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ABSTRACT 
 
A new modified confidence interval has been proposed which incorporates a new point estimator of the 
location parameter mean for skewed data distribution. Traditionally, the trimmed mean confidence interval 
estimator (Trm-ci) is a robust method for dealing with the skewness of the underlying data distribution. 
However, the Trm-ci method trims a certain fraction of endpoint observations to address skewness, which 
may result in a loss data information. The Students’ t confidence interval (t-ci) estimator, while the most 
efficient estimator at normal models, becomes impractical in a situations where observed data is subject to 
non-normality due to robustness. In between the two, the median confidence interval estimator (Med-ci) is 
expected to retain the robustness of Trm-ci and the efficiency of t-ci. The idea behind the proposed new 
modified confidence interval estimator (Mod-ci) is to consider both the sample mean and sample median 
simultaneously, while also using end-point information without trimming any observations. As such, the 
proposed Mod-ci is expected to be as good as or better than other underlying methods regarding 
robustness and efficiency when dealing with skewed data distributions. In this study, we examine the 
performance of the new method compared to most commonly used methods through examples and 
simulating data from skewed distribution with varying degree of skewness. The results of examples and 
simulations suggest that the proposed method is as good as, or better than other estimators relevant to this 
study, as measured by estimated coverage probability and the width of associated confidence interval. 
Therefore, this method is recommended for practical application while dealing with real-life data exhibiting 
skewness. 
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1. INTRODUCTION 
 
One of the most important tasks in statistical analyses is to estimate the unknown location parameter 
around which most of the data values tend to cluster. For example, given a sample from a continuous 
distribution one may have interest in estimating the unknown mean or median of the distribution. The 
sample mean is the most efficient location estimator given the data distribution is normal (Casella and 
Berger, 2024; Hogg, McKean, and Craig, 2018). In the violation of normality, however, the estimator mean 
is not robust. The sample median, on the other hand, is the most robust location estimator in the presence 
of skewness or outlying observations in the data distribution (Hartwig, et al., 2020, Wilcox 2021). As an 
alternative to sample mean or median, the trimmed mean is more robust than the mean and more efficient 
than the median for data with normal models (Hampel, et al., 2011, Portnoy and He, 2000). Indeed, the 
trimmed mean has become extremely popular due to the fact that it is less sensitive to extreme deviations 
and heavy-tailed distributions than the ordinary sample mean for years. For example, one may refer to 
Tukey and McLaughlin (1963), Bickel (1965), and Huber (1972) for accounts of its history and properties. 
Fortunately, or unfortunately enough, the trimmed mean always trims a fixed fraction of data points at both 
ends of a data set, no matter whether these points are “good” or “bad”. As such, the performance of trimmed 
mean may not be satisfactory when the underlying data are very “good” or contain “bad” observations only 
at one end. As such, researchers investigate many alternative estimators of the location parameter in 
dealing with data distribution with skewness or outlying observations. 
 
In this article, we propose to estimate the unknown population mean 𝜇 by a modified estimator, which is a 
function of sample mean and median, to deal with data with skewness or outlying observations. The 
modified estimator uses end point data values, but does not trim any data values unlike the trimmed mean. 



 

 

We study the property of the proposed estimator asymptotically. We assess the performance of the new 
modified estimator in constructing confidence interval estimator by comparing it with CI estimators involving 
median and trimmed means via examples and simulations from skewed distribution. It is expected that 
while keeping robustness of the trimmed mean or median, it retains the efficiency measured by the 
estimated coverage probability and width of confidence interval estimators. 
 
The organization of the remaining paper is as follows. The literature review has been considered in section 
2, along with subsections 2.1-2.5 to define popular confidence interval methods briefly to be relevant to this 
study. The proposed new CI estimation method is addressed in section 3. Two real life examples have 
been incorporated in section 4.  A simulation study computing estimated coverage probability and width of 
various CI estimates, with data simulated from distributions with varying degree of skewness has been 
provided in section 5. We conclude on overall performance of various CI estimation methods by a few 
concluding remarks in section 6. 
 
