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Dynamic Behaviours of Simply Supported Non-Uniform

Rayleigh Beam under Variable-Magnitude Accelerating

Masses and Resting on Non-Uniform Bi-parametric

Foundation

Abstract

The dynamic behaviours of simply supported non-uniform Rayleigh beam under variable-magnitude

accelerating masses and resting on non-uniform bi-parametric foundation is investigated in this

paper. A partial differential equation of fourth order governs the situation. The governing

equation is converted into a series of coupled second order ordinary differential equations with

variable coefficients using the Galerkin approach, which is based on the series representation

of the Heaviside function.Two instances are examined; (i) the moving force problem when the

inertia term is neglected and (ii) the moving mass case when the inertia term is considered.

Variation of parameters are employed to get the transverse displacement response in order to

solve the moving force problem,the moving mass problem cannot be solved using the widely used

Struble’s asymptotic method due to the variability of the load magnitude. Therefore, a numer-

ical technique, specifically the Runge-Kutta of fourth order is used to obtain an approximate

solution. The numerical solution of the moving force problem is compared with the analytical

solution in order to verify the accuracy of the Runge-Kutta scheme, and it compares favorably.

From the analytical and numerical result, it is observed that the amplitude of the deflection

profile of simply supported non-uniform Rayleigh beam decreases with an increase in the value

of some vital structural parameters such as rotatory inertia correction factor, axial force, shear

modulus and foundation modulus.

Keywords: Galerkin’s method, non-uniform beam, bi-parametric foundation , accelerating

Masses and variation of parameter.
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1 Introduction

The investigation of dynamic responses exhibited by structural members resting upon elastic

foundations when subjected to moving loads holds significant interest and importance. Certain

outcomes from this study can be applied to enhance our understanding of the dynamic charac-

teristics of roadways and runways. Noteworthy contributions to this field can be found in the

works of [1], [2], [3], [4], [5] and [6]. Remarkable advancements in the study of structures under

moving loads have been made by researchers such as [7] and [8].

However, all the researchers mentioned considered only one parameter foundation model called

winkler foundation often used in pavement modelling. Since the characteristic features of the

popular Winkler foundation model is the discontinous behaviour of the surface displacement

beyond the load layer, a more realistic elastic foundation model known as the bi-parametric

foundation model is considered in this paper. This model exhibits a better representation of

real-world scenarios. The dynamic behaviour of beams on foundations, exposed to moving

loads of varying magnitudes, presents a plethora of complexities that have been extensively

explored by researchers in engineering, applied mathematics, mathematical physics, particu-

larly in the domains of railway engineering and construction engineering. The rapid expansion

of high-speed railway networks has further propelled research efforts aimed at accurately pre-

dicting the vibration tendencies of railway tracks. Pioneering work in the field of problems

involving variable speeds was undertaken by [9] ,who addressed the transverse oscillations of

beams subjected to moving variable loads. Afterwards, [10] examined the dynamic response of

finite beams with continuously applied visco-elastic foundations when loads are moving in dif-

ferent directions. Notably, idealized models of concentrated loads that act at particular points

along a single line in space were adopted in these investigations, which frequently only took

into account the force impacts of moving loads [3]. However, it is recognized that loads are

distributed over small segments or the entire length of the structural member as they traverse

it up to the present moment, scanty attention has been directed towards scenarios involving

beams on non-uniform bi-parametric foundations exposed to moving loads with variable magni-

tudes. This can be attributed to the intricacies associated with the model’s complexity and the

challenges posed in estimating parameter values, particularly when dealing with a non-uniform

bi-parametric foundation. Therefore, this paper is devoted to exploring the dynamic behavior

of non-uniform simply supported Rayleigh beams when subjected to variable-magnitude ac-

celerating masses, while being supported by non-uniform bi-parametric foundations. Through

this investigation, we aim to shed light on the dynamics underlying such scenarios.
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2 Mathematical Model

Consideration is given to the flexural vibrations of a non-uniform simply supported Rayleigh

beam sitting on a bi-parametric foundation and subjected to a variable-magnitute accelerating

load. The fourth order partial differential equation [11] is the corresponding governing equation.

