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1. Introduction

Dual numbers were first introduced by W.K. Clifford in 1873. This intriguing concept has numerous

applications, including screw systems, modeling plane joints, iterative methods for displacement analysis of

spatial mechanisms, inertial force analysis of spatial mechanisms, and more.

Here are some general information about the applications of dual numbers.

• Engineering and Physics:

Used in electrical engineering and control systems.

Applied in wave analysis and signal processing.

Utilized in mechanical engineering for vibration analysis, among other applications.

• Mathematics and Geometry:

Alongside complex numbers, dual numbers contribute to the extension of mathematical struc-

tures.

Employed in geometry to represent various transformations.

• Computer Science:
1

Abstract. In this study, we investigate the generalized dual hyperbolic Guglielmo numbers and then

various special cases are explored (including dual triangular numbers, dual triangular-Lucas numbers, dual

oblong numbers, and dual pentagonal numbers). Binet’s formulas, generating functions, and summation

formulas for these numbers are presented. Additionally, Catalan’s and Cassini’s identities are provided,

along with matrices associated with these sequences.
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Found in graphics and image processing.

Used in robotics and control systems for modeling and analysis.

• Finance and Economics:

Applied in risk analysis and financial engineering.

Utilized in option pricing and portfolio management.

• Optimization Problems:

Used for finding solutions in optimization problems.

Acts as a tool in linear programming and decision-making models.

• Quantum Mechanics:

Employed in quantum computers and quantum mechanics for mathematical representation.

Next, we give some information raleted to hypercomplex number system and then we give some proper-

ities about dual number. As discussed in [15], the hypercomplex numbers systems are extensions of real

numbers. Some examples of hypercomplex number systems ,which is commutative , are complex numbers,

hyperbolic numbers and dual numbers.

• Complex numbers are formed by extending the real number system with the imaginary unit, denoted

as ”i”, which satisfies the equation i2 = −1. Complex numbers is defined as follows,

C = {z = a+ ib : a, b ∈ R, i2 = −1}.

• As discussed in [18], hyperbolic numbers extend the real number system with the hyperbolic unit

j, where j2 = 1. Hyperbolic numbers is defined as follows,

H = {h = a+ jb : a, b ∈ R, j2 = 1, j 6= ±1}.

• As discussed in[10], dual numbers extend the real number system by introducing a new element ε,

where ε2 = 0. Dual numbers is defined as follows,

D = {d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}.

Let D ={d = a+εb : a, b ∈ R, ε2 = 0, ε 6= 0}⊆ R×R is a set called dual numbers and we define following

process on D for every d1 = x+ x∗ε, d2 = y + y∗ε ∈ D as

+ : D× D→ D, d1 + d2 = (x+ x∗ε) + (y + y∗ε) = (x+ y) + (x∗ + y∗)ε,

· : D× D→ D, d1 · d2 = (x+ x∗ε) · (y + y∗ε) = xy + (xy∗ + x∗y)ε,

d1 = (x+ x∗ε) = (y + y∗ε) = d2 if only if x = x∗, y = y∗.

Using above expressions we have following definations,

• — (D,+) is an abelian grup,
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— (D,+, ·) is commitative ring (where for every d ∈ D we have d · 1 = d so that 1 is unit eleman

on · process),

— (D,+, ·) is not field because for every d ∈ D such that there is no element d · d′ = d′ · d = 1,

— the D is a vector space on R,

— D̃ = {a+ 0ε : a ∈ R},which is subspace of D, is isomorph R,

— (1, ε) is basis of D,

— for every d = (x+x∗ε) ∈ D such that d = (x−x∗ε) ∈ D , 1d = (
1
x +

x∗

x ε) ∈ D, d ·d = x2,(d) = d

— for every d1 = x + x∗ε, d2 = y + y∗ε ∈ D,(y 6= 0), d1d2 = (xy +
x∗−xy∗
y2 ε) ∈ D, (d1d2 ) = (d1

d2
),

(d1 + d2) = (d1 + d2) and (d1 · d2) = (d1 · d2). For more detail see [25]

• Dual hyperbolic number is a type of hypercomplex number, specifically a member of the hyperbolic

number system. A dual hyperbolic number is defined by

q = (a0 + ja1) + ε(a2 + ja3) = a0 + ja1 + εa2 + εja3

where a0, a1, a2, a3 ∈ R are real numbers.

The set of all dual hyperbolic numbers are defined as

HD = {a0 + ja1 + εa2 + εja3 : a0, a1, a2, a3 ∈ R, j2 = 1, j 6= ±1, ε2 = 0, ε 6= 0}.

where ε denotes the pure dual unit (ε2 = 0, ε 6= 0), j denotes the hyperbolic unit (j2 = 1), and εj

denotes the dual hyperbolic unit ((jε)2 = 0).

The {1, j, ε, εj} is linear independent and HD = sp{1, j, ε, εj} so that {1, j, ε, εj} is a basis of HD.For

more detail see [3]. The next properties are holds for the base elements {1, j, ε, εj} of dual hyperbolic

numbers (commutative multiplications):1.ε = ε, 1.j = j, ε2 = ε.ε = (jε)2 = 0, j2 = j.j = 1, ε.j = j.ε,

ε.(εj) = (εj).ε = 0, j(εj) = (εj)j = ε.