 

2. Literature review 
 
Given a sample 𝑋1𝑋2, ⋯ , 𝑋𝑛 from a distribution with an unknown mean 𝜇 and standard deviation 𝜎, we wish 

to estimate the population mean 𝜇 via a confidence interval estimate to ensure the necessary safe guard 
against the sampling error and estimation certainty. Under the assumption that the sample comes from a 
normal distribution with a known standard deviation 𝜎, a 100(1 − 𝛼)% confidence interval (CI) estimator of 

𝜇 is given by 

[𝑋‾ − 𝑧𝛼/2 × 𝜎/√𝑛, 𝑋‾ + 𝑧𝛼/2 × 𝜎/√𝑛]                                                                                                (1) 

where 𝑋‾ =
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 and 𝑧𝛼/2 is the upper (𝛼/2)th percentile of the standard normal distribution. In reality, 

however, 𝜎 is very unlikely to be known and it is estimated by the sample standard deviation to construct 

various confidence interval estimate of 𝜇. Several versions of confidence interval estimates exist in literature 

where 𝜎 is estimated from the sample. For example, the Student’s t-ci (Student, 1980) is the most efficient 
and useful CI estimate for 𝜇 at normal models. Many researchers, e.g., Johnson (1978), Kleijnen et al. 
(1986), Meeden (1999), Willink (2005), Kibria (2006), Shi and Kibria (2007), Islam and Shapla (2018), a 
few to mention. Johnson (1978) considers confidence interval estimator of 𝜇 by adjusting the t-ci with an 
unbiased estimator of third corrected moment. Islam and Shapla (2018) investigated several modifications 
to t-ci by incorporating trimmed-mean based methods, which trim a certain fraction of data values form both 
end. Kibria (2006) considers mean absolute deviation about median (Mad-ci) and median confidence 
interval estimator (Med-ci), which are computationally much easier than Johnson (1978). By comparing 
Johnson (1978) estimator, Kibria (2006) noted that the width of Student’ t-ci and Johnson’s methods are 
same. While many versions of t-ci exist in literature to deal with data with skewness, in real life applications, 
however, mean, median or trimmed-mean based confidence interval estimators are popular among the 
practitioners.  
 
In this article, a new modified confidence interval estimator (Mod-ci) of 𝜇 has been proposed which 

incorporates a new point estimator �̂� as a function of sample mean and sample median. The finite sample 
performance of Mod-ci has been compared with popular estimators as such as student’s t confidence 
interval estimator (t-ci), mean absolute deviation about median (Mad-ci) and trimmed t confidence interval 
(Trm-ci) and median t confidence interval (Med-ci), using real-life data having both positive and negative 
skewness for practical relevancies. The proposed Mod-ci has also been compared with underlying 
confidence interval estimators by simulation from skewed distribution with varying degree of skewness and 
sample sizes, in terms of computed coverage probability (covp) and associated width of interval estimators.  
 
 

2.1 Student’s t-ci 
 
Given that the confidence interval estimator in (1) is impractical in reality due to the fact that the population 
standard deviation 𝜎 is most likely to be unknown, Student (1980) proposed the classic t-ci estimate of 𝜇. 
When the sample size 𝑛 is small, the 100(1 − 𝛼)% CI for 𝜇 is due to Student (1980) is given by 



 

 

[�̅� − 𝑡𝛼/2,𝑛−1 
𝑠1

√𝑛
, �̅� + 𝑡𝛼/2,𝑛−1

𝑠1

√𝑛
]                                                       (2) 

where 𝑠1 = √
∑ (𝑥𝑖−𝑋‾)2𝑛

𝑖=1

𝑛−1
 and 𝑡𝛼/2,𝑛−1  is the upper (𝛼/2)𝑡ℎ percentile of Student’s 𝑡 distribution with (𝑛 − 1) 

degrees of freedom.  
The Student’s t-ci is the most popular confidence interval estimator in literature due to the fact that under 
the normal model it is the most efficient method, and therefore, it is omnipresent in statistical applications 
for making inference. However, if the data sample comes from the population with skewness, the Student’s 
t-ci has poor coverage property. To overcome this problem, median and trimmed-mean based confidence 
interval estimators are popular alternatives to deal with non-normal or skewed population.  
 

 
2.2 Mad-ci 
 
Let the unknown population standard deviation 𝜎 be estimated by the mean absolute deviation about 
median as follows: 

𝑠2 = √
∑ |𝑥𝑖−�̃�|𝑛

𝑖=1

𝑛−1
                                                                                                                                                        (3) 

where �̃� is the sample median defined by 

�̃� = {

𝑋
(

𝑛+1

2
)
, for n is odd

𝑋
(

𝑛
2)

+𝑋
(

𝑛
2+1)

2
, for n is even

                                                                                                      (4)                 

As such, an ad hoc Mad-ci of 𝜇 can be constructed for skewed distribution as follows: 

[𝑋‾ − 𝑡𝛼/2 × 𝑠2/√𝑛, 𝑋‾ + 𝑡𝛼/2 × 𝑠2/√𝑛]                                                                                               (5) 

 

