An Analytical Study on Dual Generalized Guglielmo Numbers

Abstract. In this study, we investigate the generalized dual hyperbolic Guglielmo numbers and then
various special cases are explored (including dual triangular numbers, dual triangular-Lucas numbers, dual
oblong numbers, and dual pentagonal numbers). Binet’s formulas, generating functions, and summation
formulas for these numbers are presented. Additionally, Catalan’s and Cassini’s identities are provided,
along with matrices associated with these sequences. Moreover, we give some identities and matrices related
with these sequences.
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1. Introduction

Dual numbers were first introduced by W.K. Clifford in 1873. This intriguing concept has numerous
applications, including screw systems, modeling plane joints, iterative methods for displacement analysis of
spatial mechanisms, inertial force analysis of spatial mechanisms, and more.

Here are some general information about the applications of dual numbers.

e Engineering and Physics:
Used in electrical engineering and control systems.
Applied in wave analysis and signal processing.
Utilized in mechanical engineering for vibration analysis, among other applications.
e Mathematics and Geometry:
Alongside complex numbers, dual numbers contribute to the extension of mathematical struc-
tures.

Employed in geometry to represent various transformations.
1
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Computer Science:

Found in graphics and image processing.

Used in robotics and control systems for modeling and analysis.
e Finance and Economics:
Applied in risk analysis and financial engineering.

Utilized in option pricing and portfolio management.

Optimization Problems:
Used for finding solutions in optimization problems.

Acts as a tool in linear programming and decision-making models.

Quantum Mechanics:

Employed in quantum computers and quantum mechanics for mathematical representation.

Next, we give some information raleted to hypercomplex number system and then we give some proper-
ities about dual number. As discussed in [15], the hypercomplex numbers systems are extensions of real
numbers. Some examples of hypercomplex number systems ,which is commutative , are complex numbers,

hyperbolic numbers and dual numbers.

e Complex numbers are formed by extending the real number system with the imaginary unit, denoted

2

74”7, which satisfies the equation i = —1. Complex numbers is defined as follows,

as

C={z=a+ib:a,becR,i*=—1}.

e As discussed in [18], hyperbolic numbers extend the real number system with the hyperbolic unit

4, where j2 = 1. Hyperbolic numbers is defined as follows,
H={h=a+jb:a,beR,j2=1,j#+1}.

e As discussed in[10], dual numbers extend the real number system by introducing a new element &,

where €2 = 0. Dual numbers is defined as follows,
D={d=a+¢cb:a,beR,e?>=0,¢e#0}.

Let D={d=a+¢cb:a,b € R,e? =0, # 0}C R xR is a set called dual numbers and we define following

process on I for every dy =z + x*¢, do =y +y*c € D as

+ ¢ DxD—D, di+do=(z+2%)+(y+y'e)=(z+y)+ (2" +y")e,
DxD—D,d-d=(z+a%e) (y+y'e)=ay+ (zy” +a"y)e,

di = (z+a%e)=(y+y'e) =dyifonlyifz=2z* y=y"

Using above expressions we have following definations,
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e — (D,+) is an abelian grup,
— (D, +,-) is commitative ring (where for every d € ) we have d- 1 = d so that 1 is unit eleman
on - process),
— (D, +,-) is not field because for every d € D such that there is no element d-d' =d' -d =1,
— the D is a vector space on R,
- D= {a + 0¢ : a € R},which is subspace of D, is isomorph R,
— (1,¢) is basis of I,

— for every d = (z+x*c) € Dsuch that d = (z—z*¢) € D, I = (%—I—%a) €D, d-d=2%(d)=d
— for every di = x +a'c, dy = y+y's € D(y £ 0), $ = (£ + E55) € D, (1) = (D),

(dy +do) = (dy + dg) and (d; - d2) = (dy - d2). For more detail see [27]
e Dual hyperbolic number is a type of hypercomplex number, specifically a member of the hyperbolic

number system. A dual hyperbolic number is defined by
q = (ap + ja1) +e(az + jaz) = ap + jai + caz + cjaz

where ag, a1, a2, a3 € R are real numbers.

The set of all dual hyperbolic numbers are defined as
Hp = {ap + jai + eas + €jaz : ap,a1,a9,a3 € R, j2 =1,5 # +1,6* =0, # 0}.

where ¢ denotes the pure dual unit (2 = 0, # 0), j denotes the hyperbolic unit (52 = 1), and ¢j
denotes the dual hyperbolic unit ((j¢)? = 0).

The {1,j,¢,ej} is linear independent and Hyp = sp{l,j,e,ej} so that {1,4,¢,¢j} is a basis of Hy.For
more detail see [3]. The next properties are holds for the base elements {1,7,¢,ej} of dual hyperbolic
numbers (commutative multiplications):l.e = ¢,1.j = j, 2 = e.e = (je)? = 0, j2 = j.j = l,e.j = je,
e.(ej) = (e4)€ =0, j(ej) = (ej)j =&

Next, we will introduce a range of expressions associated with generalized Guglielmo numbers.

A generalized Guglielmo sequence, with the initial values Wy, W7, W not all being zero, {W;,},>0 =

{W,,(Wo, W1, W3)} >0 is defined by the third-order recurrence relations as follow

(1.1) Wy =3Wh_1 —3Wy_o+ W,_3; Wo, W1, W (n>2).

