
Mathematical Modeling of Diarrhea with Vaccination and 

Treatment Factors 

Abstract 
Diarrhea is the second leading cause of death in children under five years old. It is responsible for 

killing thousands of children globally. It kills more young children than other childhood infectious 

diseases. Diarrhea illness alone causes more than 1.5 million deaths annually, thereby making 

it a worse health threat than infectious diseases in terms of death roll. Nonetheless, diarrhea 

is avoidable and manageable with appropriate treatment. Therefore, this research studied the 

analysis of a mathematical model of diarrhea dynamics in the presence of vaccination and 

treatment. To do this, a compartmental mathematical model of (S, V, E, I, R) was considered to 

investigate the effect of vaccine and treatment in the dynamic spread of diarrhea in the community. 

The mathematical analysis showed that the disease-free equilibrium point and endemic point of the 

model exist. Also the basic reproduction Ro was determined through the Next Generation Matrix. 

The model has a disease-free equilibrium point which is locally asymptotically stable and globally 

stable over time. The model also has stability of the endemic equilibrium which is stable when 

Ro > 1. Numerical simulations are given to demonstrate the effects of vaccine and treatment on the 

spread of diarrhea and the result presented showed that vaccine and treatment have a pronounced 

effect of reducing diarrhea infection. Moreover, combined with sensitivity analysis, we observe that 

even though vaccination is adequate but not sufficient in reducing the basic reproduction number, 

it effectively manages the disease. 
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1 Introduction 
Diarrhea is a medical condition characterized by frequent loose and watery bowel movements, 

accompanied by abdominal bloating and pressure. These conditions can be categorized as acute, 

persistent, or chronic. Typically, acute diarrhea lasts for only one day or two and subsides without 

any treatment. Persistent diarrhea lasts for over two weeks but less than four weeks, while chronic 

diarrhea lasts for at least four weeks. The symptoms of chronic diarrhea may be ongoing or may come 

and go. Although immunity after infection is temporary, subsequent infections are usually less severe 

than the initial ones. However, diarrhea can be prevented and effectively treated with appropriate 

measures. 

The use of differential equations to model biological, ecological, and medical systems has a long 

history dating back to Verhulst, Malthus, Lotka, and Volterra, (1). Differential equations are known to 

be useful for modeling natural phenomena. Ordinary differential equations, for instance, are known 

to be very useful in modeling population behavior, transmission of infectious diseases, interaction 

between two or more species, and other biological processes, see ((2), (3), (4), (5) and (6)). Loopman 

et al.(7) analyzed the dynamic transmission model of nor virus infection disease and immunity. It was 

found that the asymptomatic prevalence of norovirus can change dramatically with small changes in 

the basic reproduction number Ro. Adewale et al.(8) worked on mathematical analysis of diarrhea 

in the presence of a vaccine. They computed Ro in cases where Ro > 1, the disease became 

endemic, meaning the disease remained in the population at a consistent rate, as one infected 

individual transmits the disease to one susceptible. Akinola et al.(9) also studied similar model 

with vaccine and found out that vaccination of susceptible individuals will reduce the spread of 

diarrhea disease compared to when there is no vaccination. Ardkaew and Tongkumchum, (10) 

also worked on the epidemiological model of diarrhea diseases and its application in prevention 

and control. The model was able to mimic the observed epidemiology patterns of infantile diarrhea 



diseases associated mainly with enterotoxigenic Escherichia coli or with rotavirus. The proposed 

mathematical model predicted a plausible pattern of the serological profile of an enteric infection. 