2.3 Med-ci 
 

Let the unknown population standard deviation 𝜎 be estimated by the mean deviation about median as 
follows: 

𝑠3 = √
∑ (𝑥𝑖−�̃�)2𝑛

𝑖=1

𝑛−1
                  (6) 

As such, an ad hoc median t-ci (Med-ci) to deal with data with skewness, due to Kibria (2006), can be 
constructed as follows: 

[𝑋‾ − 𝑡𝛼/2 × 𝑠3/√𝑛, 𝑋‾ + 𝑡𝛼/2 × 𝑠3/√𝑛]                (7) 

 

2.4 Trimmed based estimator 
Let the point estimator of 𝜇 is given by the 𝛼-trimmed mean 𝑋‾𝛼 as follows 

𝑋‾𝛼 =
∑ 𝑋(𝑖)

𝑛−[𝑛𝛼]
𝑖=[𝑛𝛼]

𝑛−2[𝑛𝛼]
                                (8) 

where [𝑛𝛼] is the greatest integer in 𝑛𝛼 for 0 < 𝛼 < 1. Also, let an estimate of 𝜎 be given by the ad hoc 

estimator 𝑠4 as follows: 

𝑠4 = √
∑ (𝑥𝑖−𝑋‾𝛼)2𝑛

𝑖=1

𝑛−1
                 (9) 

Following Islam and Shapla (2018), an ad hoc 𝛼-trimmed confidence interval estimator (Trm-ci) can be 
constructed for skewed distribution as follows: 

[𝑋‾ − 𝑡𝛼/2 × 𝑠4/√𝑛, 𝑋‾ + 𝑡𝛼/2 × 𝑠4/√𝑛]             (10) 

 

3. Methodology 
 
By incorporating the robustness of sample median for skewed or non-normal distribution, and efficiency of 
sample mean for normal model, a new modified confidence interval estimator (Mod-ci) has been proposed 
in this section. A new point estimator �̂� of 𝜇 has been incorporated in Mod-ci, by taking into account the 
sample mean and median, simultaneously, while using the end-point data information without any trimming 
of observations.  The proposed Mod-ci of 𝜇 is given by   



 

 

 

[�̂� − 𝑡𝛼/2,𝑛−1 
𝑠5

√𝑛
, �̂� + 𝑡𝛼/2,𝑛−1

𝑠5

√𝑛
]               (11) 

where        

𝑠5 = √
1

𝑛−1
∑ (𝑋𝑖 − �̂�)2𝑛

𝑖=1                 (12) 

 

�̂� = {
𝑋‾, if 𝜉𝑛𝛼 < 𝑋‾ < 𝜉𝑛(1−𝛼)

�̃�, other wise
                           (13) 

 

and 𝜉𝑛𝛼 is an estimate of 𝛼th quantile 𝜉𝛼 for the distribution of 𝑋 given the sample 𝑋1, 𝑋2, ⋯ , 𝑋𝑛, where 0 ≤
𝛼 < 1. 

This method provides a guidance as to when to use sample mean  �̅� or sample median �̃� as an estimator 

�̂�.  
 
An algorithm to choose �̂� is as follows: 

(i) Compute the sample mean  �̅� and the sample median �̃�, along with sample 𝛼th and (1 − 𝛼)th quantiles 
given by 

𝜉𝑛𝛼 = 𝑋(𝑛∗𝛼) and 𝜉𝑛(1−𝛼) = 𝑋(𝑛∗(1−𝛼))               (14) 

The observations at or below 𝜉𝑛𝛼, or at or above 𝜉𝑛(1−𝛼) are trimmed by the trimmed mean 𝑋‾𝛼 in equation 

(8), in order to compute Trm-ci of equation (10). 

(ii) If the sample mean �̅� lies between 𝜉𝑛𝛼 and 𝜉𝑛(1−𝛼), then use �̂� = �̅�, otherwise, as an estimator use �̂� =

�̃�, the sample median, unlike trimming any observations done by the trimmed mean 𝑋‾𝛼 or Trm-ci. 
 

By the nature of the choice of the sample mean �̅� or sample median �̃� for the point estimator �̂�, the 
information of end-point observations have been retained and utilized, without trimming of any observations 
and hence no information is being lost. 
 

4. EXAMPLES 
 
In this section, two examples have been considered, one with positive skewness and the other with negative 
skewness, for practical relevancies, to see how different confidence interval methods compare in the 
presence of skewness in the data.   
 

Example 1 
 
Data below refers to survival times (in days) of a sample of 64 guinea pigs from a study by Doksum (1974) 
to be considered for comparing various confidence interval estimation methods.  
  