Therefore reccurance relation of {W,,},,>0 can be given to negative subscripts by defining
W_pn =3W_(n_1) = 3W_(n_2) + W_(n_3)

for n =1,2,3,.... As a result, recurrence (1.1) is true for all integer n.
In the Table 1 We provide the initial set of generalized Guglielmo numbers, both with positive and
negative subscripts

Table 1. A few generalized Guglielmo numbers



4 BAHADIR YILMAZ, YUKSEL SOYKAN

n Wi, W_,

0 Wo Wo

1 Wi 3Wo — 3W1 + Wy

2 Wy 6Wy — 8W1 + 3Ws
3 Wy — 3W7 + 3W, 10Wy — 15W; 4 6Ws
4 3Wo — 8W1 + 6W, 15Wy — 24W1 + 10W,

ot

6Wo — 15W1 +10W,  21W4, — 35W; + 16W,

6 10Wy —24W1 + 15Wy  28Wy — 48W7 4 21,
Throughout this paper we obtain W, is the nth generalized Guglielmo numbers with the initial values

Wy, W1, Wy where n is an integer.

When the initial values are Wy = 0,W; = 1, W5 = 3 we generate the triangular sequence, known as
{T.}, when the initial values are Wy = 3, W7 = 3, Wy = 3 we generate the Triangular-Lucas sequence, known
as {H,}, when the initial values are Wy = 0, W7 = 2, W, = 6 we generate the oblong sequence {O,} and
when the initial values are Wy = 0, W7 = 1, W5 = 5 we generate the pentegonal sequence, known as {p,}. In
other words, triangular sequence {7}, },>0, triangular-Lucas sequence {H,,},>0, oblong sequence {O,,},>0

and pentegonal sequence {py },>0 are determined by the third-order recurrence relations

(1.2) T,=301—-30 o+T, 3, Ty=0T=1T,=3,
(1.3) H,=3H, 1—-3H, o+ H, 3, Hy=3H =3 Hy =23,
(1.4) O, =30,-1 —30,_2+4+0p_3, 0Og=0,01=2,02 =6,
(1.5) Pn = 3Pn-1—3Pn—2 +Pn-3, Po=0,p1 =1,p2=35.

The sequences {1}, } >0, {Hn}n>0, {On}n>0 and {p, }n>0 can be extended to negative subscripts by defining,

T = 3T (no1)—3T—(no2) + T—(n_s),
H., = 3H_(_1)—3H_(n_o+H_(n_3),
O_n = 30_(n1)—30_(n9)+O_(n_3,
P—n = 3D—(n-1) = 3P—(n-2) T P—(n—3)s

for n =1,2,3, ... respectively. As a result, recurrences (1.2)-(1.5) hold for all integer n.

We have the option to several essential properties of generalized Guglielmo numbers that are required.

e Binet formula of generalized Guglielmo sequence can be calculated using its characteristic equation

given as

2 =322 +3z—1=(z—1)°=0.
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The roots of the characteristic equation are given as follow
a=0=y=1.
Binet formula are given, using these roots and the recurrence relation, as follow
(1.6) W, = A1 4+ Aon + Asn?

where the coefficients of n above equality as

(1.7) A = W,
1
Ay = 5(—W2 + 4W, — 3Wy),
1
A = §(W2 —2Wy + Wo)

Here, Binet formula of triangular, triangular-Lucas, oblong and pentagonal sequences are

T, - n(n + 1)7
2
Hn = 3a
O, = n(n+1),
1
Pn = in (377’ - 1) .

e The generating function of {W,,} = {W,,(Wy, Wy, W3)}, for any integer n, is

(1.8)

i i gn — Wot (W1 = 3Wo)a + (Wa — 3W5 + 3Wp)a?
A B 1 — 3z + 322 — 23 '

e The Cassini identity for {W,,} = {W,,(Wy, W1, W)}, for any integer n, is

1
(1.9) Wi Wy — W2 = -5 (A+ Bn+Cn?)

A = 2WZ+6WE - 6WoW, — 2W Wy,

B —3WG — 8WE — W3 + 10Wo W, — AW Wo + 6W, W,

C WE +4AW3E + W3 — AW Wy + 2W Wy — AW, W,

If you require further information regarding generalized Guglielmo numbers, see [20]
Now, we give some information, related to dual ,hyperbolic, dual hyperbolic and other sequences, pub-

lished in litarature.

e Cockle [8] studied the hyperbolic numbers with complex coefficients.

e Eren and Soykan [9] studied the generalized Generalized Woodall Numbers.

Cheng and Thompson [6] introduced dual numbers with complex coefficients.

Akar, Yiice and Sahin [3] presented the dual hyperbolic numbers.
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e Soykan, Giimiig, Gocen [21] presented dual hyperbolic generalized Pell numbers given by

‘771 = Vn +jvn+1 + 6an+2 +j5Vn+3

where generalized Pell numbers are given by V,, = 2V,,_1 4+ V,,_o, Vo = a, V1 = b (n > 2) with the initial

values Vy, Vi not all being zero.

e Cihan, Azak, Giingor, Tosun [2] studied dual hyperbolic Fibonacci and Lucas numbers given by,

respectively,
DHFIL - Fn +an+1+5Fn+2 +j5Fn+37
DHL, = L, +jLn+1 +5Ln+2 +j<€Ln+3
where Fibonacci and Lucas numbers, respectively, given by F, = F,_1 + F_o, Fy = 0, F1 = 1,

Ly=Ln 1+ Ly 2 Lo=2,L1=1.

e Soykan, Tagdemir and Okumus [22] studied dual hyperbolic generalized Jacopsthal numbers given
by

~

Jn = Jn + jJn+1 + EJn+2 + jEJn+3
whereJn = Jn,1 + 2Jn,2, J() =a, J1 =b.

e Bréd, Liana, Wioch [5] studied dual hyperbolic generalized balancing numbers as

DHB, = B, +jBn+1 + 5Bn+2 +j<€Bn+3
where Bn = 6Bn,1 — Bn727 BQ = O7 B]_ =1.

e Soykan, Yilmaz [24] studied dual hyperbolic generalized Guglielmo numbers as

Wn =W, +jWn+1 - 5Wn+2 +j5Wn+3
where W,, = 3W,,_1 — 3W,,_o + W,,_3 with the initial condition Wy, W7, Ws.

