

Original Research Article

"Smart Fuel Monitoring for Agricultural Fleet Operations Using Tilt Sensors and Cloud Data

Processing"

Abstract

This paper presents a novel Internet of Things (IoT)-based fuel monitoring and tracking

system designed to address limitations of traditional fuel gauges and enhance fleet

management efficiency. The system leverages an accelerometer and Arduino microcontroller

to measure fuel level by detecting tilt angles within the tank. This data, along with real-time

location from GPS, is transmitted to a cloud platform for processing and visualization. A

mobile application, "Tracer," empowers users with insights into fuel level, location on a map,

and distance traveled. Graphical fuel consumption patterns further aid in optimization

strategies. This solution offers real-time data for improved fuel efficiency, proactive route

planning, and overall fleet management. The proposed system is successfully implemented IOT

based technology. This sys in Ada fruit IO cloud issued to provide information about vehicle location,

fuel level in tank and distance travelled by the vehicle

Keywords: Fuel level monitoring, Accelerometer, Microcontroller, GPS, Fleet management

1. Introduction

The transportation sector significantly impacts the environment and economy, making

efficient fuel management a critical concern. Traditional fuel gauges often lack accuracy,

hindering efforts to optimize fuel consumption and vehicle performance. This research

addresses these limitations by presenting an Internet of Things (IoT)-based fuel monitoring

and tracking system. This innovative system leverages advancements in sensor technology,

wireless communication, and cloud computing to provide a holistic solution. It offers real-

time fuel level monitoring, vehicle location tracking, and mileage calculation. By capturing

and analyzing these critical data points, the system empowers stakeholders. This includes

fleet managers and individual vehicle owners to make data-driven decisions. These data-

driven decisions can optimize fuel efficiency, reduce operational costs, and minimize

environmental impact.

The system achieves this by integrating a combination of hardware and software components.

These components include accelerometers, GPS modules, microcontrollers, software

applications, and cloud-based infrastructure. This integration offers a comprehensive solution

for real-time fuel level monitoring, vehicle location tracking, and mileage calculation. The

system aims to provide valuable insights into fuel consumption patterns, enabling data-driven

decision-making for optimizing fleet management and reducing operational costs. The

following sections delve into the specific hardware and software components employed, their

integration, and the system's overall functionality.

2. Methodology

This section investigates the methodology behind a system designed for IoT-based digital

fuel monitoring and tracking systems. The system utilizes various components including the

ESP8266 Wi-Fi module, Arduino boards, GPS modules, and accelerometers (Figure-1).

The ESP8266 is a cost-effective Wi-Fi microcontroller that serves as the core for data

collection, storage, and transmission to a cloud server via Wi-Fi. It offers features like

integrated cache memory for optimized performance, the ability to function as a Wi-Fi

adapter for microcontrollers and secure data transmission with encryption algorithms. The

Arduino is an open-source electronics platform that provides user-friendly hardware and

software for interacting with various sensors and actuators. It is popular due to its

affordability, cross-platform compatibility, easy-to-use programming environment, and open-

source nature allowing for customization. The GPS comprises three segments: space, control,

and user. The user segment includes GPS receivers that process satellite signals to determine

location (latitude, longitude) and time. The ADXL335 is a three-axis accelerometer used to

measure static and dynamic accelerations. A capacitor is used to store electrical charge.

Figure 1: Components of digital fuel level detector

3. App generation

Task 1 : Install Android Studio

Specifically designed to facilitate the creation of Android applications, Android Studio serves

as Google's official Integrated Development Environment (IDE). It offers a comprehensive

suite of tools that streamline the entire app development process. These tools encompass code

editing with intelligent code completion and refactoring capabilities, project structuring with

customizable templates to jumpstart development, a robust debugger to pinpoint and resolve

coding issues, a testing framework to ensure app functionality and performance, and

performance optimization profilers to identify and rectify bottlenecks within the code.

Android Studio empowers developers to test applications on a variety of emulators or

physical devices, and ultimately generate production-ready APKs for distribution.

Note: Given the continuous evolution of Android Studio, it is imperative to consult the

official documentation at developer.android.com for the most current system requirements

and installation guidelines.

To initiate Android Studio development:

 Java Development Kit (JDK): Ensure Java 7 or a later version is installed on the

system.

 Android Studio Installation: Download and install Android Studio for Windows,

macOS, or Linux, following the platform-specific instructions.

By establishing Android Studio as the development environment, developers gain access to a

robust platform for creating, testing, and refining Android applications.

a) Installing the Java Development Kit

 On computer, open a terminal window.

 Type java -version

The output includes a line: Java(™) SE Runtime Environment (build1.X.0_05-b13) and X is

the version number to look at.

 To install Android Studio, The system requires Android version 7 or later.