36 18 91 89 87 86 52 50 149 120 
119 118 115 114 114 108 102 189 178 173 

167 167 166 165 160 216 212 209 292 279 

278 273 341 382 380 367 355 446 432 421 

421 474 463 455 546 545 505 590 576 569 

641 638 637 634 621 608 607 603 688 685 

663 650 735 725       
 

To determine the shape of survival time distribution, histogram and boxplot have been presented in Figure 
1. Some other quantitative summary measures such as skewness, mean and median, as well as test of 
normality via lillie.test in R have been considered. 
 
 
 



 

 

Figure 1. Histogram and boxplot of survival time of guinea pigs data in Example 1 
 

  
 

From the histogram and boxplot in Figure 1 it is apparent that the survival time of guinea pigs is positively 
skewed. The skewness of survival time is 0.22, which supports the fact that the survival time of guinea pigs 
is positively skewed. The mean and median of survival time are 345.2 and 316.5, which also suggest that 
survival time is positively skewed as mean is higher than the median. The test of normality reveals a p-
value of 0.00046, which suggests that the data is not normally distributed.  
 
While testing the null hypothesis that the population mean or median is 345 days, the p-value of the t-test 
is found to be 0.993, and the p-value of Wilcoxon signed rank test is found to be 0.841. Therefore, based 
on the results of t-test or Wilcoxon test, it could be concluded that the population data has the mean or 
median of 345 days.  From the 95% (chosen arbitrarily in this study) confidence interval estimates reported 
in Table 1, it is evident that all underlying confidence interval estimates contain the unknown mean of 345 
days, set hypothetically by noting the sample mean of 345.2 days.  
 

        Table 1. 95% CIs of mean survival and width of corresponding CI using data in Example 1 
 

Methods CI estimate Width 

t-ci [290, 401] 111 

Mad-ci [296, 395] 99 

Med-ci [289, 401] 112 

Trm-ci [283, 394] 111 

Mod-ci [290, 401] 111 

 

Lengthwise, Mad-ci has the shortest width (99), while t-ci, Trm-ci and Mod-ci all having jointly the second 
shortest length (111), with Med-ci having the highest length of 112 days. This may lead to the conclusion 
that the new Mod-ci may retain the efficiency of Student’s t-ci and robustness of Med-ci in dealing with data 
with skewness. Therefore, the performance of Mod-ci is as good as Trm-ci or t-ci, and better than Med-ci, 
which may imply that Mod-ci might have retained the efficiency of t-ci and robustness of Trm-ci. 
 

Example 2 
 

In this example, an R iris dataset Petal length has been considered for constructing confidence interval 
using underlying method discussed in this study. Because the dataset remains in the public domain, one 
can get access and verify the results as needed. The Petal length refers to a sample of size 150, which is 
non-normal with a mean of 3.76. Assume that the Petal length in the population has a hypothetical mean 
of 𝜇 = 4.  
    



 

 

To determine the shape of Petal length distribution, the histogram and boxplot has been presented in Figure 
2. The other quantitative summary such as skewness, mean and median has also been noted. The 
normality Petal length has been tested via lillie.test in R. 
 

Figure 2. Histogram and boxplot for Petal length data in Example 2 
 

 

 
 

 
From the histogram and boxplot in Figure 2, it is apparent that the Petal length is negatively skewed. The 
skewness of Petal length is -0.27, supporting that Petal length distribution is negatively skewed.  
 
The R lillie.test of normality, with the p-value of 0.0031, provides the evidence to conclude that the Petal 
length distribution is not normal, at 5% level of significance. The result of t test, with a p-value of 0.09525 
or the Wilcoxon signed rank test, with a p-value of 0.124 may lead to the conclusion that the sample comes 
from population with the mean or median Petal length of 4.  
 
Now, as attention is being paid to the results of 95% confidence interval estimates reported in Table 2, it 
has been noted that all underlying methods include the hypothesized population mean of 4.   
 

Table 2. 95% CIs and corresponding width for data in Example 2 
 

Methods CI estimate Width 

t-ci  [3.47, 4.04] 0.57 

Mad-ci  [3.52, 4.00] 0.48 

Med-ci  [3.46, 4.06] 0.60 

Trm-ci  [3.48, 4.04] 0.56 

Mod-ci  [3.47, 4.04] 0.57 

 

 

As has been considered widthwise, Mad-ci has the shortest width (0.48), which also has marginally 
captured the hypothesized mean of 4 by the upper confidence limit. The Trm-ci has the second smallest 
width (0.56). The t-ci and Mod-ci are jointly with the same width of 0.57 is outperforming Med-ci which has 
length of 0.60.  
 