Bonyah et al.(11) investigated a mathematical model of (SITR) to investigate the effect of saturation 

treatment in the dynamic spread of diarrhea in the community. Cherry et al.(12) worked on the 

Assessment of bovine viral diarrhea virus management utilizing a mathematical model depicting 

infection dynamics. The model architecture was a development of the traditional model framework 

using susceptible, infectious, and removed animals (the SIR model). The model forecasted a 1.2% 

rate of persistent infection (falling within the fields’s estimated range) and showed limited 

sensitivity 

to changes in structures or parameter values. This model drew important conclusions regarding the 

control of Bovine Viral Diarrhea (BVD), particularly concerning the importance of persistently infected 

(PI) animals in maintaining BVD as an endemic entity in the herd. A model of dysentery diarrhea 

was proposed to investigate the criteria for stability of the disease free-equilibrium which makes the 

reproduction number the most sensitive to the control of the effective rate of transmission of dysentery 

diarrhea.(13). Other similar investigations on the endemic diseases using similar model to estimate 

the active cases, deaths, recoveries in order to control the disease in the presence of vaccine and 

treatment were carried out by ((14),(15),(16) and (17)). 

Despite various measures taken, eradicating diarrhea has proven to be a challenging task due to 

persistent infection despite the presence of a vaccine. A deterministic epidemic model (SVEIR) is 

considered in this study to gain more insight into the effect of vaccines and treatment of infected 

individuals on the dynamic spread of diarrhea in the population. Results established indicate that the 

vaccine plays a vital role in the control of the spread of diarrhea disease, the increase in susceptible 

individuals is dependent on the effectiveness of the vaccine given against diarrhea and the rate of 

treatment decreases the number of infected individuals. 
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1.1 Model Diagram 
The model comprises of Susceptible (S), Vaccinated (V), Exposed (E), Infected (I), and Recovered 

(R), i.e SVEIR. Figure 1 illustrates the relationship between the human compartments within the 

population as well depicts the movement of individuals within the compartment and in and out of 

population. At time t, the total human population is, 

N = S + V + E + I + R 

Figure 1: Diagram of the S, V, E, I, R Model. 

1.2 Model Equation 
Here we consider five classes of individuals which are: susceptible (S), vaccinated (V), exposed 

(E), infected (I), and recovered (R) which is SVEIR. This is an appropriate model for a disease 

where there is a considerable post-infected incubation period in which the exposed person is not yet 

infectious. From the model diagram in Figure 1, the susceptible population increases due to individual 

recruitment at rate π. This population decreases due to vaccination, with a fraction ρ of vaccinated 

individuals leaving, and susceptible individuals acquiring diarrhea infection through effective contact 

with infected people at rate β. The susceptible population increases from recovered individuals 

returning and vaccinated individuals experiencing waning immunity at rates α and ω respectively, 

and decreases at rate μ. The vaccinated class increases at rate ρπ and decreases due to waning 

immunity and natural death at rates ω and μ respectively. The exposed class increases from new 

infections among susceptible individuals at rate β and decreases due to natural death at rate μ and 

individuals becoming infected at rate σ. Infected individuals increase from the exposed class at rate 

σ and decrease due to treatment, natural death, and induced death at rates τ , μ, and δ respectively. 

The recovered class increases from treated infected individuals at rate τ and decreases due to natural 



death and individuals returning to the susceptible class at rates μ and α respectively. 
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Thus, the SVEIR model consists of a set of five differential equations, 

dS 

dt 

= (1 − ρ)π − βSI + ωV − μS + αR 

dV 

dt 

= ρπ − (μ + ω)V 

dE 

dt 

= βSI − (μ + σ)E 

dI 

dt 

= σE − (μ + τ + δ)I 

dR 

dt 

= τ I − (μ + α)R 

(1.1) 

1.3 Description of Parameters of the Model 
Parameter Description 

π Recruitment rate 

ρ Vaccine rate 

β Contact rate 

ω Rate at which vaccine wanes off 

μ Natural death 

σ Rate at which the exposed individuals becomes infected 

τ Rate at which infected individual are treated 

δ Induced diseases death rate 

α Rate at which recovered individuals move to susceptible class 

2 Disease Free Equilibrium 
The steady state, also known as disease-free equilibrium, occurs when there is no infection, meaning 

that both the exposed and infected classes are at zero. That is, putting E = I = 0, the model equation 