∂2

∂x2

[
E I̧(x)

∂2Y (x, t)

∂x2

]
−N ∂2Y (x, t)

∂x2
+ µ(x)

∂2Y (x, t)

∂t2
− µ(x)R0

∂4Y (x, t)

∂x2∂t2
+GK(x, t) = P (x, t)

(1)

The structure’s changeable flexural stiffness is denoted by E I̧(x), the time coordinate is denoted

by t, the geographical coordinate by x, the transfer displacement is Y (x, t), the variable mass

per unit length of the non-uniform beam is µ(x). R0 is the rotatory inertial factor, N is the con-

stant axial force, the variable foundation reaction is Gk(x, t), and the translating load is P (x, t).

The foundation response and the lateral deflection Y (x, t) have the following relationship:

GK(x, t) = S(x)Y (x, t)− ∂

∂x

[
k(x)

∂Y (x, t))

∂x

]
(2)

where the two variable parameters of the elastic foundation are S(x) and K(x), which stand

for variable shear modulus and variable foundation stiffness, respectively.

When taking into account how the moving load affects the beam’s reaction, the following is the

shape of the load P (x, t).

P (x, t) = Pf (x, t)

[
1− d2

dt2

[
Y (x, t)

g

]]
(3)

where the moving force Pf (x, t) operating continuously on the beam model is expressed as

Pf (x, t) = Mg cosωtH(x− f(t)) (4)

that is

0 ≤ f(t) ≤ L (5)

The Heaviside function, H(x− f(t)), is defined as

H(x− f(t)) =

 0, x < f(t);

1, x ≥ f(t).
(6)

The convective acceleration defined by [1] is d2

dt2
, and g is the acceleration caused by gravity.

d2

dt2
=

∂2

∂t2
+ 2

d

dt
f(t)

∂2

∂x∂t
+

(
df(t)

dt

)
∂2

∂x2
+
d2

dt2
f(t)

∂

∂x
(7)
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The distance traveled by the load at any given time is denoted by f(t).

f(t) = xo + ct+
1

2
at2 (8)

where c is the initial velocity, a is the constant acceleration of motion, and x0 is the location

of application of force P (x, t) at the instance t = 0.

As an illustration, S(x) and K(x) in the problem [12] have the form

S(x) = S0(4x− 3x2 + x3) and K(x) = K0(12− 13x+ 6x2 + x3) (9)

S0 is the foundation constant and K0 is a constant shear Modulus.

Additionally, I̧(x) and µ(x) are assumed to be of the form [13].

I̧(x) = I̧0(1 + sin
πx

L
)3 and µ(x) = µo(1 + sin

πx

L
) (10)

using the equations (2)-(10) in (1), After simplications one obtains

E I̧0
4

[
∂2

∂x2

((
10 + 15 sin

πx

L
− 6 cos

2πx

L
− sin

3πx

L

)
∂2Y (x, t)

∂x2

)]
−N ∂2Y (x, t)

∂x2
+

µ0

(
1 + sin

πx

L

)
∂2Y (x, t)

∂t2
− µ0

(
1 + sin

πx

L

)
R0
∂4Y (x, t)

∂x2∂t2
+ S0

(
4x− 3x2 + x3

)
Y (x, t)

−K0

(
− 13 + 12x+ 3x2

)
∂

∂x
Y (x, t)−K0

(
12− 13x+ 6x2 + x3

)
∂2

∂x2
Y (x, t)+

M cosωtH

[
x−

(
xo + ct+

1

2
at2
)][

∂2

∂t2
+ 2(c+ at)

∂2

∂x∂t
+ (c+ at)2

∂2

∂x2
+ a

∂

∂x

]
Y (x, t)

= Mg cosωtH

[
x−

(
xo + ct+

1

2
at2
)]

(11)

In this analysis, it is assumed that the non-uniform Rayleigh beam is simply supported. Hence,

the following are the boundary conditions:

Y (0, t) = Y (L, t) = 0;
∂2Y (0, t)

∂x2
=
∂2Y (L, t)

∂x2
(12)

In order to maintain generality, the initial conditions are assumed to be

Y (x, 0) = 0 =
∂Y (x, 0)

∂t
(13)