As we look towards the performance of Example 2, it has clearly been revealed that Mod-ci is as good as 
t-ci, and better than Med-ci, or nearly close to Trm-ci, while outperforms Med-ci.  
 
Considering the performance of the various confidence interval estimators in two examples, it can be 
concluded that Mod-ci might have retained the efficiency of t-ci and robustness of Trm-ci. As such, one 



 

 

should not have any hesitation in recommending the new method for practicing while dealing with data with 
skewness. 
 

 
5. SIMULATION AND RESULT DISCUSSION 
 

It is well understood that to justify the usefulness of any method and recommend it for practical usages, it 
is best to evaluate the method via simulation. In this section, a simulation study has been conducted by 
simulating data from skewed distribution with varying degree of skewness so as to compare the 
performance of the various confidence interval estimators. 
 
Note that a gamma distribution is well known for its skewness in modeling data having skewness. As such, 
a gamma 𝐺(𝛽, 𝜎) distribution, with shape parameter 𝛽 and scale parameter 𝜎, having the density function 

𝑓(𝑥) =
𝑥𝛽−1exp (−

𝑥

𝜎
 )

𝜎𝛽Γ(β)
; 𝑥 > 0, 𝛽, 𝜎 > 0                                                                                                          (14) 

 

has been considered. This distribution has skewness parameter 𝛾 = 2 √𝛽⁄  , which allows simulation from 

varying skewness.  
 

Since the mean of this distribution is 𝜇 = 𝛽𝜎, in simulations the value of 𝜎 =
1

𝛽
 is chosen arbitrarily to fix the 

mean at 𝜇 = 1. The values of 𝛽 has been set to 16, 4, 1, 1/4, 1/16, 1/36 to allow skewness values to 0.5, 1, 
2, 4, 8, 12, respectively. In all simulations, the Monte Carlo size is 10,000, chosen arbitrarily, relatively large 
than is in common practice, as higher the Monte Carlo size more accuracy in the estimation could be 
reached. The simulation results of this study have been reported in Tables 3-9 for sample size varying 
between 10 and 100, arbitrarily.  
 
The estimated or simulated coverage probability is the proportion of 10,000 CIs over all MC simulations 
containing the true mean 𝜇 = 1. The width of confidence interval is estimated from average of all 10,000 
confidence intervals for each given sample size.  
 
As a computational tool, in all computation and simulation, the statistical software R (R Core Team, 2024) 
has been utilized in this article. 
 
 

Table 3. Simulated coverage probability and width of 95% CIs of mean with skewness=0.50 
 

Sample 
sizes 

Coverage probability of various CI methods Width of various CI methods 

t-ci Mad-ci Med-ci Trm-ci Mod-ci t-ci Mad-ci Med-ci Trm-ci Mod-ci 

10 0.94 0.87 0.95 0.94 0.94 0.35 0.26 0.35 0.35 0.35 

15 0.95 0.87 0.95 0.94 0.95 0.27 0.21 0.28 0.27 0.27 

20 0.95 0.87 0.95 0.94 0.95 0.23 0.18 0.23 0.23 0.23 

25 0.95 0.88 0.95 0.94 0.95 0.20 0.16 0.21 0.20 0.20 

30 0.95 0.88 0.95 0.94 0.95 0.18 0.14 0.19 0.19 0.18 

35 0.95 0.87 0.95 0.94 0.95 0.17 0.13 0.17 0.17 0.17 

40 0.95 0.88 0.95 0.93 0.95 0.16 0.12 0.16 0.16 0.16 

45 0.95 0.87 0.95 0.93 0.95 0.15 0.12 0.15 0.15 0.15 

50 0.95 0.88 0.95 0.93 0.95 0.14 0.11 0.14 0.14 0.14 

100 0.95 0.88 0.95 0.92 0.95 0.10 0.08 0.10 0.10 0.10 

Min 0.94 0.87 0.95 0.92 0.94 0.10 0.08 0.10 0.10 0.10 

Max 0.95 0.88 0.95 0.94 0.95 0.35 0.26 0.35 0.35 0.35 

 

 

 

 



 

 

Table 4. Simulated coverage probability and width of 95% CIs of mean with skewness =1 
 

