivalent to:

h(k+1)(λ) =
d

dλ

(
(−1)k−1(k − 1)!

n∑
i=1

(
1

λk
− 1

(ai + λ)k

))

= (−1)k−1(k − 1)!
d

dλ

(
n∑

i=1

(
1

λk
− 1

(ai + λ)k

))

= (−1)k−1(k − 1)!(−k)
n∑

i=1

(
1

λk+1
− 1

(ai + λ)k+1

)
= (−1)kk!

n∑
i=1

(
1

λk+1
− 1

(ai + λ)k+1

)
. ■

Note: While all we need is h ∈ C2((0,∞)), it is clear from Lemma 1 that

h ∈ C∞((0,∞)).

Lemma 2 The function h is strictly increasing on (0,∞) and strictly con-

cave there.

Proof. On (0,∞), the derivative, h′, is strictly positive and the second

derivative, h”, is strictly negative. In fact, Lemma 1 with k = 1, 2 yields

h′(λ) =
n∑

i=1

(
1

λ
− 1

ai + λ

)
and h

′′
(λ) = −

n∑
i=1

(
1

λ2
− 1

(ai + λ)2

)
.■

Corollary 3 The optimal Lagrange multiplier λ∗ is the unique zero of the

function h.

Proof. That h(λ∗) = 0 follows from the definition of the function h. This
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root is unique because h is strictly increasing and its range is (−∞, 0). ■

Definition 2 When amin < amax, the sequence λk is generated by the equa-

tions λ0 = λmin and λk+1 = λk − h(λk)/h
′(λk).

When amin = amax, Corollary 1 shows that no iterative method is needed to

find the root λ∗. When amin < amax, the proof of Theorem 1 will show that

each term of the sequence {λk : k > 0} is positive and thus in the domain of

the functions h and h′.

The proofs of the next two theorems are adaptations of an argument in Allen

& Isaacson [15], where it is attributed to Henrici [16].

Theorem 1 If amin < amax, then, for k > 0, 0 < λmin < λk < λk+1 < λ∗.

Proof. Suppose amin < amax. Then Corollary 1 shows that λ0 < λ∗, and so

h(λ0) < 0. Furthermore, since h′(λ0) > 0 and λ1 = λ0 − h(λ0)/h
′(λ0), it

follows that λ1 > λ0.

Next, we need to show that λ1 < λ∗. Since λ0 < λ∗, the Mean Value

Theorem implies that −h(λ0) = h(λ∗) − h(λ0) = h′(c)(λ∗ − λ0) for some

c ∈ (λ0, λ
∗). From Lemma 2, h′ is strictly decreasing, so h′(c) < h′(λ0).

Thus, −h(λ0) < h′(λ0)(λ
∗ − λ0), or λ1 − λ0 < λ∗ − λ0.

Next, assume that λ0 < λk < λ∗. As above, it follows that λk+1 > λk.

From the Mean Value Theorem and the fact that h′ is decreasing, we have

−h(λk) < h′(λk)(λ
∗ − λk), or λk+1 − λ0 < λ∗ − λ0.■

As noted by Allen & Isaacson [15] and Henrici [16], the next theorem relies

on a result from the theory of real variables which states that a bounded,
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nondecreasing sequence of real numbers converges to its least upper bound

(Lebl [17]).

Theorem 2 If amin < amax, then limk→∞ λk = λ∗.

Proof. Suppose amin < amax. Then by Theorem 1, {λk} is a bounded,

nondecreasing sequence of real numbers. Thus, it has a limit, say λ̄. From

Theorem 1, it also follows that 0 < λmin < λ̄ ≤ λ∗ and so λ̄ is in the

domain of both h and h′. Then since h and h′ are continuous and h′ is

strictly positive on (0,∞), taking limits, as in Henrici [14], on both sides

gives λ̄ = λ̄− h(λ̄)/h′(λ̄) or h(λ̄) = 0. By Corollary 3, λ∗ is the only zero

of h, and so, λ̄ = λ∗. ■
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The main result of this paper is to solve a relaxed minimum-cost redundancy

allocation problem by showing that Newton’s method finds the value of the

optimal Lagrange multiplier.