Equation (11) represents a fourth order partial differential equation including variable coef-

ficients for a non-uniform Rayleigh beam sitting on a non-uniform bi-parametric foundation

and subjected to variable-magnitude accelerating masses. Along the length L of the beam, the

beam’s properties, such as its moment of inertia and mass per unit length, are thought to vary.
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3 Approximate Solution

The Generalized Galerkin Method (GGM), defined in [12], is one of the approximation tech-

niques most appropriate for addressing various issues in the dynamics of structures. According

to this approach, the solution to equation (11) take the form:

Yn(x, t) =
∞∑

m=1

Wm(t)Um(x) (14)

where Um(x) is selected so as to satisfy the relevant elastic boundary condition. Substituting

(14) into (11) and after some simplifications and arrangements, one obtains

N∑
i=1

[(
(Um(x) + sin

πx

L
(Um(x))−R0(U

′′
m(x) + sin

πx

L
U ′′m(x))

)
Ẅm(t) +

(
E I̧0
4µ0

(
10U iv

m (x)

+ 15 sin
πx

L
U iv
m (x)− 6 cos

2πx

L
U iv
m (x)− sin

3πx

L
U iv
m (x)− 30π

L
cos

πx

L
U ′′′m(x) +

24π

L
sin

2πx

L
U ′′′m(x)

− 6π

L
cos

3πx

L
U ′′′m(x)− 15π2

L2
sin

πx

L
U ′′m(x) +

24π2

L2
cos

2πx

L
U ′′m(x) +

9π2

L2
sin

3πx

L
U ′′m(x)

)
− N0

µ0

U ′′m(x)

+
S0

µ0

(
4xUm(x)− 3x2Um(x) + x3Um(x)

)
− K0

µ0

(
− 13U ′m(x) + 12xU ′m(x) + 3x2U ′m(x) + 12U ′′m(x)

− 13xU ′′m(x)− 6x2U ′′m(x) + x3U ′′m(x)

)]
Wm(t) +

N∑
i=1

M cosωt

µ0

(
H

[
x−

(
xo + ct+

1

2
at2
)]
Um(x)Ẅm(t)

+ 2(c+ at)H

[
x−

(
xo + ct+

1

2
at2
)]
U ′m(x)Ẇm(t) + (c+ at)2H

[
x−

(
xo + ct+

1

2
at2
)]
U ′′m(x)Wm(t)+

aH

[
x−

(
xo + ct+

1

2
at2
)]
U ′m(x)Wm(t)

)
− Mg cosωt

µ0

H

[
x−

(
xo + ct+

1

2
at2
)]

= 0

(15)

where the first derivatives of Um(x) and Wm(t) with respect to x and t, respectively, are U ′m(x)

and Ẇm(t). The expression on the right hand side of equation (15) must be orthogonal to func-

tion Uk(x) in order to determine Wm(t). Therefore, following arrangement and simplification,

one gets

N∑
m=0

{
D0(m, k)Ẅm(t) +D1(m, k)Wm(t) +

M cosωt

µ0

(
V25(m, k)Ẅm(t) + 2(c+ at)V26(m, k)Ẇm(t)

+ (c+ at)V27(m, k)Wm(t) + aV28(m, k)Wm(t)

)}
=
Mg cosωt

µ0

V29(t)

(16)

where

D0(m.k) = (V0(m, k) + V1(m, k))−R0(V2(m, k) + V3(m, k))
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D1(m, k) =

(
QA

(
10V4(m, k)− 15V5(m, k)− 6V6(m, k)− V7(m, k) +

30π

L
V8(m, k) + 24

π

L
V9(m, k)

− 6
π

L
V10(m, k)− 15

π2

L2
V11(m, k) + 24

π2

L2
V12(m, k) + 3

π2

L2
V13(m, k)

)
−QBV14(m, k)

−QC

(
4V15(m, k)− 3V16(m, k) + V17(m, k)

)
−QD

(
− 13V18(m, k) + 12V19(m, k)− 3V20(m, k)

+ 12V21(m, k)− 13V22(m, k)− 6V23(m, k)− V24(m, k)