Sample 
sizes 

Coverage probability of various CI methods Width of various CI methods 

t-ci Mad-ci Med-ci Trm-ci Mod-ci t-ci Mad-ci Med-ci Trm-ci Mod-ci 

10 0.93 0.86 0.94 0.93 0.93 0.69 0.51 0.71 0.69 0.69 

15 0.93 0.85 0.94 0.92 0.93 0.54 0.40 0.55 0.54 0.54 

20 0.94 0.87 0.95 0.92 0.94 0.46 0.35 0.47 0.46 0.46 

25 0.95 0.86 0.95 0.92 0.95 0.40 0.31 0.41 0.41 0.40 

30 0.94 0.87 0.95 0.91 0.94 0.37 0.28 0.37 0.37 0.37 

35 0.95 0.87 0.95 0.91 0.95 0.34 0.26 0.35 0.34 0.34 

40 0.95 0.87 0.95 0.90 0.95 0.32 0.24 0.32 0.32 0.32 

45 0.94 0.87 0.95 0.90 0.94 0.30 0.23 0.30 0.30 0.30 

50 0.95 0.87 0.95 0.89 0.95 0.28 0.22 0.29 0.28 0.28 

100 0.95 0.86 0.95 0.85 0.95 0.20 0.15 0.20 0.20 0.20 

Min 0.93 0.85 0.94 0.85 0.93 0.20 0.15 0.20 0.20 0.20 

Max 0.95 0.87 0.95 0.93 0.95 0.69 0.51 0.71 0.69 0.69 

 

Table 5. Simulated coverage probability and width of 95% CIs of mean with skewness =2 
 

Sample 
sizes 

Coverage probability of various CI methods Width of various CI methods 

t-ci Mad-ci Med-ci Trm-ci Mod-ci t-ci Mad-ci Med-ci Trm-ci Mod-ci 

10 0.90 0.82 0.91 0.87 0.90 1.32 0.92 1.40 1.34 1.32 

15 0.91 0.81 0.92 0.87 0.91 1.05 0.73 1.11 1.06 1.05 

20 0.91 0.82 0.92 0.85 0.91 0.89 0.62 0.93 0.90 0.89 

25 0.93 0.83 0.93 0.86 0.93 0.80 0.55 0.84 0.80 0.80 

30 0.93 0.83 0.94 0.83 0.93 0.73 0.51 0.76 0.74 0.73 

35 0.93 0.83 0.94 0.84 0.93 0.67 0.47 0.70 0.68 0.67 

40 0.93 0.82 0.94 0.81 0.93 0.63 0.44 0.66 0.63 0.63 

45 0.93 0.82 0.94 0.80 0.93 0.59 0.41 0.62 0.60 0.59 

50 0.94 0.83 0.95 0.78 0.94 0.56 0.39 0.59 0.57 0.56 

100 0.94 0.83 0.95 0.61 0.94 0.39 0.27 0.41 0.40 0.39 

Min 0.90 0.81 0.91 0.61 0.90 0.39 0.27 0.41 0.40 0.39 

Max 0.94 0.83 0.95 0.87 0.94 1.32 0.92 1.40 1.34 1.32 

 

 
Table 6. Simulated coverage probability and width of 95% CIs of mean with skewness=4 

 

Sample 
sizes 

Coverage probability of various CI methods Width of various CI methods 

t-ci Mad-ci Med-ci Trm-ci Mod-ci t-ci Mad-ci Med-ci Trm-ci Mod-ci 

10 0.80 0.68 0.82 0.74 0.80 2.35 1.33 2.59 2.42 2.35 

15 0.83 0.68 0.85 0.77 0.83 1.92 1.04 2.11 1.95 1.92 

20 0.85 0.68 0.87 0.73 0.85 1.68 0.90 1.84 1.73 1.68 

25 0.86 0.67 0.88 0.73 0.86 1.49 0.78 1.63 1.52 1.49 

30 0.87 0.67 0.89 0.68 0.87 1.37 0.71 1.49 1.41 1.37 

35 0.88 0.67 0.90 0.69 0.88 1.27 0.66 1.39 1.31 1.27 

40 0.89 0.67 0.91 0.64 0.89 1.19 0.61 1.30 1.23 1.19 

45 0.90 0.67 0.92 0.65 0.90 1.14 0.58 1.24 1.17 1.14 

50 0.90 0.66 0.92 0.59 0.90 1.08 0.55 1.18 1.11 1.08 

100 0.93 0.66 0.94 0.33 0.93 0.77 0.38 0.84 0.79 0.77 

Min 0.80 0.66 0.82 0.33 0.80 0.77 0.38 0.84 0.79 0.77 

Max 0.93 0.68 0.94 0.77 0.93 2.35 1.33 2.59 2.42 2.35 

 

 

 



 

 

Table 7. Simulated coverage probability and width of 95% CIs of mean with skewness=8 
 