e Soykan, Yilmaz [25] studied hyperbolic generalized Guglielmo numbers as

HW, =W, + jWy,11
where W,, = 3W,,_1 — 3W,,_o + W,,_3 with the initial condition Wy, W7, Ws.

o Giirses, Sentiirk, Yiice [11] studied dual-generalized complex Fibonacci and Lucas numbers, respec-

tively, as
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]:n = Fn+]Fn+1 +€Fn+2 +j5Fn+37
Zn - Ln +jLn+1 + ELn+2 +j5Ln+37
where Fibonacci and Lucas numbers, respectively, given by F, = F,_1 + F,,_2, Fy = 0, F = 1,

Ly=Lpn 1+ Ly 2, Lo=2,1L1=1.

e Nurkan ,Guven, [17] studied Dual Fibonacci Quaternions as

@n = (Fn + Fn+1) + i(Fn+1 + Fn+2) +j(Fn+2 + Fn+3) + k<Fn+3 + Fn+4)
where Fibonacci given by F,, = F,,_1 + Fj,_o, Fy =0, F} = 1.

e Aydmn [1] studied Dual Jacobsthal Quaternions as

QJk;n = Jk;n + ile;n-‘rl + iQJk;n-‘rQ + iSJk;n-H’)
where Jn =dJp_1+ 2Jn_27 JO = 0, Jl =1.

e Halici [13] studied Dual Fibonacci Octonions as

7
b= ZFn+ses

s=0
where Fibonacci given by F,, = F,_1 + Fj,—2, Fy =0, F} = 1.

Next section, we present the dual hyperbolic generalized Guglielmo numbers and give some properties

of these numbers.

2. Dual Generalized Guglielmo Numbers and their Generating Functions and Binet’s

Formulas

In this section, we define dual generalized Guglielmo numbers then we present generating functions and

Binet formulas for these numbers.

On the set of Hp, we will now explore dual generalized Guglielmo numbers on H.The nth generalized

dual Guglielmo numbers, with WO, Wl, WQ being the initial conditions, are defined as follows

(2.1) W, =W, + Wy

in addition (2.1) can be written to negative subscripts by defining,

(2.2) W_pn=W_p+eW_pi

so identity (2.1) holds for all integers n.
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Now we define some special cases of dual generalized Guglielmo numbers. The nth dual triangular
numbers, the nth dual triangular-Lucas numbers, the nth dual oblong numbers and the nth dual pentegonal
numbers, respectively, are given as

the nth generalized dual triangular numbers Tn =Tn+eT, 41, with TO, ﬁ, T 5 being the initial conditions,

are defined as follows
iZA—;n =T, + 5Tn+1
where

To =T+ ETl,Tl =T+ ETQ,fQ =T5 + €T3,

the nth generalized dual triangular-Lucas numbers I;fn = H, +¢cH, 1, with .FNIO, ﬁl, _ﬁQ being the initial

conditions, are defined as follows
ﬁn = Hn +] Hn+1
where

ﬁoz H0+€H1,E[1= H1+EH2,I:’2= Hs + ¢ Hs,

the nth generalized dual triangular numbers én = O, +€0p41, with 60, 61, 52 being the initial condi-

tions, are defined as follows

On = On + 50n+1
where
60 =0+ 601,51 =01+ 502752 = 05 + €03,

the nth generalized dual triangular numbers p,, = p,, + jPn+1, With pg, p1, p2 being the initial conditions,

are defined as follows

Pn = DPn + EPn+1
where
Po = Po + EP1,P1 = P1 + €P2, P2 = P2 + ED3.

For dual triangular numbers, taking W,, =T, To =0, T3 = 1, Th = 3, we get
To=3e,Ty =1+ 6¢,T5 = 3 + 10¢,
for dual triangular-Lucas numbers, taking W,, = H,,, Hy = 3, H; = 3, Hy = 3, we get
Ho=3+3¢, Hy =3+ 3¢, Hy = 3 + 3¢,
for dual oblong numbers,taking W,, = O,,, Oy =0, O1 = 2, O3 = 6, we get
Op = 62,01 =2+ 122,05 = 6 + 20,
and for dual pentegonal numbers, taking W, = p,, po =0, p1 = 1, pa = 5, we get

po = He,p1 = 1+ 12¢,p5 = 5 + 22¢,
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Thus, by using (2.1), we can formulate the following identity for non-negative integers n,
(23) Wn = 3Wn—1 - 3Wn—2 + Wn—?r

Hence the sequence {Wn}nzo can be given as

W_pn=3W_(n_1) = 3W_(n_2) + W_(n_3),
for ne{1,2,3....} by using (2.2). Accordingly, recurrence (2.3) is true for all integer n.
In the Table 2, We provide the initial dual generalized Guglielmo numbers with both positive and
negative subscripts.

Table 2. Some dual generalized Guglielmo numbers
n W, W—n

0 Wo Wo

1 Wi 3Wo — 3W, + Ws

2 Wo 6Wo — 8W1 + 315

3 Wo—3Wy+3Ws  10W, — 15W; + 6Ws

4

5

3Wo — 8W, +6Wy  15W,y — 24W; + 10W,
6Wo — 15W, + 10W,  21W, — 35W, + 15Ws
6 10Wy — 24W, + 15Wy  28W, — 48T, + 21 W,

Note that
/V‘[}:Q = Wo+eWny,
Wl = Wi +eWs,
/V\V/g = Wy +eWs.

Some dual triangular numbers, dual triangular-Lucas numbers, dual oblong numbers, and dual pentagonal
numbers with positive or negative subscripts are presented tables which is given below .