))
QA =

4I̧0
µ0

, QB =
N0

µ0

, QC =
S0

µ0

and QD =
K0

µ0

V0(m, k) =

∫ L

0

Um(x)Uk(x)dx

V1(m, k) =

∫ L

0

sin
πx

L
Um(x)Uk(x)dx

V2(m, k) =

∫ L

0

U ′′m(x)Uk(x)dx

V3(m, k) =

∫ L

0

sin
πx

L
U ′′m(x)Uk(x)dx

V4(m, k) =

∫ L

0

U iv
m (x)Uk(x)dx

V5(m, k) =

∫ L

0

sin
πx

L
U iv
m (x)Uk(x)dx

V6(m, k) =

∫ L

0

cos
2πx

L
U iv
m (x)Uk(x)dx

V7(m, k) =

∫ L

0

sin
3πx

L
U iv
m (x)Uk(x)dx

V8(m, k) =

∫ L

0

cos
πx

L
U ′′′m(x)Uk(x)dx

V9(m, k) =

∫ L

0

sin 2
πx

L
U ′′′m(x)Uk(x)dx

V10(m, k) =

∫ L

0

cos 3
πx

L
U ′′′m(x)Uk(x)dx

V11(m, k) =

∫ L

0

sin
πx

L
U ′′m(x)Uk(x)dx

V12(m, k) =

∫ L

0

cos 2
πx

L
U ′′m(x)Uk(x)dx

V13(m, k) =

∫ L

0

sin 3
πx

L
U ′′m(x)Uk(x)dx

V14(m, k) =

∫ L

0

Um(x)Uk(x)dx

V15(m, k) =

∫ L

0

xUm(x)Uk(x)dx

V16(m, k) =

∫ L

0

x2Um(x)Uk(x)dx

6
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V17(m, k) =

∫ L

0

x3Um(x)Uk(x)dx

V18(m, k) =

∫ L

0

U ′m(x)Uk(x)dx

V19(m, k) =

∫ L

0

xU ′m(x)Uk(x)dx

V20(m, k) =

∫ L

0

x2U ′m(x)Uk(x)dx

V21(m, k) = B2(m, k)

V22(m, k) =

∫ L

0

xU ′′m(x)Uk(x)dx

V23(m, k) =

∫ L

0

x2U ′′m(x)Uk(x)dx

V24(m, k) =

∫ L

0

x2U ′′m(x)Uk(x)dx

V25(m, k) =

∫ L

0

H

[
x−

(
xo + ct+

1

2
at2
)]
Um(x)Uk(x)dx

V26(m, k) =

∫ L

0

H

[
x−

(
xo + ct+

1

2
at2
)]
U ′m(x)Uk(x)dx

V27(m, k) =

∫ L

0

H

[
x−

(
xo + ct+

1

2
at2
)]
U ′′m(x)Uk(x)dx

V28(m, k) = V26(m, k)

V29(m, k) =

∫ L

0

H

[
x−

(
xo + ct+

1

2
at2
)]
Uk(x)dx (18)

With basic supports at edges x = 0 and x = L in our elastic system, we select

Um(x) =
sinmπx

L
and Uk(x) =

sin kπx

L
(19)

Equation (18) is solved by substituting expressions for Um(x) and Uk(x), and by using the

Heaviside unit step function’s Fourier series representation, specifically;

H =
1

4
+

1

π

∞∑
0

sin(2n+ 1)π(x− (x0 + ct+ 1
2
at2))

(2n+ 1)
, 0 < x < L (20)

Several reductions in complexity and reorganizations gives

7
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D0(m, k)Ẅm(t) +D1(m, k)Wm(t) + Γ0 cosωt

{
L

(
1

4
Q1 +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q1A

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q1B

)
Ẅm(t) + 2L(c+ at)

(
1

4
Q2

+
1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q2A −

1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q2B

)
Ẇm(t)

+

(
L(c+ at)2

(
1

4
Q3 +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q3A

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q3B

)
+ La

(
1

4
Q2

+
1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q2A −

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q2B

))
Wm(t)

}
=
LMg cosωt

kπµ0

(
− (−1)k + cos kπ

L
(x0 + ct+

1

2
at2)