 If Java SE version is below 7 or not installed, you must install the latest Java SE

Development Kit (JDK) before proceeding with Android Studio.

Installing Java SE Development Kit (JDK):

 Download the JDK from the Oracle Java SE website.

 Accept the License Agreement included in the JDK package.

 Download the JDK version compatible with the development machine (avoid demos

and samples).

 Install the JDK. This process typically takes a few minutes.

 Verify the installation by opening a terminal window and typing java -version.

 Set the JAVA_HOME environment variable to point to the JDK installation directory.

Once Java is correctly installed, you can proceed with the Android Studio installation.

Note: Clear and concise instructions with numbered steps improve readability and

followability.

Windows:

 Access the system environment variables. On Windows, navigate to System ->

Advanced System Settings -> Environment Variables. On macOS or Linux,

consult the users system's documentation.

 Create a new system variable named JAVA_HOME.

 Set the variable value to the exact directory path of the users JDK installation (e.g.,

C:\Program Files\Java\jdk1.8.0_202).

 If a JAVA_HOME variable already exists, modify its value to match the users JDK

path.

 Open a command prompt and execute echo %JAVA_HOME% to verify the correct

path.

b) Installing Android Studio

To establish the Android development environment, follow these steps:

1. Ignite the users journey as an Android app developer by acquiring the latest version of

Android Studio. The official Android developer website is the users one-stop shop for the

download. Android Studio functions as the users comprehensive development

environment, empowering you with the essential tools and functionalities to materialize

the users app concepts into reality.

2. Installation:

 Execute the downloaded installer.

 Accept the default settings throughout the installation process.

 Ensure all available components are selected for installation.

3. Additional Component Download: Upon installation completion, the Android Studio

Setup Wizard will initiate the download of supplementary components. This process may

be time-consuming, depending on internet speed.

4. Once the download has finished, Android Studio will automatically launch, eagerly

awaiting the users input to begin crafting the users first Android project. This is gateway

to the exciting world of Android development, where you'll bring the users app ideas to

life.

By adhering to these steps and exercising patience during the component download phase,

you will successfully set up Android Studio for application development.

Task 2 : create a “Hello World” app

To embark on Android development adventure, we'll begin by crafting a fundamental "Hello

World" application. This application, though simple, serves as a springboard to validate a

successful Android Studio installation and introduce core Android development concepts

(Figure 2).

1. Launch Android Studio: Open Android Studio if it is not already running.

2. New Project: Initiate a new Android Studio project by clicking "Start a new Android

Studio project" on the welcome screen.

3. Project Configuration:

 Assign a name to the application (e.g., "HelloWorld").

 Specify the desired project location.

 Choose a unique company domain.

 Select "Phone and Tablet" as the target Android devices.

 Set the minimum SDK to API 15: Android 4.0.3 Ice Cream Sandwich.

 If required, Android Studio will automatically install additional components for the

chosen target SDK.

4. Activity Creation:

 Opt for the "Empty Activity" template for the simplest project structure.

 Name the main activity "MainActivity" (recommended).

 Ensure the "Generate Layout file" and "Backwards Compatibility (App Compat)"

options are checked.

 Accept the default layout name "activity_main" and click "Finish."

(By following these steps, a new Android Studio project is generated, providing a foundation

for building the "Hello World" application).

5. Upon completing the project creation steps, Android Studio undertakes the following

actions:

 Project Directory Creation: Generates a dedicated folder to house the newly created

Android Studio project.

 Gradle Build System Integration: Incorporates the Gradle build system to manage

project compilation and dependencies.

 Code Editor Interface: Opens the code editor, providing access to project files.

 Introductory Tips: Displays initial tips and recommendations to familiarize the user

with the development environment.

 Android Studio offers a comprehensive range of keyboard shortcuts to enhance

productivity. The provided tips serve as a valuable resource for gradually acquiring

proficiency in these shortcuts.

Note: Gradle is a build automation tool widely used for Android projects. For in-depth

configuration details, refer to the official Android developer documentation.

Figure 2: App generation (Creating “Hello World”)

Task 3 : Explore the project structure

This section explores the organizational structure of Android Studio projects, focusing on the

key components within the "Hello World" application template.

a) Project structure and layout

The Android Studio project is hierarchically organized into several primary directories:

1. manifests: Contains the AndroidManifest.xml file, which outlines the app's components

and configuration settings.

2. java: Houses Java source code files, categorized by package structure.

3. res: Stores non-code resources such as images, layout files, strings, and styles.

Core Directory Breakdown

i. java Directory

 Package Structure: Java code is organized into packages, with each package residing

in a corresponding folder. For example, the com.example.hello.helloworld package

contains the MainActivity.java file for the main activity.

 Test Code: The test and android Test subdirectories hold unit tests and instrumented

tests, respectively.

ii. res Directory

 Drawable: Stores image assets used within the application.