Eq. (1.1) becomes; 

dS 

dt 

= (1 − ρ)π − βSI + ωV − μS + αR 

dV 



dt 

= ρπ − μV − ωV 

dR 

dt 

= τ I − μR − αR 

Solving for S, V , and R, gives the disease free equilibrium as 

Eo = (So, Vo,Eo, Io,Ro) = 

_ 

(μ + ω)(1 − ρ)π + ωρπ 

μ(μ + ω) 

, 

ρπ 

μ + ω 

, 0, 0, 0 

_ 

. (2.1) 

3 Endemic Equilibrium 
At endemic equilibrium, there is presence of infection in the host population i.e E, I ̸= 0. 

To obtain an endemic equilibrium, we set each equations in the model formulated to zero in Eq. (1.1) 

to get, 
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(1 − ρ)π − βSI + ωV − μS + αR = 0 

ρπ − μV − ωV = 0 

βSI − μE − σE = 0 

σE − μI − τ I − δI = 0 

τ I − μR − αR = 0 

and Solving for S, V,E, I,R, we have 

V ∗ = 

ρπ 

μ + ω 

, 

S∗ = 

(μ + σ)(μ + τ + δ) 

σβ 

, 

I∗ = 

ασ(μ + α) 

(μ + τ + δ)(μ + σ)(μ + α) 

− τασ 

_ 



(1 − ρ)π 

α 

+ 

ωρπ 

α(μ + ω) 

− 

μ(μ + τ + δ)(μ + σ) 

ασβ 

_ 

, 

E∗ = 

1 

(μ + σ) − τσ 

_ 

(1 − ρ)π 

α 

+ 

ωρπ 

α(μ + ω__________) 

− 

μ(μ + τ + δ)(μ + σ) 

ασβ 

_ 

, 

R∗ = 

1 

(μ + τ + δ)(μ + σ)(μ + α) 

_ 

(1 − ρ)π 

α 

+ 

ωρπ 

α(μ + ω) 

− 

μ(μ + τ + δ)(μ + σ) 

ασβ 

_ 

. 

4 Basic Reproduction Number Ro 

The basic reproduction number Ro of this model is calculated by using the next generation matrix 

dE 

dt 

= βSI − μE − σE = F1 

dI 



dt 

= σE − μI − τ I − δI = F2 

F = 

 

 
∂F1 

∂I 

∂F1 

∂E 

∂F2 

∂I 

∂F2 

∂E 

 

 = 
_ 

βSo 0 

0 0 
_I 

E 

V = 

 

 
∂F1 

∂I 

∂F1 

∂E 

∂F2 

∂I 

∂F2 

∂E 

 

 = 
_ 

0 (μ + σ) 

(μ + τ + δ) −σ 

_I 

E 

which implies 

V −1 = − 

_ 

1 

(μ + σ)(μ + τ + δ) 

__ 

−σ −(μ + σ) 

−(μ + τ + δ) 0 

_ 

FV −1 = 

_ 

βS0 0 

0 0 
_  
σ 

(μ+σ)(μ+τ+δ) 

1 



μ+τ+δ 

1 

μ+σ 0 
! 

= 
_ βS0σ 

(μ+σ)(μ+τ+δ) 

βS0 

μ+τ+δ 

0 0 
_ 

|FV −1 − Iλ| = 0 

____ 

_ βSoσ 

(μ+σ)(μ+τ+δ) 

βSo 

μ+τ+δ 

0 0 
_ 

− 
_ 

λ 0 

0 λ 

_____ 

= 0 
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____ 

_ βS0σ 

(μ+σ)(μ+τ+δ) − λ βS0 

μ+τ+δ 

0 0 − λ 

_____ 

= 0. 

At disease free equilibrium Eo in Eq. (2.1), we have 

λ1 = σβ 

_ 

(1 − ρ)π(μ + ω) + ωρπ 

(μ + σ)(μ + τ + δ)μ(μ + ω) 

_ 

λ2 = 0 

So, 

R0 = σβ 

_ 

(1 − ρ)π(μ + ω) + ωρπ 

μ(μ + ω)[(μ(μ + τ + δ + σ) + σ(τ + δ)] 

_ 

. 