Next, we will introduce a range of expressions associated with generalized Guglielmo numbers.

A generalized Guglielmo sequence, with the initial values W0,W1,W2 not all being zero, {Wn}n≥0 =

{Wn(W0,W1,W2)}n≥0 is defined by the third-order recurrence relations as follow

(1.1) Wn = 3Wn−1 − 3Wn−2 +Wn−3; W0,W1,W2 (n ≥ 2).

Therefore reccurance relation of {Wn}n≥0 can be given to negative subscripts by defining

W−n = 3W−(n−1) − 3W−(n−2) +W−(n−3)

for n = 1, 2, 3, .... As a result, recurrence (1.1) is true for all integer n.

In the Table 1 We provide the initial set of generalized Guglielmo numbers, both with positive and

negative subscripts

Table 1. A few generalized Guglielmo numbers
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n Wn W−n

0 W0 W0

1 W1 3W0 − 3W1 +W2

2 W2 6W0 − 8W1 + 3W2

3 W0 − 3W1 + 3W2 10W0 − 15W1 + 6W2

4 3W0 − 8W1 + 6W2 15W0 − 24W1 + 10W2

5 6W0 − 15W1 + 10W2 21W0 − 35W1 + 15W2

6 10W0 − 24W1 + 15W2 28W0 − 48W1 + 21W2

Throughout this paper we obtain Wn is the nth generalized Guglielmo numbers with the initial values

W0,W1,W2 where n is an integer.

When the initial values are W0 = 0,W1 = 1,W2 = 3 we generate the triangular sequence, known as

{Tn}, when the initial values areW0 = 3,W1 = 3,W2 = 3 we generate the Triangular-Lucas sequence, known

as {Hn}, when the initial values are W0 = 0,W1 = 2,W2 = 6 we generate the oblong sequence {On} and

when the initial values are W0 = 0,W1 = 1,W2 = 5 we generate the pentegonal sequence, known as {pn}. In

other words, triangular sequence {Tn}n≥0, triangular-Lucas sequence {Hn}n≥0, oblong sequence {On}n≥0
and pentegonal sequence {pn}n≥0 are determined by the third-order recurrence relations

(1.2) Tn = 3Tn−1 − 3Tn−2 + Tn−3, T0 = 0, T1 = 1, T2 = 3,

(1.3) Hn = 3Hn−1 − 3Hn−2 +Hn−3, H0 = 3, H1 = 3, H2 = 3,

(1.4) On = 3On−1 − 3On−2 +On−3, O0 = 0, O1 = 2, O2 = 6,

(1.5) pn = 3pn−1 − 3pn−2 + pn−3, p0 = 0, p1 = 1, p2 = 5.

The sequences {Tn}n≥0, {Hn}n≥0, {On}n≥0 and {pn}n≥0 can be extended to negative subscripts by defining,

T−n = 3T−(n−1) − 3T−(n−2) + T−(n−3),

H−n = 3H−(n−1) − 3H−(n−2) +H−(n−3),

O−n = 3O−(n−1) − 3O−(n−2) +O−(n−3),

p−n = 3p−(n−1) − 3p−(n−2) + p−(n−3),

for n = 1, 2, 3, ... respectively. As a result, recurrences (1.2)-(1.5) hold for all integer n.

We have the option to several essential properties of generalized Guglielmo numbers that are required.

• Binet formula of generalized Guglielmo sequence can be calculated using its characteristic equation

given as

x3 − 3x2 + 3x− 1 = (x− 1)3 = 0.
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The roots of the characteristic equation are given as follow

α = β = γ = 1.

Binet formula are given, using these roots and the recurrence relation, as follow

(1.6) Wn = A1 +A2n+A3n
2

where the coeffi cients of n above equality as

A1 = W0,(1.7)

A2 =
1

2
(−W2 + 4W1 − 3W0),

A3 =
1

2
(W2 − 2W1 +W0).

Here, Binet formula of triangular, triangular-Lucas, oblong and pentagonal sequences are

Tn =
n(n+ 1)

2
,

Hn = 3,

On = n(n+ 1),

pn =
1

2
n (3n− 1) .

• The generating function of {Wn} = {Wn(W0,W1,W2)}, for any integer n, is

(1.8)
∞∑
n=0

Wnx
n =

W0 + (W1 − 3W0)x+ (W2 − 3W1 + 3W0)x
2

1− 3x+ 3x2 − x3 .

• The Cassini identity for {Wn} = {Wn(W0,W1,W2)}, for any integer n, is

(1.9) Wn+1Wn−1 −W 2
n = −

1

2

(
A+Bn+ Cn2

)
where

A = 2W 2
0 + 6W

2
1 − 6W0W1 − 2W1W2,

B = −3W 2
0 − 8W 2

1 −W 2
2 + 10W0W1 − 4W0W2 + 6W1W2,

C = W 2
0 + 4W

2
1 +W

2
2 − 4W0W1 + 2W0W2 − 4W1W2.