Table 3. dual triangular numbers Table 4. dual triangular-Lucas numbers

n T, T, n H, H.,
0 € 0 3+3¢

1 143¢ 0 1 343 343¢
2 3+6¢e 1 2 343 3+3¢
3 6410 3+¢ 3 3+3 3+3¢
4 10+ 15e 6+ 3¢ 4 3+3 343
5 15+21e 10+ 6¢ 5 343 343

Table 5. dual oblong numbers  Table 6. dual pentegonal numbers
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n On O, n Pn Dn

0 2e 0 5

1 246 1 1+45¢ 2

2 6412 2 2 5412 T4 2

3 12+20e 642 3 12422 154 7¢
4 20430 12+ 6¢ 4 224 3be 26+ 15¢
5 30+42¢ 20+ 12¢ 5 35+45le 40+ 26¢

Now, we will establish Binet’s formula for the dual generalized Guglielmo numbers, and for the remainder

of the study, we will utilize the following notations:

(2.4) a=1+e,

Il
o™

(2.5) B

Note that the following identities are true:

I
—
+
DO

i

a8 = B.

THEOREM 1. (Binet’s Formula) For any integer n, the nth dual generalized Guglielmo number can be

expressed as follows

(2.6) W = (0A1 + B(As + As)) + (@A + 2BA3)n + GAsn’
where &, B are given as (2.4)-(2.5)
Proof. Using (1.6) and (1.7)) we can write following identity

W, = Wy+ <<5VV7L+17
= A+ Aon+ Asn® + (A1 + Ay (n+1) + Az (n+1)°)e

This proves (2.6). O
As special cases, for any integer n, the Binet’s Formula of nth dual triangual numbers, the Binet’s

Formula of nth dual triangular-Lucas numbers, the Binet’s Formula of nth dual oblong numbers and the
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Binet’s Formula of nth dual pentegonal numbers, respectively, are

D
3

ﬁn

%(B + (@+2B)n + an?),
3a,
26 + (a+2B) n + an?,

%(Qﬁ + (65 - a) n + 3an?).

Next, we will obtain the generating function of the dual generalized Guglielmo numbers.

THEOREM 2. The generating function for the dual generalized Guglielmo numbers is

(2.7) fiw, (z) =

_ WO + (Wl - SW()).%' + (WQ — 3%1 + 3/1;[70)3?2

(1 -3z + 322 — a3)

Proof. Let the generating function of the dual generalized Guglielmo numbers is given below

fiw, (x) = Z Woa™.

n=0

Following that, by utilizing the definition of the dual generalized Guglielmo numbers, and substracting

zg(z) and 2%g(z) from g(x), we get

(1 -3z +32% — x?’)fGWn (z)

M8

oo o0 oo
W,z"™ — 3x Z W,z" + 322 Z W,a™ — 23 Z Wpa™,
n=0 n=0 n=0

I
=)

n

M8

o0 o0 o0
W,z — 3 Z Wzt +3 Z W,a"t2 — Z W,z"t3,
n=0 n=0 n=0

n=0

i an" -3 i Wn,lx” +3 i ’Wn,gm" — i Wn,gx",
n=0 n=1 n=2 n=3

(Wo + Wiz + Waa?) — 3(Wa + Wia?) + 3GWoa?

+ Z(Wn - 3Wn71 + 3Wn72 — ang)xn,
n=3

Wo + Wliﬂ + W2$2 — 3%)1’ — 3W1£L’2 + 3WO.’E2,

/V\V/o + (Wl — 3/V\V/0)$ + (WQ - 3Wl + 3WO)$2'

Note that we use the recurrence relation Wn = 3Wn_1 — 3Wn_2 + Wn_g. We rearrange equation which is

given above then we obtain (2.7). O
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As specific cases, the generating functions of the dual triangular, triangular-Lucas, oblong and dual

pentegonal numbers are given by

(7 + 3e + 65¢) + (1 — 8je — 3e) = + (& + 3je) a2

[z, (2) -3+ 3% o) ,
fo (@) = (3+3j + 3¢ +3je) + (=6 — 6j — 6c — 6j) x + (3 + 35 + 3¢ + 3je) 2
Hn B (1 =3z + 322 — 23) ’
fs (2) = (2] + 6 + 12je) + (2 — 165 — 6¢) @ + (2¢ + 6j¢) 2

O (1 -3z + 32% — 2°) 7

fo(x) = (j + 5e + 12je) + (1 + 2j — 3¢ — 14je) & + (2 + € + 5je) 2

Pn - R

(1 —3z+ 322 —23)

respectively. O

3. Deriving Binet’s formula from the generating function

Next, we will explore the Binet’s formula for the dual generalized Guglielmo numbers {Wn} by utilizing

generating function fwn (z).
THEOREM 3. (Binet formula of dual generalized Guglielmo numbers)
(3.1) W, = (@A + B(Az + As)) + (@A + 28A3)n + aAgn?.

Proof. We write

=~ Wo + (Wy — 3Wo)x + (Wy — 3W; + 3Wp)a2 d ds ds
2 T = - :
(32) ;W“T (1— 32+ 322 — 29) (-2 (=22 O=ap
so that
2~ dy ds ds
Z Wha' = + 5 T 3
o (1—-z) (1—-=x) (1—-x)

dl(l — 213)2 +d2(1 — m) + d3
(1) ’

then, we get
WO + (Wl — 3WO)(E + (WQ - 3W1 + SWO)Z'Q = (dl + d2 + dg) + (*2d1 — dQ)LE + d11'2.
Ensuring equality of coefficients for the terms x of the same degree, we obtain

(3.3) Wo = dy+do+ds,
Wi —3W, = —2di — ds,

WQ — 3W1 + 3WO = d.
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Solving the (3.3), we can derive the following identities

dy = 3Wo—3W; + W,
dy = 5Wy —3Wy —2Ws,
d3 = WO - Q,V\[//Yl +W2.
Thus (3.2) stated as follows
ZO Wex" = d; Zox" +ds Zo(n + D)z" +ds ZO fx’ﬂ

oo

2
342,
- Z(d1+d2(n+1)+d3%)x”7

n=0

- 17 1 i 17 17 1 e 17 17 2 n
= Y (Wo+ 5 (CWa AWy = 3Wo)n + o (Wa — 2W1 + Wo)n?)a".

n=0

Consequently, we get

Wn = 12[1 + AQ’/I + 12[3712

where
A = W,
A = %(—W2+4W1—3,V[70),
Ay = %(Wg_ﬁﬁm).