5 Stability Analysis of The Disease Free Equilibrium 
Theorem 1: The disease-free equilibrium E0 = 



_ 
(μ+ω)(1−ρ)π+ωρπ 

μ(μ+ω) , ρπ 

μ+ω , 0, 0, 0 

_ 

, exists for all nonnegative 

values of its parameters and it is locally asymptotically stable when Ro ≤ 1 and it is unstable 

when Ro > 1. 

Proof: From equation Eq. (1.1), we have that 

F1 = (1 − ρ)π − βSI + ωV − μS + αR = 0 

F2 = ρπ − μV − ωV = 0 

F3 = βSI − μE − σE = 0 

F4 = σE − μI − τ I − δI = 0 

F5 = τ I − μR − αR = 0 

The Jacobian matrix of system of equation Eq. (1.1) at disease free equilibrium Eo in Eq. (2.1) is 

given by 

J = 

 

 

−μ − βI0 ω 0 −βS0 α 

0 −μ − ω 0 0 0 

βI0 0 −μ − ω βS0 0 

0 0 σ −(μ + τ + δ) 0 

0 0 0 τ −(μ + α) 

 

 

A = 

 

 

−μ ω 0 −βS0 α 

0 −μ − ω 0 0 0 

0 0 −μ − ω βS0 0 

0 0 σ −(μ + τ + δ) 0 

0 0 0 τ −(μ + α) 

 

 

Solving 

|A − Iλ| = 0 

that is, 

=⇒ 
____________ 

−(μ + λ) ω 0 −β 

_ 
(μ+ω)(1−ρ)π+ωρπ 

μ(μ+ω) 

_ 

α 

0 −(μ + ω + λ) 0 0 0 



0 0 −(μ + σ + λ) β 

_ 
(μ+ω)(1−ρ)π+ωρπ 

μ(μ+ω) 

_ 

0 

0 0 σ −(μ + τ + δ + λ) 0 

0 0 0 τ −(μ + α + λ) 

____________ 

= 0. 
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Evaluating the determinant gives, 

(μ + λ)(μ + ω + λ)(μ + α + λ)[−(μ + σ + λ)(μ + τ + δ + λ) + βSo] = 0 

Clearly, 

λ1 = −μ 

λ2 = −(μ + ω) 

λ3 = −(μ + α) 

Also, 

[−(μ + σ + λ)(μ + τ + δ + λ) + βSo] = 0 

=⇒ (μ + σ + λ)(μ + δ + τ + λ) − σβSo = 0 

=⇒ λ2 + [(μ + σ) + (μ + δ + τ )] λ + (μ + σ)(μ + δ + τ ) − σβSo = 0 

substituting So, we have 

λ2 + [(μ + σ) + (μ + δ + τ )] λ + (μ + σ)(μ + δ + τ ) 

_ 

1 − σβ 

_ 

(μ + ω)(1 − ρ)π + ωρπ 

μ(μ + ω)(μ + σ)(μ + δ + τ ) 

__ 

= 0 

=⇒ λ2 + [(μ + σ) + (μ + δ + τ )] λ + (μ + σ)(μ + δ + τ ) [1 − Ro] = 0 (5.1) 

By Descartes’s rule of sign, the polynomial equation (5.1) has no sign change if Ro < 1, and so there 

are no positive roots for the equation (5.1). This implies that all roots of (5.1) are purely imaginary 

or 

complex with negative real parts. Hence the DFE is locally asymptotically stable. 

This completes the proof. 

6 Global Stability 
Theorem 2: If R0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable, and unstable 

otherwise. 

Proof 

Let L be a candidate Lyapunov function such that 

L = 

_ 

S − So − So ln 

S 



So 

_ 

+ 

σE 

(μ + σ)(μ + δ + τ ) 

+ 

I 

(μ + δ + τ ) 

(6.1) 

where So = (μ+ω)(1−ρ)π+ωρπ 

μ(μ+ω) is the value SV at DFE. 