If you require further information regarding generalized Guglielmo numbers, see [20]

Now, we give some information, related to dual ,hyperbolic, dual hyperbolic and other sequences, pub-

lished in litarature.

• Cockle [8] studied the hyperbolic numbers with complex coeffi cients.

• Eren and Soykan [9] studied the generalized Generalized Woodall Numbers.

• Cheng and Thompson [6] introduced dual numbers with complex coeffi cients.

• Akar, Yüce and Şahin [3] presented the dual hyperbolic numbers.
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• Soykan, Gümüş, Göcen [21] presented dual hyperbolic generalized Pell numbers given by

V̂n = Vn + jVn+1 + εVn+2 + jεVn+3

where generalized Pell numbers are given by Vn = 2Vn−1+Vn−2, V0 = a, V1 = b (n ≥ 2) with the initial

values V0, V1 not all being zero.

• Cihan, Azak, Güngör, Tosun [2] studied dual hyperbolic Fibonacci and Lucas numbers given by,

respectively,

DHFn = Fn + jFn+1 + εFn+2 + jεFn+3,

DHLn = Ln + jLn+1 + εLn+2 + jεLn+3

where Fibonacci and Lucas numbers, respectively, given by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

• Soykan, Taşdemir and Okumuş [22] studied dual hyperbolic generalized Jacopsthal numbers given

by

Ĵn = Jn + jJn+1 + εJn+2 + jεJn+3

whereJn = Jn−1 + 2Jn−2, J0 = a, J1 = b.

• Bród, Liana, Włoch [5] studied dual hyperbolic generalized balancing numbers as

DHBn = Bn + jBn+1 + εBn+2 + jεBn+3

where Bn = 6Bn−1 −Bn−2, B0 = 0, B1 = 1.

• Gürses, Şentürk, Yüce [11] studied dual-generalized complex Fibonacci and Lucas numbers, respec-

tively, as

F̃n = Fn + jFn+1 + εFn+2 + jεFn+3,

L̃n = Ln + jLn+1 + εLn+2 + jεLn+3,

where Fibonacci and Lucas numbers, respectively, given by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

• Nurkan ,Guven, [17] studied Dual Fibonacci Quaternions as

Q̃n = (Fn + Fn+1) + i(Fn+1 + Fn+2) + j(Fn+2 + Fn+3) + k(Fn+3 + Fn+4)

where Fibonacci given by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1.
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• Aydın [1] studied Dual Jacobsthal Quaternions as

QJk;n = Jk;n + i1Jk;n+1 + i2Jk;n+2 + i3Jk;n+3

where Jn = Jn−1 + 2Jn−2, J0 = 0, J1 = 1.

• Halici [13] studied Dual Fibonacci Octonions as

p =

7∑
s=0

Fn+ses

where Fibonacci given by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1.

Next section, we present the dual hyperbolic generalized Guglielmo numbers and give some properties

of these numbers.

2. Dual Generalized Guglielmo Numbers and their Generating Functions and Binet’s

Formulas

In this section, we define dual generalized Guglielmo numbers then we present generating functions and

Binet formulas for these numbers.

On the set of HD, we will now explore dual generalized Guglielmo numbers on H.The nth generalized

dual Guglielmo numbers, with W̃0, W̃1, W̃2 being the initial conditions, are defined as follows

(2.1) W̃n =Wn + εWn+1.

in addition (2.1) can be written to negative subscripts by defining,

(2.2) W̃−n =W−n + εW−n+1

so identity (2.1) holds for all integers n.

Now we define some special cases of dual generalized Guglielmo numbers. The nth dual triangular

numbers, the nth dual triangular-Lucas numbers, the nth dual oblong numbers and the nth dual pentegonal

numbers, respectively, are given as

the nth generalized dual triangular numbers T̃n = Tn+εTn+1, with T̃0, T̃1, T̃2 being the initial conditions,

are defined as follows

T̃n = Tn + εTn+1

where

T̃0 = T0 + εT1, T̃1 = T1 + εT2, T̃2 = T2 + εT3,
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the nth generalized dual triangular-Lucas numbers H̃n = Hn+ εHn+1, with H̃0, H̃1, H̃2 being the initial

conditions, are defined as follows

H̃n = Hn + j Hn+1

where

H̃0 = H0 + ε H1, H̃1 = H1 + ε H2, H̃2 = H2 + ε H3,

the nth generalized dual triangular numbers Õn = On + εOn+1, with Õ0, Õ1, Õ2 being the initial condi-

tions, are defined as follows

Õn = On + εOn+1

where

Õ0 = O0 + εO1, Õ1 = O1 + εO2, Õ2 = O2 + εO3,

the nth generalized dual triangular numbers p̃n = pn+ jpn+1, with p̃0, p̃1, p̃2 being the initial conditions,

are defined as follows

p̃n = pn + εpn+1

where

p̃0 = p0 + εp1, p̃1 = p1 + εp2, p̃2 = p2 + εp3.