Take note that the following equalities are valid.
(3.4) A = W,
= Wo+eW;
— (4 + 5(%(—W2 AW, — 3W)) 4+ (e)(%(w2 — W + W)

= QA1+ BAr +74s,
1 ~ — —~
(3.5) Ay = (=W +4W) - 3W))
1
= 5((—3Wo + AWy — Wa) + (=W + Ws)

- (4 6)(%(*W2 + AW, — 3W0)) + e((Wa — 23 + W)

= (aAy +2B4s),

~ 1 ~ ~
(36) Ay = §(W2 —2W7 + WO)
1
= 5((Wo =20 + Wo) + (W — 2W1 + Wo)

= ads.
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The following equality can be written by using (3.4), (3.5) and (3.6).
W, = (@A + BAy +3A3) + (@A + 2BA3)n + GAsn>. O
4. Some Identities Related to Dual Generalized Guglielmo numbers

We will now introduce some specific identities, i.e Simpson’s formula, Catalan’s identity and Cassini’s
identity, for the dual generalized Guglielmo sequence {Wn} The next theorem gives the Simpson’s formula

for the dual generalized Guglielmo numbers.

THEOREM 4. (Simpson’s formula for dual generalized Guglielmo numbers) For all integers n we have,

Wn +2 Wn +1 Wn WZ Wl WO
(4.1) /WnJrl ,Wn an 1| = Wl Wo W_ 1
Wn Wn —1 Wn -2 WO W— 1 W— 2

Proof. First we assume that n > 0. For the proof, we employ mathematical induction on n. For n =0

identity (4.1) is true. Now we take (4.1) is true for n = k. Therfore, the following identity can be written

Wise Wigr Wi Wy Wi W
Wk+1 Wk Wk—l = W1 Wo W—l
Wi Wisi Wis Wo W_i W_,

If we take n = k + 1, we can get

Wk+3 Wk+2 Wkﬂ 3Wk+2*3Wk+1+Wk Wku Wkﬂ
Wk+2 Wkﬂ Wi = 3Wk+1_3wk+wk71 Wk+1 Wi
Wk+1 We Wi 3Wk—3Wi 1+ Wi o Wi Wiy

Wisz Wipz Wi Wist Wisz Wi

= 3 V~Vk+1 VNVkH Wk -3 Wk Wk+1 VNVk

We Wi Wi Wir Wi Wi

Wi, Wk+2 Wkﬂ

+ Wk,l I/NV;CH Wk
Wio Wi Wi

Wisz Wipr Wi

= WkJrl Wk VNVkA
Wi Wi Wi

Attention that if we take n < 0 the proof can be conducted in a similarly. Thus, the proof is concluded.

From Theorem (4.1), we get following corollary.

COROLLARY 5.
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Tn+2 Tn+1 Tn
(a): Tn+1 Tn Tn—l = _(38 + 1)

(b): Tn+1 Tn Tnfl =0.

(C): On+1 On On,1 = —8(35 + 1)

(d): ﬁn-i—l Pn ﬁn—l = _27(35 + 1)'
ﬁn ﬁnfl van72

In the following theorem, we define Catalan’s identity of dual generalized Guglielmo numbers.

THEOREM 6. (Catalan’s identity) The following identity is true considering all integers n and m
(4.2) WsmWom — W2 = m2(A2 (2B +@m? — 262n? — 4n5) — 24545 (B + zz?n) — G2 (A2 - 24, 43)).

Proof. the proof can be done easily using identity (3.1). O

Next we give Catalan’s identity of dual triangular, Lucas-triangular, Oblong, pentegonal numbers by
using above theorem.

We present Catalan’s identity of dual triangular numbers.

COROLLARY 7. (Catalan’s identity for the dual triangular numbers) The following identity is true con-

sidering all integers n and m

~ 1. ~
TosnTom — T2 = —m*(— 3 (~2n-+ m” — 20% = 1) + ).

Proof. If we get Wn = fn in Theorem 6)we obtain the result required. O

We give Catalan’s identity of dual triangular-Lucas numbers.

COROLLARY 8. (Catalan’s identity for the dual Lucas-triangular numbers) For all integers n and m, the

following identity holds

Hn+mﬁn7m - ﬁz = 0

Proof. If we get Wn = fNIn in Theorem 6 we obtain the result required. [J

We give Catalan’s identity of dual oblong numbers.

COROLLARY 9. (Catalan’s identity for the dual oblong numbers) The following identity is true considering

all integers n and m

0n+m0n—7rz - 63 = _m2 (—62(—271 + m2 — 2712 — 1) + 4571) .
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Proof. If we get Wn = 5n in Theorem 6 we obtain the result required. OJ

We give Catalan’s identity of dual pentegonal numbers.

COROLLARY 10. (Catalan’s identity for the dual pentegonal numbers) The following identity is true

considering all integers n and m

1 ~
PrtmPrnm — D2 = ZmQ(a2 (6n 4+ 9m? — 18n — 1) — 123 (3n — 2)).