Sample 
sizes 

Coverage probability of various CI methods Width of various CI methods 

t-ci Mad-ci Med-ci Trm-ci Mod-ci t-ci Mad-ci Med-ci Trm-ci Mod-ci 

10 0.60 0.43 0.61 0.54 0.60 3.48 1.44 3.79 3.63 3.48 

15 0.66 0.40 0.67 0.58 0.66 3.00 1.11 3.22 3.08 3.03 

20 0.69 0.39 0.70 0.57 0.69 2.74 0.94 2.91 2.84 2.77 

25 0.72 0.39 0.73 0.59 0.72 2.48 0.82 2.63 2.56 2.51 

30 0.75 0.39 0.76 0.57 0.75 2.37 0.75 2.50 2.45 2.39 

35 0.77 0.38 0.78 0.58 0.77 2.27 0.70 2.38 2.34 2.29 

40 0.78 0.39 0.79 0.55 0.78 2.08 0.63 2.18 2.15 2.10 

45 0.80 0.38 0.81 0.55 0.80 2.03 0.60 2.12 2.09 2.04 

50 0.80 0.37 0.81 0.52 0.80 1.95 0.57 2.03 2.01 1.96 

100 0.86 0.38 0.87 0.33 0.86 1.46 0.40 1.52 1.50 1.46 

Min 0.60 0.37 0.61 0.33 0.60 1.46 0.40 1.52 1.50 1.46 

Max 0.86 0.43 0.87 0.59 0.86 3.48 1.44 3.79 3.63 3.48 

 

 

Table 8. Simulated coverage probability and width of 95% CIs of mean with skewness=12 
 

Sample 
sizes 

Coverage probability of various CI methods Width of various CI methods 

t-ci Mad-ci Med-ci Trm-ci Mod-ci t-ci Mad-ci Med-ci Trm-ci Mod-ci 

10 0.44 0.28 0.45 0.40 0.44 3.95 1.43 4.23 4.14 3.95 

15 0.51 0.26 0.52 0.46 0.51 3.50 1.09 3.68 3.60 3.57 

20 0.56 0.26 0.57 0.47 0.56 3.31 0.94 3.45 3.42 3.38 

25 0.60 0.25 0.60 0.49 0.60 3.10 0.82 3.21 3.19 3.16 

30 0.61 0.25 0.62 0.49 0.62 2.89 0.73 2.99 2.97 2.95 

35 0.65 0.25 0.66 0.51 0.66 2.86 0.70 2.95 2.94 2.91 

40 0.68 0.25 0.68 0.50 0.68 2.72 0.64 2.80 2.79 2.77 

45 0.69 0.25 0.70 0.51 0.69 2.57 0.59 2.64 2.63 2.62 

50 0.71 0.26 0.72 0.51 0.72 2.56 0.57 2.63 2.62 2.60 

100 0.78 0.25 0.79 0.44 0.79 2.00 0.40 2.04 2.04 2.03 

Min 0.44 0.25 0.45 0.40 0.44 2.00 0.40 2.04 2.04 2.03 

Max 0.78 0.28 0.79 0.51 0.79 3.95 1.43 4.23 4.14 3.95 

 

 

As we look at the simulated results carefully when the skewness is minimum (0.5), in Table 3, the Mod-ci 
is as good t-ci or Med-ci, in terms of estimated coverage probability(covp). The Mad-ci is worst in terms of 
covp, which never attains the desired or expected level of covp (i.e. 0.95). However, with average width 
consideration, Mad-ci has the smallest width. Among other methods, t-ci, Med-ci and Mod-ci are similar in 
width, outperforming Trm-ci. This simulation suggests that when skewness is lower, t-ci, Med-ci and Mod-
ci are equally good. It is interesting to note that even with lower skewness the Mad-ci suffer in covp, which 
is very important aspect for an estimator. When the covp is comparable, only then average width should 
come to play in deciding which estimator is performing the best. 
 
For a quick reference, one may refer to last two rows of Tables 3-8 for overall performance reported in 
terms of minimum (Min) and maximum (Max) coverage probability (covp) and width for a given skewness 
over varying sample sizes.  The summary of Min and Max covp and width over all simulation for varying 
sample sizes and skewness has been reported in Table 9.  
 
For example, as is noted in Table 3 when skewness is 0.5, three methods t-ci, Med-ci and Mod-ci attain the 
Max coverage probability of 0.95, which is expected from any estimator for a 95% confidence interval. The 
Mad-ci is behind the expectation, with a covp between 0.87 and 0.88, never attaining the expected level of 
0.95. However, looking at the width criteria, Mad-ci is best, while underperforming significantly in coverage 
probability criteria. The researchers have to decide what is more important to them given a set of choices. 