For dual triangular numbers, taking Wn = Tn, T0 = 0, T1 = 1, T2 = 3, we get

T̃0 = 3ε, T̃1 = 1 + 6ε, T̃2 = 3 + 10ε,

for dual triangular-Lucas numbers, taking Wn = Hn, H0 = 3, H1 = 3, H2 = 3, we get

H̃0 = 3 + 3ε, H̃1 = 3 + 3ε, H̃2 = 3 + 3ε,

for dual oblong numbers,taking Wn = On, O0 = 0, O1 = 2, O2 = 6, we get

Õ0 = 6ε, Õ1 = 2 + 12ε, Õ2 = 6 + 20ε,

and for dual pentegonal numbers, taking Wn = pn, p0 = 0, p1 = 1, p2 = 5, we get

p̃0 = 5ε, p̃1 = 1 + 12ε, p̃2 = 5 + 22ε,

Thus, by using (2.1), we can formulate the following identity for non-negative integers n,

(2.3) W̃n = 3W̃n−1 − 3W̃n−2 + W̃n−3.

Hence the sequence {W̃n}n≥0 can be given as

W̃−n = 3W̃−(n−1) − 3W̃−(n−2) + W̃−(n−3),

for n∈{1, 2, 3....} by using (2.2). Accordingly, recurrence (2.3) is true for all integer n.

In the Table 2, We provide the initial dual generalized Guglielmo numbers with both positive and

negative subscripts.
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Table 2. Some dual generalized Guglielmo numbers

n W̃n W̃−n

0 W̃0 W̃0

1 W̃1 3W̃0 − 3W̃1 + W̃2

2 W̃2 6W̃0 − 8W̃1 + 3W̃2

3 W̃0 − 3W̃1 + 3W̃2 10W̃0 − 15W̃1 + 6W̃2

4 3W̃0 − 8W̃1 + 6W̃2 15W̃0 − 24W̃1 + 10W̃2

5 6W̃0 − 15W̃1 + 10W̃2 21W̃0 − 35W̃1 + 15W̃2

6 10W̃0 − 24W̃1 + 15W̃2 28W̃0 − 48W̃1 + 21W̃2

Note that

W̃0 = W0 + εW1,

W̃1 = W1 + εW2,

W̃2 = W2 + εW3.

Some dual triangular numbers, dual triangular-Lucas numbers, dual oblong numbers, and dual pentagonal

numbers with positive or negative subscripts are presented tables which is given below .

Table 3. dual triangular numbers Table 4. dual triangular-Lucas numbers

n T̃n T̃−n

0 ε

1 1 + 3ε 0

2 3 + 6ε 1

3 6 + 10ε 3 + ε

4 10 + 15ε 6 + 3ε

5 15 + 21ε 10 + 6ε

n H̃n H̃−n

0 3 + 3ε

1 3 + 3ε 3 + 3ε

2 3 + 3ε 3 + 3ε

3 3 + 3ε 3 + 3ε

4 3 + 3ε 3 + 3ε

5 3 + 3ε 3 + 3ε

Table 5. dual oblong numbers Table 6. dual pentegonal numbers

n Õn Õ−n

0 2ε

1 2 + 6ε

2 6 + 12ε 2

3 12 + 20ε 6 + 2ε

4 20 + 30ε 12 + 6ε

5 30 + 42ε 20 + 12ε

n p̃n p̃−n

0 ε

1 1 + 5ε 2

2 5 + 12ε 7 + 2ε

3 12 + 22ε 15 + 7ε

4 22 + 35ε 26 + 15ε

5 35 + 51ε 40 + 26ε

Now, we will establish Binet’s formula for the dual generalized Guglielmo numbers, and for the remainder

of the study, we will utilize the following notations:

(2.4) α̃ = 1 + ε,
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(2.5) β̃ = ε.

Note that the following identities are true:

α̃2 = 1 + 2ε,

β̃
2
= 0,

α̃β̃ = β̃.

Theorem 1. (Binet’s Formula) For any integer n, the nth dual generalized Guglielmo number can be

expressed as follows

(2.6) W̃n = (α̃A1 + β̃(A2 +A3)) + (ãA2 + 2β̃A3)n+ ãA3n
2

where α̃, β̃ are given as (2.4)-(2.5)

Proof. Using (1.6) and (1.7)) we can write following identity

W̃n = Wn + εWn+1,

= A1 +A2n+A3n
2 + (A1 +A2 (n+ 1) +A3 (n+ 1)

2
)ε

= (α̃A1 + β̃(A2 +A3)) + (ãA2 + 2β̃A3)n+ ãA3n
2.

This proves (2.6). �
As special cases, for any integer n, the Binet’s Formula of nth dual triangual numbers, the Binet’s

Formula of nth dual triangular-Lucas numbers, the Binet’s Formula of nth dual oblong numbers and the

Binet’s Formula of nth dual pentegonal numbers, respectively, are

T̃n =
1

2
(β̃ + (α̃+ 2β̃)n+ α̃n2),

Ĥn = 3α̃,

Õn = 2β̃ +
(
α̃+ 2β̃

)
n+ α̃n2,

p̃n =
1

2
(2β̃ +

(
6β̃ − α̃

)
n+ 3α̃n2).