Proof. If we get Wn = pp in Theorem 6 we obtain the result required. O
By setting m = 1 in Catalan’s identity, we obtain Cassini’s identity for the dual generalized Guglielmo

numbers. Thus, we present the following corollary.

COROLLARY 11. (Cassini’s identity for the dual generalized Guglielmo numbers) For all integers n, the

following identities holds.
(a): Tn_l,_lfn_l — fﬁ = i?}iQ (—2n — 2n2) — Bn
(b): Hn+1Hn—1 - HTQL =0.
(€): Ons10,_1 — O = a%(—2n — 2n2) — 4pn.
(d): Pri1Pn_1 — P2 = La%6n — 18n% +8 — 35 (3n — 2)).
THEOREM 12. We assume that n and m are integers, Ty, is triangular numbers, the following identity

18 true:
(43) Wm—&-n = Tm,—1Wn+2 + (Tm,—B - 3Tm—2)Wn+l + T771—2Wn-

Proof. The identity (12) can be proved by mathematical induction on m. First we take n,m > 0. If
m =0 we get
Wy =T 1\Wpio+ (T3 = 3T_9)Wyy1 + T-oW,
which is true by seeing that T_; = 0,7 5 = 1,7T_35 = 3. We assume that the identity given holds for m = k.
Form =k + 1, we get
W(k+1)+n = 3Wosr — 3Wosho1 + Wisk—o
= 3(Tho1Wpio+ (To—s — 3Tp—2) Wit + ThoWhy)
—3(Th—oWhio + (Th—g — 3Tk—5)Wry1 + Th_s W)
(T 3Wro + (Ths — 3Tk a) Wit + T aWy,)

= (3Th-1 —3Tk—2 + Th-3)Woio + ((3Th—3 — 3Tk—a + T—_5)
—3(3Tk—2 — 3T4—3 + Ti—a)) W1 + (3Th—2 — 3Th3 + Tha) W,
= TkWnJrZ + (Th—2 — 3Tk71)wn+1 + T W,

= Tty 1Wasa + T3 — 3Tty —2)Watt + Tier1) oW
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The other cases on n, m the proof can be done easily. Consequently, by mathematical induction on m, this

proves (12). O

5. Linear Sum Formulas of Dual Generalized Guglielmo Numbers

In this section we give some details summation formulas for dual hyperbolic generalized Guglielmo

numbers, covering cases with positive and negative subscripts.
PROPOSITION 13. For the generalized Guglielmo numbers, we have the following formulas:
(@): oWk =1 (n+1) ((2n® — 2n) Wa — 2 (2n2 — 5n) Wy + (2n2 — 8n + 12) Wy) .

(b): > p_o Wit = 15 (n+ 1) ((2n? + 4n) Wa — 2 (2n% + n — 6) Wy + (2n2 — 2n) Wy) .

Proof. For the proof, see Soykan [20]. O
PROPOSITION 14. For the generalized Guglielmo numbers, we have the following formulas:

(@): Y p_oWak = 35 (n+1) ((8n2 — 2n) W — 2 (8n2 — 8n) W1 + (8n? — 1dn + 12) Wy).
(b): ZZ:O W2k+1 = %2 (TL + 1) (W2 (8712 + 10n) — 2W1 (87’L2 +4n — 6) + Wo (87’L2 — 271))
(©): Ypeo Waksz = 15 (n+1) ((8n? + 22n + 12) Wy — 2 (8n* + 16n) W1 + (8n* + 10n) Wy).

Proof. For the proof, see Soykan [20]. O
PRrROPOSITION 15. For the generalized Guglielmo numbers, we have the following formulas:

(@): Yp_oWop =15 (n+ 1) ((2n? + 4n) Wy — 2 (2n% + Tn) Wi + (2n? + 10n + 12) Wy).
(b): S p_oWeokt1 = 5 (n+1)((2n% — 2n) Wa — 2 (2n% +n — 6) Wi + (202 + 4n) Wy).

Proof. For the proof, see Soykan [20]. O
PROPOSITION 16. For the generalized Guglielmo numbers, we have the following formulas:

(@): Yp_oWeoog = 35 (n+1) ((8n% + 10n) Wa — 2 (8n® + 16n) Wi + (8n? + 22n + 12) Wy).

(b): Yo Weooksr = 15 (n+ 1) ((8n% — 2n) Wa — 2 (8n2 + 4n — 6) W1 + (8n? + 10n) Wy).

(€): Yr_oWeoskga = 75 (n+ 1) ((8n? — 14n + 12) Wo — 2 (8n? — 8n) Wy + (8n? — 2n) Wy) .
Proof. For the proof, see Soykan [20]. O

Now, we will introduce the formulas that allow us to find the sum of dual generalized Guglielmo numbers.
THEOREM 17. Forn > 0, dual generalized Guglielmo numbers have the following formulas:

(a): Yp_ Wi = F(n+1)((—n+en?+2en+n?)Wy + (6e +5n — 2en® — en — 2n? )Wy + (—4n +en? —
en+n? + 6)Wp).

(b): S5 Wap = & (n 4 1) ((—n +4en® + 5en + 4n2)Wa + (6 + 8n — 8en? — den — 8n>) Wi + (—Tn +
den? —en + 4n? + 6)Wp).
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(c): Yo Waprr = & (n+ 1) ((6e + 5n + 4en® + 11len + 4n* )Wy + (6 — 8en? — 16en — 8n? — 4n) Wy +
(—n + 4en® + ben + 4n?)Wy).
Proof.

(a): Note that using (2.1), we get
POLTSED SUTRES St
k=0 k=0 k=0
and using Proposition (13) the proof can be done easily.

(b): Note that using (2.1), we get
Z Way = Z War + EZ Wak g1
k=0 k=0 k=0
and using Proposition (14) the proof can be done easily.