Obviously, the second and third terms on the RHS of 6.1 are positive for the first term, So ≤ S (since 

So is an equilibrium point of S). Then S−So−S ln S 

So is also positive. Therefore, L(S,E, I) is positive 

definite. 

Now, for the time derivative of L along the solution of the model equation 6.1, we have. 

dL 

dt 

= 
_ 

1 − 

So 

S 

_ 

dS 

dt 

+ 

σ 

(μ + σ)(μ + δ + τ ) 

dE 

dt 

+ 

1 

μ + δ + τ 

dI 

dt 

substituting dS 

dt , dE 

dt and dI 

dt from (1.1) gives 

dL 

dt 

= 
_ 

1 − 

So 



S 

_ 

[(1 − ρ)π − βSI − ωV − μS + αR] 

+ 

σ 

(μ + σ)(μ + δ + τ ) 

[βSI − (μ + σ)E] + 

1 

μ + δ + τ 

[σE − (μ + δ + τ )I] 
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At disease free equilibrium: 

(1 − ρ)π = βSIo + μSo − (ωV o + αRo) 

βSIo 

μ + σ 

= Eo 

σEo = (μ + δ + τ )Io 

 

 

(6.2) 

substituting (6.2) into dL 

dt , gives 

dL 

dt 

= 
_ 

1 − 

So 

S 

_ 

[(βSIo − βSI) + ω(V o − V ) + μ(So − S) + α(Ro − R)] 

+ 

σ 

(μ + σ)(μ + δ + τ ) 

_ 

βSI − 

(μ + σ)βSoIo 

μ + σ 

_ 

+ 

1 

μ + δ + τ 

[(μ + δ + τ )(Io − I)] 

=⇒ 



−βSI 

_ 

1 − 

So 

S 

_ 

− μ(S − So) − ω(V − V o) − αR + 

_ 

σβS 

(μ + σ)(μ + δ + τ ) 

− 1 
_ 

I 

At disease-free equilibrium, 

Eo = (So, V o,Eo, Io,Ro) 

= 
_ 

(μ + ω)(1 − ρ)π + ωβτ 

μ(μ + ω) 

, 

ρπ 

μ + ω 

, 0, 0, 0 

_ 

dL 

dt 

= −βSI 

_ 

S − So 

S 

_ 

− ω(V − V o) − αR + (Ro − 1)I (6.3) 

obviously from (6.3), dL 

dt < 0 if Ro ≤ 1 

where Ro = σβ 

_ 

(μ + ω)(1 − ρ)π + ωρπ 

μ(μ + ω)(μ + σ)(μ + δ + τ ) 

_ 

(6.4) 
dL 

dt = 0 if and only if S = So, V = V o and I = 0. 

Thus 

(S, V,E, I,R) −→ 

_ 

(μ + ω)(1 − ρ)π + ωπ 

μ(μ + ω) 



, 

ρπ 

μ + ω 

, 0, 0, 0 

_ 

as t → ∞ 

and the largest compact invariant set is the singleton {Eo}. So, by lasalle’s invariant principle 

(Lasalle, 

1996), every solution of the model system (1.1) with initial conditions in approaches Eo as t → ∞. 

whenever Ro ≤ 1. Then the disease-free equilibrium is globally asymptotically stable whenever 

Ro ≤ 1 and unstable otherwise. 

This completes the proof. 

7 Stability Analysis of the Endemic Equilibrium 
Theorem 3: The endemic equilibrium E∗ = (S∗, V ∗,E∗, I∗,R∗) is stable if Ro > 1 

Proof: If the disease is persistent (i.e endemic) in the community, then dI 

dt > 0 by (18) 

i.e σE∗ − (μ + δ + τ )I∗ > 0 

=⇒ σE∗ > (μ + δ + τ )I∗ 

=⇒ (μ + δ + τ )I∗ < σE∗ 

=⇒ 1 < 

σE∗ 

(μ + δ + τ )I∗ 
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Stability E∗ and I∗ from the endemic equilibrium and simplifying gives 

1 < Ro 

i.e Ro > 1 

Hence, the endemic equilibrium is stable whenever Ro > 1 and unstable otherwise. 