 

 

Of course, the consideration of width is important but not by compromising the covp. By taking all simulation 
cases and facts into considerations, the proposed Mod-ci provides expected coverage probability of 0.95, 
with only one exception where coverage probability is reported to be 0.94 (of course it is acceptable) when 
the sample size 10 and skewness is 0.5. It can be argued that the Mod-ci might have retained the efficiency 
of t-ci or robustness of Med-ci, which constantly have the coverage probability of 0.95. 
 
Table 9. Min and Max covp and width, over all simulations, along with specified skewness (skew) of data 

Methods of CI Min covp (skew) Max covp (skew) Min length (skew) Max width (skew) 

t-ci 0.44 (12) 0.95 (0.50) 0.10 (0.50) 3.95 (12) 

Mad-ci 0.22 (12) 0.88 (0.50) 0.08 (0.50) 1.44 (08) 

Med-ci 0.45 (12) 0.95 (0.50) 0.10 (0.50) 4.23 (12) 

Trm-ci 0.33 (12) 0.94 (0.50) 0.10 (0.50) 4.14 (12) 

Mod-ci 0.44 (12) 0.95 (0.50) 0.10 (0.50) 3.95 (12) 

 

 

Looking critically in all simulations, for sample sizes between 10 to 100, as skewness increases from 0.5 to 
12, the Mad-ci fails to meet the expectation with attained coverage probability (covp) of min=0.22 (skew=12) 
and max=0.88 (skew=0.5), never reaching to the expectation of 0.95. It clearly suggests that Mad-ci has a 
severe underestimation in performance.  
 
When skewness is 12 (Table 8), all methods suffer in reaching the desired covp of 0.95. The highest covp 
when skewness is 12 is attained by Med-ci and Mod-ci, both with covp=0.79, followed by t-ci with covp=0.78 
Trm-ci with covp=0.51 and Mad-ci with covp=0.28. These results clearly suggest that when skewness is 
very high, estimation problem still exists and a further search for a better confidence interval approach is 
still required. However, despite the limitations highlighted in Table 8 regarding higher skewness, it is 
important to note that the newly proposed Mod-ci offers the advantage of simultaneously observing both 
the mean and the median during estimation. This dual consideration provides a higher degree of confidence 
compared to other estimation procedures. In particular, when the Mad-ci is underperforming, the Trm-ci, 
which trims a certain percentage of observations from both ends, may lead to the loss of valuable data 
information. 
 

6. Conclusion 
 

In this article, a new modified confidence interval estimator for μ, called Mod-ci, is proposed and evaluated 
against several widely used confidence interval estimators that are relevant to the proposed method. The 
other methods considered in this study include Student's t confidence interval (t-ci), the mean absolute 
deviation about the median (Mad-ci), the median t confidence interval (Med-ci), and the trimmed-mean 
confidence interval (Trm-ci), particularly in the presence of skewed data distributions. As always, the t-ci 
estimator can be relied upon when the underlying data distribution is normal. In the absence of normality, 
particularly with skewed data, the Mad-ci estimator may be preferred over others if the focus is on 
minimizing confidence interval length or width (Kibria, 2006). However, this method suffers from poor 
coverage probability. The simulation results in this study clearly demonstrate that as skewness increases 
from 0.5 to 12, the performance of Mad-ci deteriorates, showing poor coverage probability while its width 
remains the smallest across all simulations. The Med-ci estimator performs well when both sample size 
and skewness are small. The Trm-ci estimator also shows decreasing performance as skewness increases. 
In contrast, the Mod-ci estimator performs comparably to the Med-ci and t-ci, and outperforms the Trm-ci 
as skewness increases. Researchers must prioritize either coverage probability or width depending on their 
needs. Traditionally, to recommend a confidence interval estimator, a simulation is conducted, and 
performance is assessed based on coverage probability and width. If coverage probabilities are comparable 
across methods, average width can then be considered. Of course, coverage probability should never be 
compromised for the sake of width. Considering the simulation results and real-life examples, this study 
suggests that Mod-ci combines the efficiency of t-ci and the robustness of Med-ci or Trm-ci in both coverage 
probability and width. However, it is also noted that for high skewness values (≥4), estimation issues persist, 
and further research is needed to develop better methods for handling data with extreme skewness. In 
conclusion, Mod-ci provides the advantage of considering both the mean and median during estimation, 



 

 

offering a higher degree of confidence compared to other methods. Therefore, it is recommended for use 
in real-world scenarios involving skewed data. 
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