Next, we will obtain the generating function of the dual generalized Guglielmo numbers.

Theorem 2. The generating function for the dual generalized Guglielmo numbers is

(2.7) f
W̃n
(x) =

W̃0 + (W̃1 − 3W̃0)x+ (W̃2 − 3W̃1 + 3W̃0)x
2

(1− 3x+ 3x2 − x3) .

Proof. Let the generating function of the dual generalized Guglielmo numbers is given below

f
W̃n
(x) =

∞∑
n=0

W̃nx
n.
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Following that, by utilizing the definition of the dual generalized Guglielmo numbers, and substracting

xg(x) and x2g(x) from g(x), we get

(1− 3x+ 3x2 − x3)f
GW̃n

(x) =

∞∑
n=0

W̃nx
n − 3x

∞∑
n=0

W̃nx
n + 3x2

∞∑
n=0

W̃nx
n − x3

∞∑
n=0

W̃nx
n,

=
∞∑
n=0

W̃nx
n − 3

∞∑
n=0

W̃nx
n+1 + 3

∞∑
n=0

W̃nx
n+2 −

∞∑
n=0

W̃nx
n+3,

=

∞∑
n=0

W̃nx
n − 3

∞∑
n=1

W̃n−1x
n + 3

∞∑
n=2

W̃n−2x
n −

∞∑
n=3

W̃n−3x
n,

= (W̃0 + W̃1x+ W̃2x
2)− 3(W̃x+ W̃1x

2) + 3GW0x
2

+

∞∑
n=3

(W̃n − 3W̃n−1 + 3W̃n−2 − W̃n−3)x
n,

= W̃0 + W̃1x+ W̃2x
2 − 3W̃0x− 3W̃1x

2 + 3W̃0x
2,

= W̃0 + (W̃1 − 3W̃0)x+ (W̃2 − 3W̃1 + 3W̃0)x
2.

Note that we use the recurrence relation W̃n = 3W̃n−1 − 3W̃n−2 + W̃n−3. We rearrange equation which is

given above then we obtain (2.7). �
As specific cases, the generating functions of the dual triangular, triangular-Lucas, oblong and dual

pentegonal numbers are given by

fT̃n(x) =
(j + 3ε+ 6jε) + (1− 8jε− 3ε)x+ (ε+ 3jε)x2

(1− 3x+ 3x2 − x3) ,

fH̃n
(x) =

(3 + 3j + 3ε+ 3jε) + (−6− 6j − 6ε− 6jε)x+ (3 + 3j + 3ε+ 3jε)x2
(1− 3x+ 3x2 − x3) ,

fÕn
(x) =

(2j + 6ε+ 12jε) + (2− 16jε− 6ε)x+ (2ε+ 6jε)x2
(1− 3x+ 3x2 − x3) ,

fp̃n(x) =
(j + 5ε+ 12jε) + (1 + 2j − 3ε− 14jε)x+ (2 + ε+ 5jε)x2

(1− 3x+ 3x2 − x3) ,

respectively. �

3. Deriving Binet’s formula from the generating function

Next, we will explore the Binet’s formula for the dual generalized Guglielmo numbers {W̃n} by utilizing

generating function f
W̃n
(x).

Theorem 3. (Binet formula of dual generalized Guglielmo numbers)

(3.1) W̃n = (α̃A1 + β̃(A2 +A3)) + (ãA2 + 2β̃A3)n+ ãA3n
2.

Proof. We write

(3.2)
∞∑
n=0

W̃nx
n =

W̃0 + (W̃1 − 3W̃0)x+ (W̃2 − 3W̃1 + 3W̃0)x
2

(1− 3x+ 3x2 − x3) =
d1

(1− x) +
d2

(1− x)2 +
d3

(1− x)3 ,
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so that

∞∑
n=0

W̃nx
n =

d1
(1− x) +

d2
(1− x)2 +

d3
(1− x)3 ,

=
d1(1− x)2 + d2(1− x) + d3

(1− x)3 ,

then, we get

W̃0 + (W̃1 − 3W̃0)x+ (W̃2 − 3W̃1 + 3W̃0)x
2 = (d1 + d2 + d3) + (−2d1 − d2)x+ d1x2.

Ensuring equality of coeffi cients for the terms x of the same degree, we obtain

W̃0 = d1 + d2 + d3,(3.3)

W̃1 − 3W̃0 = −2d1 − d2,

W̃2 − 3W̃1 + 3W̃0 = d1.

Solving the (3.3), we can derive the following identities

d1 = 3W̃0 − 3W̃1 + W̃2,

d2 = 5W̃1 − 3W̃0 − 2W̃2,

d3 = W̃0 − 2W̃1 + W̃2.