)
(21)

where

Q1 =

∫ L

0

sin
mπx

L
sin

kπx

L
dx

Q1A =

∫ L

0

sin(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx

Q1B =

∫ L

0

cos(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx

Q2 =
mπ

L

∫ L

0

cos
mπx

L
sin

kπx

L
dx

Q2A =
mπ

L

∫ L

0

sin(2n+ 1)πx cos
mπx

L
sin

kπx

L
dx

Q2B =
mπ

L

∫ L

0

cos(2n+ 1)πx cos
mπx

L
sin

kπx

L
dx

Q3 = −(
mπ

L
)2
∫ L

0

sin
mπx

L
sin

kπx

L
dx

Q3A = −(
mπ

L
)2
∫ L

0

sin(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx

Q3B = −(
mπ

L
)2
∫ L

0

cos(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx

Γ0 =
M

µ0L
(22)

Γ0 is the mass ratio

Equation (21) is the basic transformed equation of the non-uniform Rayleigh beam with simple

support that is subjected to an accelerating force of varying size and rests on a bi-parametric

foundation. We will address two instances of the equation in the sections that follow.
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CASE I: Non-uniform Rayleigh beam Traversed by Moving Force

The classic situation of a moving force problem arises if we neglect the inertia factor. With a

few simplifications and reorganizations, equation (21), under this supposition Γ0 = 0, becomes

Ẅm(t) + γ2fWm(t) = Pm cosωt

{
− (−1)k + cos kπ

L
(x0 + ct+

1

2
at2)

}
(23)

where.

Pm =
LMg

kπµ0D0(m, k)
and γ2f =

D0(m, k)

D1(m, k)
(24)

The approach of variation of parameters is used to solve equation (23). Firstly, it can be easily

demonstrated that the homogeneous component of (23) has a generic solution that is provided

by

Wc(t) = C1 cos γf t+ C2 sin γf t (25)

where C1 and C2 are constants. Thus a particular solution to equation (23) takes the form

Wp(t) = τ1(t) cos γf t+ τ2(t) sin γf t (26)

The functions that need to be determined are τ1(t) and τ2(t). It is easy to demonstrate from

equation (23) that

τ1(t) = −−Pm

γf

{∫
cosωt

(
− (−1)k + cos kπ

L
(x0 + ct+

1

2
at2)

)
sin γf t

}
dt (27)

τ2(t) = −−Pm

γf

{∫
cosωt

(
− (−1)k + cos kπ

L
(x0 + ct+

1

2
at2)

)
cos γf t

}
dt (28)

By truncating the power series of sine and cosine at order 2, equations (27) and (28) becomes.

τ1(t) = −Pm

2γf

∫ {
θf (sin Θ1t+sin Θ2t)+(sin Θ1t+sin Θ2t)(β0 +β1t+β2t

2 +β3 +β4t
4)

}
dt (29)

and,

τ2(t) = −Pm

2γf

∫ {
θf (cos Θ1t+cos Θ2t)+(cos Θ1t+cos Θ2t)(β0+β1t+β2t

2+β3+β4t
4)

}
dt (30)

where

Uf = (
Kπ

L
)2, β0 = Ufxo

2, β1 = 2cUfxo
2, β2 = Uf (axo2 + c2), β3 = acUf β4 =

1

4
a2Uf

θf = −(−1)k, Θ1 = γf + ω, Θ2 = γf − ω (31)

After simplification and arrangement, one obtains

τ1(t) = − Pn

2θf

{
θf (J0+U0)+(β0J0+β1J1+β2J2+β3J3+β4J4+β0U0+β1U1+β2U2+β3U3+β4U4)

}
(32)

τ2(t) = − Pn

2θf

{
θf (V0+ξ0)+(β0V0+β1V1+β2V2+β3V3+β4V4+β0ξ0+β1ξ1+β2ξ2+β3ξ3+β4ξ4)