(c): Note that using (2.1), we get
Z Wor1 = Z Wakt1 +¢ Z W42
k=0 k=0 k=0

and using Proposition (14) the proof can be done easily. [J

As a special case of the theorem 17 (a), we present following corollary.

COROLLARY 18.
(@): YTk = £ (n+1) (6 + (5e +2)n + (¢ + 1)n?).
(b): Sr o Hr=Be+3)(n+1).
(€): S o Ok = L(n+1)(126 + (106 + 4)n + (2¢ + 2)n?).
(d): Yp_oPk = g (n+1)(6e + 9en + (3e + 3)n?).

As a special case of the theorem 17 (b), we present following corollary.

COROLLARY 19.
(a): SioTor = L (n+1) (6 + (5 + 11e)n + (4 + de)n?).
(b): Sp_ o Hop = (3e+3) (n+1).
(€): S Oor = L (n+1) (126 + (10 + 22¢)n + (8 + 8¢)n?).
(d): Y i_oPor = 5 (n+1) (6 + (3+21e)n + (12 + 126)n?).

As a special case of the theorem 17 (c¢), we present following corollary.

COROLLARY 20.
(@) Yo Tors1 = & (n+1) ((6+ 18) + (11 + 17e)n + (4 + 4e)n?).
(b): Sp_ Hopr1 = (3 +3) (n+1).
(€): S Ooyr = £ (n+1) (12 + 36¢) + (22 + 34e)n + (8 + 8e)n?).
(d): Y oPort1 = & (n+1) ((6 4 30¢) + (21 + 39)n + (12 + 12e)n?).
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Now, we present the formula that yield the summation formulas of the generalized Guglielmo numbers
with negative subscripts.

THEOREM 21. Forn > 0, dual generalized Guglielmo numbers have the following formulas:

(a): Yr_ W = F(n+1)((2n+en® —en+n?)Wa + (6 — Tn — 2en? —en — 2n*)Wy + (5n+en’ +
)

2en +n? + 6)Wy).
(b): Xy Woan = § (n+
(11n + 4en? + ben + 4n? + 6)Wy).
(c): Y0 Woop1 = T(n+1)((6e — n + 4en® — Ten + 4n?) W,
)Wo).

1) ((5n + 4en? — en + 4n?)Wy + (6 — 16n — 8en? — 4en — 8n2)Wy +

+ (—4n — 8en? + 8en — 8n? + 6)

W1 + (5n + 4en? — en + 4n?

Proof.
(a): Note that using (2.1), we get

ZW#@ = wak +€ZW71@+1
k=0 k=0 k=0

and using Proposition (15) the proof can be done easily.

(b): Note that using (2.1), we get
Z W_gp = Z W_or +¢ Z W ok 11
k=0 k=0 k=0

and using Proposition (16) the proof can be done easily.

(c): Note that using (2.1), we get using Proposition (16), we get
n n n
Z ok =) Woakpi+e> Woogy
k=0 k=0

k=
and using Proposition (16) the proof can be done easily. O

As a special case of the theorem 21 (a), we obtain the following corollary.

COROLLARY 22.
(a): STk =& (n+1)(6e+(
(b): > OH k=03e+3)(n+1).
(€): Sh 0Ok = L(n+1) (126 + (=2 — 8)n + (2 + 2¢)n?).
(d): Yp_oP—k =73 (2e + (1 —2e)n+ (1 +&)n?).

As a special case of the theorem 21 (b), we obtain the following corollary.

—1 —4e)n + (1 + e)n?).

(n+1)

COROLLARY 23.
(@) Yo Toor = & (n+1)(6e+ (=1 — Te)n + (4 + 4e)n?).
(b): Yoo Hoap = (32 +3) (n+1),
(€): SO op = 2 (n+1) (6 + (=1 = Te)n + (4 + 4e)n?).
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(d): Xp_gP—2k =3 (n+1)((6e) + (9 — 9e)n + (12 4 122)n?).
As a special case of the theorem 21 (c), we obtain the following corollary.

COROLLARY 24.

(@) i Toorg1 = & (n+1) ((6 4 18¢) + (=7 — 13¢)n + (4 + 4e)n?).
(b): S0 Off oks1 = (3e+3) (n+1).

(€): Yh_0O—2k41 =3 (n+1)((6+18e) + (=7 — 13e)n + (4 + 4¢)n?).
(d): Y oP-2k+1 = g (n+1)((6+30e) + (=9 — 27e)n + (12 + 12e)n?).

We will now provide a different theorem that allows us to calculate the finite sum of dual generalized

Gaussian numbers.

THEOREM 25. Suppose that x,y,m be integers. The sum formula given below is true

m+1) ($2 m(2m + 1)
2 3

+2zym+2y?).

i Waksy = (@A14+8(A2+A3)) (m+1)+(GA2+28A3) (m ; Y (zm~+2y)+aAs (

Proof. For the proof we use Binet’s formula of dual generalized Guglielmo numbers and we can write

following identity

S Warry = D (@A +B(As + A)) + @Ay +2B43) > (ck +y) + aAs Y _(zk +y)?
=0 k=0 k=0 k=0
- ~ - ~ 1
= (ad;+B(Ax+ Az))(m+1)+ (aA2—|—2ﬁA3)(m;_ )(asm+2y)
Fads (m; Y (2 m@”; D 4 ouym + 242,

Thus, the proof has been completed. [J

From the theorem (25) we can write the following corollary.

COROLLARY 26.

(a): S, Q,Hy = B(m+1) + (A& + 8) T (zm + 2y) + a2 A 4 9pym + 242).

(b): Zk 0 :vk+y = 3a(m + 1).