Thus (3.2) stated as follows

∞∑
n=0

W̃nx
n = d1

∞∑
n=0

xn + d2

∞∑
n=0

(n+ 1)xn + d3

∞∑
n=0

n2 + 3n+ 2

2
xn,

=
∞∑
n=0

(d1 + d2(n+ 1) + d3
n2 + 3n+ 2

2
)xn,

=

∞∑
n=0

(W̃0 +
1

2
(−W̃2 + 4W̃1 − 3W̃0)n+

1

2
(W̃2 − 2W̃1 + W̃0)n

2)xn.

Consequently, we get

W̃n = Ã1 + Ã2n+ Ã3n
2

where

Ã1 = W̃0,

Ã2 =
1

2
(−W̃2 + 4W̃1 − 3W̃0),

Ã3 =
1

2
(W̃2 − 2W̃1 + W̃0).
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Take note that the following equalities are valid.

Ã1 = W̃0(3.4)

= W0 + εW1

= (1 + ε)W0 + ε(
1

2
(−W2 + 4W1 − 3W0)) + (ε)(

1

2
(W2 − 2W1 +W0))

= α̂A1 + β̂A2 + γ̂A3,

Ã2 =
1

2
(−W̃2 + 4W̃1 − 3W̃0)(3.5)

=
1

2
((−3W0 + 4W1 −W2) + ε(−W0 +W2)

= (1 + ε)(
1

2
(−W2 + 4W1 − 3W0)) + ε((W2 − 2W1 +W0))

= (âA2 + 2β̂A3),

Ã3 =
1

2
(W̃2 − 2W̃1 + W̃0)(3.6)

=
1

2
((W2 − 2W1 +W0) + ε(W2 − 2W1 +W0)

= ãA3.

The following equality can be written by using (3.4), (3.5) and (3.6).

W̃n = (α̂A1 + β̂A2 + γ̂A3) + (âA2 + 2β̂A3)n+ âA3n
2. �

4. Some Identities Related to Dual Generalized Guglielmo numbers

We will now introduce some specific identities, i.e Simpson’s formula, Catalan’s identity and Cassini’s

identity, for the dual generalized Guglielmo sequence {W̃n}. The next theorem gives the Simpson’s formula

for the dual generalized Guglielmo numbers.

Theorem 4. (Simpson’s formula for dual generalized Guglielmo numbers) For all integers n we have,

(4.1)

∣∣∣∣∣∣∣∣∣
W̃n+2 W̃n+1 W̃n

W̃n+1 W̃n W̃n−1

W̃n W̃n−1 W̃n−2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
W̃2 W̃1 W̃0

W̃1 W̃0 W̃−1

W̃0 W̃−1 W̃−2

∣∣∣∣∣∣∣∣∣ .
Proof. First we assume that n > 0. For the proof, we employ mathematical induction on n. For n = 0

identity (4.1) is true. Now we take (4.1) is true for n = k. Therfore, the following identity can be written∣∣∣∣∣∣∣∣∣
W̃k+2 W̃k+1 W̃k

W̃k+1 W̃k W̃k−1

W̃k W̃k−1 W̃k−2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
W̃2 W̃1 W̃0

W̃1 W̃0 W̃−1

W̃0 W̃−1 W̃−2

∣∣∣∣∣∣∣∣∣ .
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If we take n = k + 1, we can get∣∣∣∣∣∣∣∣∣
W̃k+3 W̃k+2 W̃k+1

W̃k+2 W̃k+1 W̃k

W̃k+1 W̃k W̃k−1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
3W̃k+2 − 3W̃k+1 + W̃k W̃k+2 W̃k+1

3W̃k+1 − 3W̃k + W̃k−1 W̃k+1 W̃k

3W̃k − 3W̃k−1 + W̃k−2 W̃k W̃k−1

∣∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣∣∣∣
W̃k+2 W̃k+2 W̃k+1

W̃k+1 W̃k+1 W̃k

W̃k W̃k W̃k−1

∣∣∣∣∣∣∣∣∣− 3
∣∣∣∣∣∣∣∣∣
W̃k+1 W̃k+2 W̃k+1

W̃k W̃k+1 W̃k

W̃k−1 W̃k W̃k−1

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
W̃k W̃k+2 W̃k+1

W̃k−1 W̃k+1 W̃k

W̃k−2 W̃k W̃k−1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
W̃k+2 W̃k+1 W̃k

W̃k+1 W̃k W̃k−1

W̃k W̃k−1 W̃k−2

∣∣∣∣∣∣∣∣∣ .
Attention that if we take n < 0 the proof can be conducted in a similarly. Thus, the proof is concluded.

�
From Theorem (4.1), we get following corollary.

Corollary 5.

(a):

∣∣∣∣∣∣∣∣∣
T̃n+2 T̃n+1 T̃n

T̃n+1 T̃n T̃n−1

T̃n T̃n−1 T̃n−2

∣∣∣∣∣∣∣∣∣ = −(3ε+ 1)

(b):

∣∣∣∣∣∣∣∣∣
T̃n+2 T̃n+1 T̃n

T̃n+1 T̃n T̃n−1

T̃n T̃n−1 T̃n−2

∣∣∣∣∣∣∣∣∣ = 0.