 Layout: Contains XML-based layout files defining the user interface for each activity.

The activity_main.xml file is the default layout for the main activity.

 mipmap: Houses launcher icons for different screen densities, ensuring optimal

display across various devices.

 values: Includes XML files for defining strings, dimensions, colors, and styles,

promoting code reusability and maintainability.

By understanding this project structure, developers can effectively manage and organize the

various components of their Android applications.

Note: The res directory plays a crucial role in providing a structured approach to managing

app resources, enhancing code readability, and facilitating localization efforts.

b) The Gradle build system

Android Studio employs Gradle as its primary build system. This robust tool automates the

build process, enabling efficient management and customization. As development progresses,

a deeper understanding of Gradle's capabilities becomes essential. The Gradle Scripts folder

houses configuration files crucial for the build process. Of particular importance is the

build.gradle(Module:app) file. This file serves as the primary configuration point for app-

specific dependencies. When incorporating external libraries or modules, their inclusion is

typically defined within this file. By exploring the Gradle build system and effectively

utilizing the build.gradle file, developers can optimize the app's build process and incorporate

additional functionalities as needed.

Task 4 : Create a virtual device (emulator)

An Android Virtual Device (AVD) is a simulated Android device environment used for app

testing and development. The AVD Manager facilitates the creation and management of these

virtual devices.

To establish an AVD:

1. Access AVD Manager: Launch the AVD Manager from Android Studio (Tools ->

Android -> AVD Manager).

2. Create New Device: Click the "Create Virtual Device" button to initiate the configuration

process.

3. Select Hardware: Choose a preconfigured hardware device from the available options.

Factors such as screen size, resolution, and pixel density influence this selection. For

instance, the Nexus 5 with xxhdpi density requires using launcher icons from the xxhdpi

folder and corresponding layout and drawable resources.

4. System Image Selection: Specify the desired Android system version for the virtual

device. Multiple system images may be available, including recommended, x86, and

other image categories. Download required system images if necessary.

5. Configuration Verification: Review the device configuration and finalize the creation

process.

By defining the hardware specifications and choosing an appropriate system image,

developers can create realistic virtual device environments for comprehensive app testing.

Note: AVDs offer a flexible platform for testing app compatibility across various device

configurations without requiring physical hardware.

Task 5 : App development and testing

To execute the "Hello World" application, the following steps are undertaken:

1. App Launch: Initiate the app execution process by navigating to Run -> Run app or

clicking the corresponding toolbar icon within Android Studio.

2. Emulator Selection: Choose the "Nexus 5 API 23" emulator as the deployment target

from the available emulators.

3. Emulator Initialization: The emulator starts, simulating a physical device's boot-up

process. This can be time-consuming, depending on system resources. Upon completion,

Android Studio deploys and launches the app.

4. App Verification: The "Hello World" app's user interface should be displayed within the

emulator, confirming successful deployment and execution.

Note: To optimize testing efficiency, it is recommended to keep the emulator running

between app iterations to avoid redundant boot-up processes.

 Emulator Customization and Compatibility: The AVD Manager offers customization

options for creating tailored virtual device configurations. Developers can experiment

with different hardware specifications and system images to simulate various device

scenarios. However, it's essential to be aware that not all hardware-system image

combinations are compatible, potentially impacting app execution. By effectively

utilizing the AVD Manager and understanding compatibility constraints, developers can

create realistic testing environments to ensure app robustness across diverse Android

devices.

Task 6 : Add a log statement to the app

Log statements are essential tools for debugging and monitoring application behavior. By

strategically placing log messages within the code, developers can track variable values, and

execution flow, and identify potential exceptions (Figure 3). The Android Monitor provides a

platform for viewing log messages generated by the app during runtime. To access the

Android Monitor:

 Launch Android Monitor: Click the dedicated Android Monitor button located at the

bottom of the Android Studio interface. The default view, Logcat, displays real-time log

messages from the app.

 Adjust Log Level: Modify the log level from the default "Verbose" to "Debug" using the

dropdown menu. This filtering option allows for focused viewing of debug-level

messages.

By incorporating log statements and effectively using the Android Monitor, developers can

gain valuable insights into app execution and efficiently troubleshoot issues.

Figure 3: App generation (Adding log statement to the app)

4. System architecture

A new digital fuel level indicator system is proposed to tackle the inaccuracy issues of

conventional fuel gauges (Figure-4). This system utilizes an accelerometer and a floating bob

to measure fuel level by detecting tilt angles. The tilt data is processed by an Arduino and

converted into fuel readings. This system offers several advantages over traditional gauges:

it's more accurate, provides real-time location data via GPS, calculates distance traveled, and

is cost-effective due to its use of common components. Furthermore, the system's design

allows for use in various vehicles. The data is transmitted to a cloud platform for processing

and then displayed on a user-friendly phone app, providing valuable information to both

individual drivers and fleet managers.