8 Numerical Simulations and Results 
The evaluation of the model involved a numerical analysis. Through simulations, it was possible to 

observe the impact of the parameters. The software used for the simulations isWolfram Mathematica. 

Some values for the parameters of the SVEIR model were obtained from (8). 

Table 1: Values of the Parameters for Fig. 2, Fig. 3, Fig. 4, Fig. 5, and Fig. 6 

Parameter Description Value Source 

π Recruitment rate 2000 (8) 

ρ Vaccine rate 0.5 (8) 

β Contact rate 0.0003 Estimated 

ω Rate at which vaccine wanes off 0.1 (8) 

μ Natural death 0.2 (8) 

σ Rate at which the exposed 0.7 (8) 



individuals becomes infected 

τ Rate at which infected individuals are treated 0.1 (8) 

δ Induced diseases death rate 0.1 (8) 

α Rate at which recovered individuals 0.2 (8) 

move to susceptible class 

S(0) Susceptible class 1000 Estimated 

V (0) Vaccinated class 800 Estimated 

E(0) Exposed class 600 Estimated 

I(0) Infected class 500 Estimated 

R(0) Recovered class 700 Estimated 

9 Sensitivity Analysis 
To investigate the sensitivity of the basic reproduction number Ro with respect to parameters β, σ, ω, 

π, ρ, μ, τ and δ, we calculate each value using the derivative-based method, which reflects the 

relationship between each parameter and Ro. The sensitivity index of each parameter can be seen in 

the table below, inputting the value of each parameter into the differential equations and solving them 

using 

XRo 

x = 

∂Ro 

∂x 

・ 

x 

Ro 

where XRo denote the sensitivity of Ro then sensitivity index Ro with respect to any parameter. 
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Table 2: Parameter sensitivity index 

Parameter Index Sensitivity index 

π XRo 

π 0.090909091 

σ XRo 

σ 0.9623655914 

μ XRo 

μ -0.06989247312 

ω XRo 

ω 0.09090909091 

τ XRo 

τ -0.005376344086 



β XRo 

β 1 

ρ XRo 

ρ -0.8181818182 

δ XRo 

δ -0.005376344086 
The parameter sensitivity index using the derivative-based local method is as shown in Table 

2 which indicates that the parameters β, σ, ω and π have direct relationship with the reproduction 

number Ro and parameters ρ, μ, τ and δ have inverse relationship with Ro. Hence, reducing the 

contact rate between the infected human and susceptible individuals as well as restricting direct 

access to public food and water by the infected individual could significantly reduce the Ro. Other 

factors like increase in vaccination rate and ensuring reduction in the rate of waning of immunity as 

well as increasing the rate of treatment of infected individuals will eventually and effectively reduce 

the 

value of Ro. The sensitivity analysis findings indicate that while the vaccination doesn’t 

significantly 

lower the basic reproduction number, it effectively aids in disease control. 

Figure 2: Shows that the higher the rate at which the vaccine wanes off the higher 

the number of infected population 
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Figure 3: Shows that the higher the rate at which the vaccine wanes off the higher 

the number of exposed population 

Figure 4: Shows that the higher the rate of treatment the lower the vaccinated 

population and the higher the number of exposed and infected population indicating 

that the rate at which the vaccine wanes off is rapid. 
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Figure 5: Shows that the higher the rate of treatment the higher the recovered 

population as the vaccine wanes off. 
0 50 100 150 200 
0 
2000 
4000 
6000 
8000 

Time (days) 

Total Population 
Susceptible Vaccinated Exposed 
Infected Recovered 

Figure 6: Shows that as the rate at which the vaccine wanes off increases, the 

number of the susceptible class increases at a decreasing rate as the rate of 

treatment increases. 
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10 Discussion and Conclusion 