}
(33)

where

9
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J0 =

∫
sin Θ1tdt

J1 =

∫
t sin Θ1tdt

J2 =

∫
t2 sin Θ1tdt

J3 =

∫
t3 sin Θ1tdt

J4 =

∫
t4 sin Θ1tdt

U0 =

∫
sin Θ2tdt

U1 =

∫
t sin Θ2tdt

U2 =

∫
t2 sin Θ2tdt

U3 =

∫
t3 sin Θ2tdt

U4 =

∫
t4 sin Θ2tdt

V0 =

∫
cos Θ1tdt

V1 =

∫
t cos Θ1tdt

V2 =

∫
t2 cos Θ1tdt

V3 =

∫
t3 cos Θ1tdt

V4 =

∫
t4 cos Θ1tdt

ξ0 =

∫
cos Θ2tdt

ξ1 =

∫
t cos Θ2tdt

ξ2 =

∫
t2 cos Θ2tdt

ξ3 =

∫
t3 cos Θ2tdt

ξ4 =

∫
t4 cos Θ2tdt (34)

solving the indefinate integrals in equation (34) and substitute into equations (32) and (33),

one obtains

τ1(t) =
−Pm

2γf

{
−
(
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
cos Θ1t

Θ1

+
cos Θ2t

Θ2

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
sin Θ1t

Θ2
1

+
sin Θ2t

Θ2
2

)
+

(
2β2 + 6β3t+ 12β4t

2

)(
cos Θ1t

Θ3
1

+
cos Θ2t

Θ3
2

)
−
(

6β3 + 24β4t

)(
sin Θ1t

Θ4
1

+
sin Θ2t

Θ4
2

)
− 24β4

(
cos Θ1t

Θ5
1

+
cos Θ2t

Θ5
2

)}
(35)

τ2(t) =
−Pm

2γf

{(
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
sin Θ1t

Θ1

+
sin Θ2t

Θ2

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
cos Θ1t

Θ2
1

+
cos Θ2t

Θ2
2

)
−
(

2β2 + 6β3t+ 12β4t
2

)(
sin Θ1t

Θ3
1

+
sin Θ2t

Θ3
2

)
−
(

6β3 + 24β4t

)(
cos Θ1t

Θ4
1

+
cos Θ2t

Θ4
2

)
+ 24β4

(
sin Θ1t

Θ5
1

+
sin Θ2t

Θ5
2

)}
(36)

subtituting equations (35) and (36) into equation (26), the particular solution of the non-

homogeneous second order differential equation takes the form

10
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Wp(t) =
−Pm

2γf

{(
−
(
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
cos Θ1t

Θ1

+
cos Θ2t

Θ2

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
sin Θ1t

Θ2
1

+
sin Θ2t

Θ2
2

)
+

(
2β2 + 6β3t+ 12β4t

2

)(
cos Θ1t

Θ3
1

+
cos Θ2t

Θ3
2

)
−
(

6β3 + 24β4t

)(
sin Θ1t

Θ4
1

+
sin Θ2t

Θ4
2

)
− 24β4

(
cos Θ1t

Θ5
1

+
cos Θ2t

Θ5
2

))
cos γf t

+

((
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
sin Θ1t

Θ1

+
sin Θ2t

Θ2

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
cos Θ1t

Θ2
1

+
cos Θ2t

Θ2
2

)
−
(

2β2 + 6β3t+ 12β4t
2

)(
sin Θ1t

Θ3
1

+
sin Θ2t

Θ3
2

)
−
(

6β3 + 24β4t

)(
cos Θ1t

Θ4
1

+
cos Θ2t

Θ4
2

)
+ 24β4

(
sin Θ1t

Θ5
1

+
sin Θ2t

Θ5
2

))
sin γf t

}
(37)

Consequently,

WG(t) = Wc(t) +Wp(t) (38)

Applying the initial conditional (13) to (38), the constants are found to be

C1 =
Pm

2γf

{
−
(
θf + β0

)(
1

Θ1

+
1

Θ2

)
+ 2β2

(
1

Θ3
1

+
1

Θ3
2

)
− 24β4

(
1

Θ5
1

+
1

Θ5
2

)}
(39)

and

C2 =
Pm

2γf

{
β1

(
1

Θ2
1

+
1

Θ2
2

)
− 6β3

(
1

Θ4
1

+
1

Θ4
2

)}
(40)

after certain simplifications and rearrangements, substituting (37), (39) and (40) into (38) and