Elsayed [8] posed a problem with n = 3, c1 = c2 = c3 = 1, minimum required

system reliability, R = 0.82, and component unreliabilities ρ1 = 0.30, ρ2 =

0.25, and ρ3 = 0.15. Table 1 displays the solution to the Lagrange multiplier

problem, using Newton’s method.

Table 1 Computing the Optimal Lagrange multiplier

k λk |λk+1 − λk| k λk |λk+1 − λk|

0 9.399742 3 12.34503257 0.03609972

1 11.665351 2.265609 4 12.34505203 1.946× 10−5

2 12.30893285 0.64358185

Now, using λ∗ = 12.34505203 and Equation (2), we calculate the unique

optimal solution x∗ to the continuous relaxation model to be

(2.14231433, 1.955048673, 1.584455517).

Note: In general, rounding coordinates of the optimal solution of the relaxed

model to the nearest integer does not give a feasible solution. Nmah([13]

and [18]) showed that the lower and upper bounds on the optimal value

of the discrete model are ⌈cTx∗⌉ and cTx∗ +
3∑

i=1

ci, respectively, and that

any integral optimal solution of the discrete model lies in an intersection ,
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{x : cTx = β, x ≥ 1}, of a hyperplane and the positive cone, where β is an

integer between cTx∗, and cTx(∗I), and where x∗I
i = ⌈x∗

i ⌉. In fact, Nmah

[13] argued that in the absence of such solutions, x(∗I) becomes the integral

optimal solution to the discrete model. Specifically, the lower and upper

bounds on the optimal value of the discrete model are 6 and 8.6818152,

respectively. Since in this case there is no integer between cTx∗, and cTx(∗I),

we conclude that (3, 2 2) is the integral optimal solution to the discrete

model.

Rice et al [2] posed a problem with n = 3, R = 0.995, ρ1 = 0.1, ρ2 =

0.125, ρ3 = 0.09, c1 = 4, c2 = 1, and c3 = 3. Table 2 displays the results of

the Lagrange multiplier problem, using Newton;s method.

Table 2 Computing the Optimal Lagrange multiplier

k λk |λk+1 − λk| k λk |λk+1 − λk|

0 289.0217848 4 693.7101289 9.1278919

1 457.8854805 168.8636957 5 693.8333318 0.1232029

2 613.6762507 155.74777026 6 693.8333537 2.19× 10−5

3 684.582237 70.9059863

Now, using λ∗ = 693.8333537 and Equation (2), we calculate the unique

optimal solution x∗ to the continuous relaxation model to be

(2.600325403, 3.496138185, 2.624305105). Applying the method in Nmah

([13] and [18]), we see that the lower and upper bounds on the optimal
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value of the discrete model are 22 and 29.77035511, respectively, and that

any integral optimal solution of the discrete model lies in an intersection,

{x : cTx = β, x ≥ 1}, of a hyperplane and the positive cone, where β is an

integer between 21.770355511 and 25. Since there are three integers between

21.770355511 and 25, we have only three hyperplanes,

{x : cTx = β, x ≥ 1, β ∈ {22, 23, 24}} to search. Searching these three hyper-

planes and using the strategy in Nmah [19], we get (3, 3, 3) as the integral

optimal solution to the discrete model.

Note: We observe that Rice et al [2] achieved the same result by a different

method.

Conclusion

The main result of this work is to solve a relaxed minimum-cost problem by

showing that from an initial value determined by the model’s parameters,

Newton’s method finds the optimal value, λ∗, of the Lagrange multiplier. In

Section 2 we found upper and lower bounds for the roots, λ∗, of equation

(3), and proved that the optimal Lagrange multiplier λ∗, satisfies λmin ≤

λ∗ ≤ λmax. Nmah ([13] and [14]) proved that the vector x∗ and the positive

multiplier λ∗ that satisfy equations (2) and (3) are unique, and we showed in

Section 3 that the optimal Lagrange multiplier λ∗ is the unique zero of the

C2((0,∞))−function h defined in Section 3. Also in Section 3 we showed

how to approximate λ∗ by Newton’s method. Finally, in this Section we used

two examples to illustrate the method.
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