(c):

∣∣∣∣∣∣∣∣∣
Õn+2 Õn+1 Õn

Õn+1 Õn Õn−1

Õn Õn−1 Õn−2

∣∣∣∣∣∣∣∣∣ = −8(3ε+ 1).

(d):

∣∣∣∣∣∣∣∣∣
p̃n+2 p̃n+1 p̃n

p̃n+1 p̃n p̃n−1

p̃n p̃n−1 p̃n−2

∣∣∣∣∣∣∣∣∣ = −27(3ε+ 1).
In the following theorem, we define Catalan’s identity of dual generalized Guglielmo numbers.

Theorem 6. (Catalan’s identity) The following identity is true considering all integers n and m

(4.2) W̃n+mW̃n−m − W̃ 2
n = m2(A23

(
2β̃ + ã2m2 − 2ã2n2 − 4nβ̃

)
− 2A2A3

(
β̃ + ã2n

)
− ã2

(
A22 − 2A1A3

)
).
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Proof. the proof can be done easily using identity (3.1). �
Next we give Catalan’s identity of dual triangular, Lucas-triangular, Oblong, pentegonal numbers by

using above theorem.

We present Catalan’s identity of dual triangular numbers.

Corollary 7. (Catalan’s identity for the dual triangular numbers) The following identity is true con-

sidering all integers n and m

T̃n+mT̃n−m − T̃ 2n = −m2(−1
4
ã2
(
−2n+m2 − 2n2 − 1

)
+ β̃n).

Proof. If we get W̃n = T̃n in Theorem 6)we obtain the result required. �
We give Catalan’s identity of dual triangular-Lucas numbers.

Corollary 8. (Catalan’s identity for the dual Lucas-triangular numbers) For all integers n and m, the

following identity holds

H̃n+mH̃n−m − H̃2
n = 0.

Proof. If we get W̃n = H̃n in Theorem 6 we obtain the result required. �
We give Catalan’s identity of dual oblong numbers.

Corollary 9. (Catalan’s identity for the dual oblong numbers) The following identity is true considering

all integers n and m

Õn+mÕn−m − Õ2n = −m2
(
−ã2(−2n+m2 − 2n2 − 1) + 4β̃n

)
.

Proof. If we get W̃n = Õn in Theorem 6 we obtain the result required. �
We give Catalan’s identity of dual pentegonal numbers.

Corollary 10. (Catalan’s identity for the dual pentegonal numbers) The following identity is true

considering all integers n and m

p̃n+mp̃n−m − p̃2n =
1

4
m2(ã2

(
6n+ 9m2 − 18n2 − 1

)
− 12β̃ (3n− 2)).

Proof. If we get W̃n = p̃n in Theorem 6 we obtain the result required. �
By setting m = 1 in Catalan’s identity, we obtain Cassini’s identity for the dual generalized Guglielmo

numbers. Thus, we present the following corollary.

Corollary 11. (Cassini’s identity for the dual generalized Guglielmo numbers) For all integers n, the

following identities holds.

(a): T̃n+1T̃n−1 − T̃ 2n = 1
4 ã
2
(
−2n− 2n2

)
− β̃n.

(b): H̃n+1H̃n−1 − H̃2
n = 0.

(c): Õn+1Õn−1 − Õ2n = ã2(−2n− 2n2)− 4β̃n.
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(d): p̃n+1p̃n−1 − p̃2n = 1
4 ã
26n− 18n2 + 8− 3β̃ (3n− 2)).

Theorem 12. We assume that n and m are integers, Tn is triangular numbers, the following identity

is true:

(4.3) W̃m+n = Tm−1W̃n+2 + (Tm−3 − 3Tm−2)W̃n+1 + Tm−2W̃n.

Proof. The identity (12) can be proved by mathematical induction on m. First we take n,m > 0. If

m = 0 we get

W̃n = T−1W̃n+2 + (T−3 − 3T−2)W̃n+1 + T−2W̃n

which is true by seeing that T−1 = 0, T−2 = 1, T−3 = 3. We assume that the identity given holds for m = k.

For m = k + 1, we get

W̃(k+1)+n = 3W̃n+k − 3W̃n+k−1 + W̃n+k−2

= 3(Tk−1W̃n+2 + (Tk−3 − 3Tk−2)W̃n+1 + Tk−2W̃n)

−3(Tk−2W̃n+2 + (Tk−4 − 3Tk−3)W̃n+1 + Tk−3W̃n)

+(Tk−3W̃n+2 + (Tk−5 − 3Tk−4)W̃n+1 + Tk−4W̃n)

= (3Tk−1 − 3Tk−2 + Tk−3)W̃n+2 + ((3Tk−3 − 3Tk−4 + Tk−5)

−3(3Tk−2 − 3Tk−3 + Tk−4))W̃n+1 + (3Tk−2 − 3Tk−3 + Tk−4)W̃n

= TkW̃n+2 + (Tk−2 − 3Tk−1)W̃n+1 + Tk−1W̃n

= T(k+1)−1W̃n+2 + (T(k+1)−3 − 3T(k+1)−2)W̃n+1 + T(k+1)−2W̃n.