inverting the result yields

Ym(x, t) =
∞∑
n=0

{
− Pm

2γfΘ5
1Θ

5
2

{(
−
(
θf + β0

)(
Θ4

1Θ
5
2 + Θ5

1Θ
4
2

)
+ 2β2

(
Θ2

1Θ
5
2 + Θ5

1Θ
2
2

)
− 24β4

(
Θ5

2 + Θ5
1

))
cos γf t+

(
β1

(
Θ3

1Θ
5
2 + Θ5

1Θ
3
2

)
− 6β3

(
Θ1Θ

5
2 + Θ5

1Θ2

))
sin γf t

+

((
−
(
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
Θ4

1Θ
5
2 cos Θ1t+ Θ5

1Θ
4
2 cos Θ2t

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
Θ3

1Θ
5
2 sin Θ1t+ Θ5

1Θ
3
2 sin Θ2t

)
+

(
2β2 + 6β3t+ 12β4t

2

)(
Θ2

1Θ
5
2 cos Θ1t+ Θ5

1Θ
2
2 cos Θ2t

)
−
(

6β3 + 24β4t

)(
Θ1Θ

5
2 sin Θ1t+ Θ5

1Θ2 sin Θ2t

)
− 24β4

(
Θ5

2 cos Θ1t+ Θ5
1 cos Θ2t

))
cos γf t

+

((
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
Θ4

1Θ
5
2 sin Θ1t+ Θ5

1Θ
4
2 sin Θ2t

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
Θ3

1Θ
5
2 cos Θ1t+ Θ5

1Θ
3
2 cos Θ2t

)
11
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−
(

2β2 + 6β3t+ 12β4t
2

)(
Θ2

1Θ
5
2 sin Θ1t+ Θ5

1Θ
2
2 sin Θ2t

)
−
(

6β3 + 24β4t

)(
Θ1Θ

5
2 cos Θ1t+ Θ5

1Θ2 cos Θ2t

)
+ 24β4

(
Θ5

2 sin Θ1t+ Θ5
1 sin Θ2t

))
sin γf t

)}}
× sin

mπ

L
x

(41)

The transverse displacement response of a non-unifom simply supported Raleigh beam under

varying magnitudes of accelerating loads while resting on a biparametric foundation is repre-

sented by equation (41).

CASE 2: Non-uniform Rayleigh beam Traversed by Moving Mass

The problem is known as the moving mass problem if the inertia term is kept in. In this in-

stance, the full equation (21) must be solved. That is, if Γ0 6= 0.

It appears that due to the load magnitude fluctuation, the widely utilized Struble’s asymptotic

method was unable to solve the coupled second order ordinary differential equation. Conse-

quently, we turn to the Runge-Kutta of fourth order approximate numerical solution method.

Consequently, we rearrange equation (21)

D0(m, k)Ẅm(t) +D1(m, k)Wm(t) + Γ0 cosωt

{
Z1(n,m, k)Ẅm(t) + 2L(c+ at)Z2(n,m, k)Ẇm(t)

+

(
L(c+ at)Z3(n,m, k) + aLZ2(n,m, k)

)
Wm(t)

}
=
LMg cosωt

kπµ0

(
− (−1)k + cos kπ

L
(x0 + ct+

1

2
at2)

)
(42)

where

Z1(n,m, k) =
1

4
Q1 +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q1A −

1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q1B

(43)

Z2(n,m, k) =
1

4
Q2 +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q2A −

1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q2B

(44)

Z3(n,m, k) =
1

4
Q3 +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q3A −

1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q3B

(45)

futher simplification and arrangments of equation (42), one obtains

Ẅm(t) +DC1Ẇm(t) +DC2Wm(t) = DC3 (46)

DC1 =
2L(c+ at)Γ0 cosωtZ2(n,m, k)

D0(m, k) + Γ0 cosωtZ1(n,m, k)
(47)

12
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DC2 =
D1(m,K)LΓ0(C + at)2 cosωtZ3(n,m, k) + aLΓ0 cosωtZ2(n,m, k)

D0(m, k) + Γ0 cosωtZ1(n,m, k)
(48)

DC3 =
LMg cosωt(

D0(m, k) + Γ0 cosωtZ1(n,m, k)

)
µ0kπ

(
− (−1)k + cos kπ

L
(x0 + ct+

1

2
at2)

)
(49)

The fourth order Runge-Kutta scheme is used to solve (49)

4 Numerical Results and Discussions

The non-uniform beam with length L = 12.29m, load velocity c = 8.12m/s, modulus of

elasticity E = 2.10924 × 10−3N/m2, and moment of inertia I0 = 2.87698 × 109kgm2 are used

to demonstrate the analysis presented in this work.