(©): Sitg Oukyy = 28(m + 1) + (& + 28) ) (wm + 2y) + @ (22 22D 4 9qym + 24/2).
(A): Y7o Pokry = Blm + 1) + (=& + 38) 2 (m + 2y) + 33 (2 mCmED | 95y 1 242),

6. Matrices related with Dual Generalized Guglielmo Numbers

In this section, we give some identities related to matrices using dual generalized Guglielmo Numbers.

Here, we examine the triangular sequence {T,} defined by the third-order recurrence relation as follows

T, =30 1—3Th 2+T,h 3
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with the initial conditions

To=0, Ty =1, T =3.

We write the third order square matrix A as

3 -3 1
A=11 0 0
0 1 0

such that det A = 1. Then, we have the following Lemma.

LEMMA 27. The following equality holds, for all integers n:

n

Wiso 3 -3 1 Wo
(6.1) Weer | =] 1 0 0 W,
W, 0 1 0 Wo

Proof. First, we get n > 0. Lemma (27) can be given by mathematical induction on n. If n = 0 we get
0

Wo 3 -3 1 W,
wy =11 0 o0 Wi
Wo 0 1 0 Wo

which is true. We claim that the identity (6.1) given holds for n = k. Thus the following identity is true.

k

Wiio 3 -3 1 W
Wi =] 1 0 0 W
Wi 0 1 0 Wo
Forn =k + 1, we get
k+1 . k .
3 -3 1 W, 3 -3 1 3 -3 1 W,
1 0 0 W, = 1 0 0 1 0 0 W,
0 1 0 Wo 0 1 0 0 1 0 Wo
3 -3 1 Wiio
= 1 0 0 Wit
0 1 0 Wi

3Wk+2 - 3Wk+1 + W,
= Wkw

Wit

Wit

Wit
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For the case n < 0 the proof can be done similarly. Consequently, by mathematical induction on n, the proof
is completed.

Note that

Tn+1 _3Tn + Tnfl Tn
A" = Tn _STnfl + Tn72 Tnfl
Tn—l _STn—Z + Tn—3 Tn—2

For the proof and more detail see [23].

THEOREM 28. If we define the matrices Ny and Eg; as follow

Wy Wi W
N, W= Wl WO W_l )
Wo W_i W

,V\V/n-ﬁ—Q Wn-&-l Wn
EW = /W/n-&-l Wn Wn—l

Wn anl Wn72

then the following identity is true:

A"Ng = Egp.

Proof. For the proof, we can use the following identities

Tosr —3Tn+Toy  Tn Wy Wi W
A"Ny = T, 301+ Th—2 Th_: W, W, W.o |,
Tyo1 —3Tno+Th-s Thoo Wo W_i Wy

a1l a2 ais

- a1 dg22 (23

azi1 asz ass
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where

ai1

ai2

a13

a21

az2

a23

a31

a32

a33

GWoTp i1+ Wi (Tn_1 — 3T,) + WoT,,
WiThi1 + Wo (Tpoy — 3T5) + W_1 T,
WoTpi1 + Wy (T1 — 3T,) + W_oTh,
WoT, + Wy (Ty—g — 3Ta_1) + WoTp_1,
WAT, + Wo (Tp—2 — 3Th_1) + W_1Tp_1,
WoTy + W_1 (Tn_2 —3Th_1) + W_oTp_1,
WaThp_1 + Wy (Thp_s — 3T—2) + WoTh_o,
WAT,_1 + Wo (T — 3T0_3) + W_1Th_s,

Woan +W, (T3 —3Th—2) + W_oT, .

Using the Theorem (12) the proof is done. OJ

From Theorem (28), the following corollary can be written.

COROLLARY 29.

(a): We assume that the matrices N3 and Ez are defined as following

T, T, T
N T = Tl fo ’,f, 1 )
To T-1 T

Tn Tn—l Tn—2

s0 that the identity given below is true for A", Nz, Ez,

A"Nz = Ez,

(b): Let’s suppose that the matrices Ng and Egz are defined as following

ﬁg H, ﬁo
NI:T = f‘jl ﬁ-o ﬁ,1 5
Hy H., H._,

23
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so that the identity given below is true for A", Ng, Eg,
A"Ng = Ej.

(c): Let’s suppose that the matrices N5 and Eg are defined as following

02 61 60
N5 - 61 50 6_1 ’
Oy 0.1 0,

E5 = On-‘rl On On—l )

On On—l On—2

so0 that the identity given below is true for A", Ng, Eg,
A"Ng = Ej5.

(d): Let’s suppose that the matrices Ny and Ey are defined as following

D2 D1 Do
Ny=1|p1 po D-1 |>
Po P-1 D-2

§n+2 ﬁnJrl ﬁn
Ey=1 DPnt1 DPn  Pna
Pn Pn—1 DPn—2

so that the identity given below is true for A", Ny, Ej,

A"N; = Ej.

7. Conclusion

In the literature, there have been numerous studies on sequences of numbers, which have been extensively
studied and applied in various research fields, from physics to art. In this study, we investigate the generalized
dual Guglielmo numbers and then various special cases are explored (including dual triangular numbers, dual
triangular-Lucas numbers, dual oblong numbers, and dual pentagonal numbers)

e In section 1, we introduce dual numbers and provide a brief overview of their applications in
scientific fields like physics and engineering. We give some properties, needed rest of our study, on
generalized Guglielmo numbers. Also, we review some papers presented in the literature.

e In section 2, we define dual generalized Guglielmo numbers and then we present generating functions

and Binet’s formula of dual generalized Guglielmo numbers.
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e In section 3, we present some identeties for the generalized Guglielmo sequence that named Simp-
son’s formula, Catalan’s identity and Cassani’s.
e In section 4, we present summation formulas for dual generalized Guglielmo numbers.

e In section 5, we give some matrices related to dual Guglielmo numbers.
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