In this work, we studied the impact of preventive vaccination and treatment on the dynamics of 

diarrhea disease using a mathematical model. The disease free and endemic equilibria were obtained 

and the basic reproduction number Ro computed. The result of the quantitative analyses showed 

that the disease-free equilibrium is both locally and globally asymptotically stable if Ro < 1 and 

Ro ≤ 1 respectively and unstable otherwise. On the other hand, the endemic equilibrium is stable 

whenever Ro > 1. The implication of this is: Diarrhea can be controlled via the use of vaccination 

and treatment if the basic reproduction number is below unity, irrespective of the initial number of 

infection in the population. However, if the reproduction number exceeds unity, then diarrhea will 

persist in the population. The result of the sensitivity analysis revealed that the contact rate β is 

the 

most sensitive parameter of the basic reproduction number with positive index i.e. the value of β 

has the greatest effect on the reproduction number, and hence the prevalence of the disease in the 

population. The result XRo 

β = 1.0 implies that if β is increased (decreased) by 10%, then Ro will also 

increase (decrease) by 10%. Also very sensitive are the infectivity rate of the exposed individuals σ 

and the vaccination rate ρ with positive and negative indices respectively. The result XRo 

ρ = −0.8182 

implies that if ρ is increased (decreased) by 10% then the Ro will decrease (increase) by 8.182%. 

The sensitivity indices of other parameters can be interpreted in similar manner. The results of the 

numerical simulations, were shown graphically in Figure 2 to 6. In figure 2, 3, 4 and 6 the effect of 

vaccine waning rate ω were shown. Both figures 2 and 3 showed that increment in the rate of vaccine 

waning results in increment in the population of both infected and exposed individuals respectively. 

Also, as shown in figure 6, this increment in the rate of vaccine waning leads to increase in the 

number of susceptible individuals. This implies that the more the rate of waning of vaccine, the 

more the number of those that are prone to diarrhea disease in the population. Thus if the waning 

rate can be reduced, then the number of those that get exposed and infected with diarrhea can be 

reduced. Also, the number of individuals that are prone to the disease would be reduced and more 

people can be protected. Furthermore, the effect of treatment rate τ on the dynamics of diarrhea 

disease were investigated and the results shown depicted in figures 4 and 5. Figure 4 showed that 

the higher the rate of treatment the lower the infected population. This implies that increasing the 

rate of treatment decreases the number of infective in the population. Also, this increase in the rate 

of treatment leads to a corresponding increase in the number of recovered individuals as depicted 

in figure 5. In conclusion, in order to have a successful combat against diarrhea disease in the 

population, efforts have to be made by policy makers, health practitioners and the entire populace 

to bring down the threshold value, Ro (the basic reproduction number) below unity. This can be 

achieved through lowering the contact rate and increasing the rate and coverage of vaccines and 

vaccination programs, as indicated by the results of the sensitivity analysis conducted in this study. 

Also, as suggested by the results of the numerical simulations, efforts has to be made to come by 

vaccines whose waning rates are very reduced and also to target treating more infected individual. 

To future studies, we shall work on which of these control measures is both optimal and cost-effective. 

Acknowledgements 

The authors would like to thank the anonymous reviewers for their invaluable comments. 

Competing Interests 

Authors have declared that no competing interests exist. 

  

  
ISSN: 2456-9968 
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

References 



[1] Forde JE.: Delay differential equation models in mathematical biology. Doctoral Thesis, 

University of Michigan, United States of America. 2005. 

[2] Borisov M, Dimitrova N, Simeonov I.: Mathematical modeling and stability analysis of a twophase 

biosystem. Processes. 2020; 8(7): 791. https://doi.org/10.3390/pr8070791 

[3] Egbetade SA, Salawu IA, Fasanmade PA.: Local stability of equilibrium points of sir 

mathematical model of infections diseases. World J. Res. Rev. 2018; 6: 79–81. 

[4] Olutimo AL, Adams DO.: On the stability and boundedness of solutions of certain nonautonomous 

delay differential equation of third order. Appl. Math. 2016; 7: 457–467. 