Fig. 1: Moving force deflection for a simply supported non-uniform Rayleigh beam under

variable-magnitude accelerating Masses and sitting on a bi-parametric foundation for fixed

values of S0, K0, and N , for different amounts of rotatory inertia.

Fig. 2: Moving mass deflection for a simply supported non-uniform Rayleigh beam under

variable-magnitude accelerating Masses and sitting on a bi-parametric foundation for different

values of the rotatory inertia, for fixed values of S0, K0, and N

13
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Fig. 3: Moving force deflection for a simply supported non-uniform Rayleigh beam under

variable-magnitude accelerating Masses and sitting on a bi-parametric foundation for fixed

values of R0, S0 and N , for different amounts of Shear modulus.

Fig. 4: Moving mass deflection for a simply supported non-uniform Rayleigh beam under

variable-magnitude accelerating Masses and sitting on a bi-parametric foundation for different

values of the Shear modulus, for fixed values of S0, R0 and N .

Fig. 5: Comparing the deflection profile of the moving mass and force of a simply supported

non-uniform Rayleigh beam under variable-magnitude accelerating Masses and sitting on a

bi-parametric foundation with fixed values of K0, N , R0, and S0.
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Fig. 6: Comparison of the displacement response of analytical solution and numerical solution of

a simply supported non-uniform Rayleigh beam under variable-magnitude accelerating Masses

and sitting on a bi-parametric foundation for fixed values K0, N , R0, and S0.

Fig. 1 and Fig. 2 shows the deflection profile of the simply supported non-uniform Rayleigh

beam under variable magnitude acelerating masses for various values of rotatory inertia and

fixed value of foundation stiffness S0, shear modulus K0 and axial force N for moving distributed

force and moving distributed mass respectively . It is observed that the higher values of

Rotatory inertia reduce the deflection of the beam for both moving mass and moving force.

Similarly, Fig. 3 and Fig. 4 shows the deflection profile of the simply supported non-uniform

Rayleigh beam under variable magnitude acelerating masses for various values of shear modulus

and fixed value of foundation stiffness S0, rotatory inertia R0 and axial force N for moving

distributed force and moving distributed mass respectively. It is observed that the higher

values of Shear modulus reduce the deflection of the beam for both moving mass and moving

force.

Fig. 5 show the comparison of the moving mass and force of a simply supported non-uniform

Rayleigh beam with fixed values of foundation stiffness S0, rotatory inertia R0, Shear modulus

K0 and axial force N . The moving distributed force problem has a larger response amplitude

than the moving distributed mass problem, and its critical speed is smaller than that of the

moving distributed mass problem, according to the graphs. Therefore, in moving distributed

forces as opposed to moving distributed masses, resonance is obtained earlier.

Finally, Fig 6. show the comparison between the numerical solution and approximate analytical

solution for the deflection response of the moving distributed force of simply supported non-

uniform Rayleigh beam resting on a bi-parametric foundation and under a variable-magnitude

accelerating mass. Given that the amplitude of the two graph profiles is almost equal, it can be

concluded that the Runge-Kutta method is a suitable approach for handling such a dynamic

situation.
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5 Conclusion

This paper presents a solution approach for the simply supported non-uniform Rayleigh beam

resting on a bi-parametric foundation and under a variable-magnitude accelerating mass. The

approximation procedure based on the generalize Galerkin method. The non-uniform Rayleigh

beam’s governing fourth-order differential equation with variable and singular coefficients is

given closed-form solutions. Considerable attention is paid to the impact of relevant factors

such the shear modulus, axial force, rotatory inertia correction factor, and foundation stiff-

ness. Plotted curve analysis reveals that a decrease in the deflection of the simply supported

non-uniform Rayleigh beam occurs with an increase in structural parameters. Bi-parametric

foundations, thus, guarantee the safety of accelerating loads of varying magnitude while simul-

taneously reducing vibration.
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