Figure: 4 System Architecture section.

5. Discussion

This paper proposes an Internet of Things (IoT)--based fuel monitoring and tracking system

to improve fleet management efficiency and enable proactive journey planning. The system

addresses two key challenges in fleet management: fuel optimization and route planning in

dynamic traffic conditions. The system leverages real-time data on fuel levels, vehicle

location, and mileage to achieve these goals. An accelerometer mounted within the fuel tank

detects changes in fuel level by measuring tilt variations. An Arduino microcontroller

processes this tilt data and translates it into a corresponding fuel level reading.

Simultaneously, a GPS module captures the vehicle's latitude and longitude. These critical

data points (fuel level, location) are then transmitted to a cloud platform via a Wi-Fi module

(ESP8266) for centralized storage and processing. To facilitate real-time visualization of

vehicle location, a mobile application named "Tracer" is developed. This application

connects to the cloud platform and displays the vehicle's current position on a user-friendly

Google Maps interface. For enhanced data accessibility, the system updates the cloud

platform every 30 seconds, ensuring users have access to the most recent information on fuel

level and location through the Tracer app. Furthermore, the system generates graphical

representations of fuel consumption patterns, enabling fleet managers to analyze driving

behavior and identify opportunities for fuel optimization. In essence, this IoT-based solution

offers a comprehensive approach to fleet management by providing detailed insights into fuel

usage, vehicle location, and driving patterns (Figure 4). This data empowers fleet managers to

optimize fuel consumption, plan routes proactively based on real-time traffic conditions, and

ultimately enhance overall fleet management efficiency.

Figure 4: Details on fuel consumption, vehicle location, and driving pattern on the generated

App.

6. Conclusion

This research has investigated the methodology behind a novel digital fuel monitoring and

tracking system designed for the Internet of Things (IoT) environment. The system leverages

readily available components, including an accelerometer, Arduino microcontroller, ESP8266

Wi-Fi module, and GPS module, to collect real-time data on fuel level, vehicle location, and

mileage. This data is then transmitted to a cloud platform for processing and visualization. A

user-friendly mobile application, "Tracer," provides fleet managers and individual drivers

with critical insights such as current fuel level, location on a Google Maps interface, and

distance traveled. Additionally, the system generates graphical representations of fuel

consumption patterns, enabling further analysis and identification of fuel optimization

opportunities. By offering a comprehensive approach to fleet management through detailed

fuel usage, vehicle location, and driving pattern data, this IoT-based solution empowers fleet

managers to optimize fuel consumption, proactively plan routes based on real-time traffic

conditions, and ultimately enhance overall fleet management efficiency.

Disclaimer (Artificial intelligence)

Option 1:

Author(s) hereby declare that NO generative AI technologies such as Large Language Models

(ChatGPT, COPILOT, etc.) and text-to-image generators have been used during the writing or editing

of this manuscript.

7. Reference

Almishari, S., Ababtein, N., Dash, P. and Naik, K. (2017), “An energy efficient real-time

vehicle tracking system”, 2017 IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing (PACRIM), IEEE, pp. 1–6, doi:

10.1109/PACRIM.2017.8121884.

Chiwhane, S.A., Deepa, M. and Shweta, K. (2017), “IOT Based Fuel Monitoring for Future

Vehicles.”, International Journal of Advanced Research in Computer and Communication

Engineering, Vol. 6, pp. 295–297.

Khatun, R., Antor, S.A., Ullah, A. and Hossain, A. (2019), “Vehicle Fuel Activities

Monitoring System Using IoT”, Advances in Internet of Things, Vol. 09 No. 04, pp. 63–71,

doi: 10.4236/ait.2019.94005.

Le-Tien, T. and Phung-The, V. (2010), “Routing and Tracking System for Mobile Vehicles in

Large Area”, 2010 Fifth IEEE International Symposium on Electronic Design, Test &

Applications, IEEE, pp. 297–300, doi: 10.1109/DELTA.2010.38.

Mistary, P. V and Chile, R.H. (2015), “Real time Vehicle tracking system based on ARM7

GPS and GSM technology”, 2015 Annual IEEE India Conference (INDICON), IEEE, pp. 1–

6, doi: 10.1109/INDICON.2015.7443571.

Nandimath, J.N., Sayali, J. and Pradnya, C. (2017), “IoT based fuel monitoring for future

vehicles. ”, International Research Journal of Engineering and Technology (IRJET), Vol. 4

No. 2, pp. 1361–1363.

 Shinde, P.A., Mane, Y.B. and Tarange, P.H. (2015), “Real time vehicle monitoring and

tracking system based on embedded Linux board and android application”, 2015

International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015],

IEEE, pp. 1–7, doi: 10.1109/ICCPCT.2015.71594.