[5] A. L. Olutimo AL, Adams DO, Abdurasid AA.: Stability and boundedness analysis of a preypredator 

system with predator cannibalism. J. Nig. Math. Soc. 2022; 41(3): 275–286. 

[6] Olutimo AL, Akinmoladun OM, Omoko ID.: Stability and boundedness analysis of Lotka-Volterra 

prey-predator model with prey refuge and predator cannibalism. J. Comp. Model. 2022; 12(1): 

5–18. 

[7] Lopman B, Simmons K, Gambhir M, Vinje J, Parashar U.: Epidemiology implications of 

asymptomatic re-infection: A mathematical modeling study of Norovious. Amer. J. Epidemi. 

2013; 179(4): 337–353. 

[8] Adewale SO, Olapade LA, Ajao SO, Adeniran GA.: Analysis of diarrhea in the presence of 

vaccine. Int. J. Sci. Eng. Res. 2015; 6(12): 396–400. 

[9] Akinola EI, Awoyemi BE, Olopade IA, Falomo OD, Akinwumi TO.: Mathematical analysis of a 

diarrhea model in the presence of vaccination and treatment waves with sensitivity analysis. J. 

Appl. Sci. Environ. Manage. 2021; 25(7):1107-1114. 10.4314/jasem.v25i7.2 

[10] Ardkaew J, Tongkumchum P.: Statistical modeling of childhood diarrhea in northeastern 

Thailand. Southeast Asian J. Trop. Med. Pub. Health. 2009; 40(4): 807–81. 

[11] Bonyah E, Twagirumukiza G, Gambrah P.: Analysis of Diarrhea model with saturated incidence 

rate. Open J. Math. Sci. 2019; 3(14): 29–39. 

[12] Cherry BR, Reeves MJ, Smith G.: Evaluation of bovine viral diarrhea virus control using 

mathematical model of infection dynamics. Prev. Vet. Med. 1998; 33(1- 4): 91–108. 

[13] H. W. Berhe HW, Makinde OD, Theuri DM.: Parameter estimation and sensitivity analysis 

of dysentery diarrhea epidemic model. J. Appl. Math. 2019; Article ID 8465747, 13 pages. 

https://doi.org/10.1155/2019/8465747 

[14] Basu S, Kumar RP, Santra PK, Mahapatra GS, Elsadany AA.: Preventive control strategy on 

second wave of covid-19 pandemic model incorporating lock-down effect. Alexandria Engr. J. 

2022; 61:7265-7276. https://doi.org/10.1016/j.aej.2021.12.066 

[15] Kumar RP, Basu S, Santra PK, Ghosh D, Mahapatra GS.: Optimal control design incorporating 

vaccination and treatment on six compartment pandemic dynamical systems. Results in Control 

and Optimization. 2022; 7:1–20. https://doi.org/10.1016/j.rico.2022.100115 

  

  
ISSN: 2456-9968 
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

[16] Kumar RP, Basu S, Ghosh D, Santra PK, Mahapatra GS.: Dynamical analysis of novel covid- 

19 epidemic model with non-motonic incidence function. J. of Public Affairs. 2021; 22:e2754. 

https://doi.org/10.1002/pa.2754 

[17] Kumar RP, Basu S, Santra PK, Elsadany AA, Elsonbaty AMR, Mahapatra GS, Al-Khedhairi.: 

Global stability and sensitivity analysis of parameters of omicron variant epidermic in diverse 

susceptible class incorporating vaccination stages, Soft-Computing-A Fusion of Foundations, 

Methodologies and Applications. 2024; 28(6):4689-4713. https://doi.org/10.1007/s00500-023- 

09170-0 

[18] Ayele TK, Doungmo Goufo EF, Mugisha S.: Mathematical modeling of HIV/AIDS with optimal 

control: A case study in Ethiopia. Results in Physics. 2021; 26. 
—————————————————————————————————————————————- 

c2011 Author1 & Author2; This is an Open Access article distributed under the terms of the Creative Commons 

Attribution License http://creativecommons.org/licenses/by/2.0, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original work is properly cited. 