The other cases on n,m the proof can be done easily. Consequently, by mathematical induction on m, this

proves (12). �

5. Linear Sum Formulas of Dual Generalized Guglielmo Numbers

In this section we give some details summation formulas for dual hyperbolic generalized Guglielmo

numbers, covering cases with positive and negative subscripts.

Proposition 13. For the generalized Guglielmo numbers, we have the following formulas:

(a):
∑n

k=0Wk =
1
12 (n+ 1)

((
2n2 − 2n

)
W2 − 2

(
2n2 − 5n

)
W1 +

(
2n2 − 8n+ 12

)
W0

)
.

(b):
∑n

k=0Wk+1 =
1
12 (n+ 1)

((
2n2 + 4n

)
W2 − 2

(
2n2 + n− 6

)
W1 +

(
2n2 − 2n

)
W0

)
.

Proof. For the proof, see Soykan [20]. �

Proposition 14. For the generalized Guglielmo numbers, we have the following formulas:

(a):
∑n

k=0W2k =
1
12 (n+ 1) (

(
8n2 − 2n

)
W2 − 2

(
8n2 − 8n

)
W1 +

(
8n2 − 14n+ 12

)
W0).

(b):
∑n

k=0W2k+1 =
1
12 (n+ 1) (W2

(
8n2 + 10n

)
− 2W1

(
8n2 + 4n− 6

)
+W0

(
8n2 − 2n

)
).
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(c):
∑n

k=0W2k+2 =
1
12 (n+ 1) (

(
8n2 + 22n+ 12

)
W2 − 2

(
8n2 + 16n

)
W1 +

(
8n2 + 10n

)
W0).

Proof. For the proof, see Soykan [20]. �

Proposition 15. For the generalized Guglielmo numbers, we have the following formulas:

(a):
∑n

k=0W−k =
1
12 (n+ 1) (

(
2n2 + 4n

)
W2 − 2

(
2n2 + 7n

)
W1 +

(
2n2 + 10n+ 12

)
W0).

(b):
∑n

k=0W−k+1 =
1
12 (n+ 1) (

(
2n2 − 2n

)
W2 − 2

(
2n2 + n− 6

)
W1 +

(
2n2 + 4n

)
W0).

Proof. For the proof, see Soykan [20]. �

Proposition 16. For the generalized Guglielmo numbers, we have the following formulas:

(a):
∑n

k=0W−2k =
1
12 (n+ 1) (

(
8n2 + 10n

)
W2 − 2

(
8n2 + 16n

)
W1 +

(
8n2 + 22n+ 12

)
W0).

(b):
∑n

k=0W−2k+1 =
1
12 (n+ 1) (

(
8n2 − 2n

)
W2 − 2

(
8n2 + 4n− 6

)
W1 +

(
8n2 + 10n

)
W0).

(c):
∑n

k=0W−2k+2 =
1
12 (n+ 1)

((
8n2 − 14n+ 12

)
W2 − 2

(
8n2 − 8n

)
W1 +

(
8n2 − 2n

)
W0

)
.

Proof. For the proof, see Soykan [20]. �
Now, we will introduce the formulas that allow us to find the sum of dual generalized Guglielmo numbers.

Theorem 17. For n ≥ 0, dual generalized Guglielmo numbers have the following formulas:

(a):
∑n

k=0 W̃k =
1
6 (n+1)((−n+ εn

2+2εn+n2)W2+(6ε+5n− 2εn2− εn− 2n2)W1+(−4n+ εn2−

εn+ n2 + 6)W0).

(b):
∑n

k=0 W̃2k =
1
6 (n+ 1) ((−n+4εn

2+5εn+4n2)W2+(6ε+8n− 8εn2− 4εn− 8n2)W1+(−7n+

4εn2 − εn+ 4n2 + 6)W0).

(c):
∑n

k=0 W̃2k+1 =
1
6 (n+ 1) ((6ε+5n+4εn

2+11εn+4n2)W2+ (6− 8εn2− 16εn− 8n2− 4n)W1+

(−n+ 4εn2 + 5εn+ 4n2)W0).

Proof.

(a): Note that using (2.1), we get

n∑
k=0

W̃k =

n∑
k=0

Wk + ε

n∑
k=0

Wk+1

and using Proposition (13) the proof can be done easily.

(b): Note that using (2.1), we get

n∑
k=0

W̃2k =

n∑
k=0

W2k + ε

n∑
k=0

W2k+1

and using Proposition (14) the proof can be done easily.

(c): Note that using (2.1), we get

n∑
k=0

W̃2k+1 =

n∑
k=0

W2k+1 + ε

n∑
k=0

W2k+2
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and using Proposition (14) the proof can be done easily. �
As a special case of the theorem 17 (a), we present following corollary.

Corollary 18.

(a):
∑n

k=0 T̃k =
1
6 (n+ 1) (6ε+ (5ε+ 2)n+ (ε+ 1)n

2).

(b):
∑n

k=0 H̃k = (3ε+ 3) (n+ 1) .

(c):
∑n

k=0 Õk =
1
6 (n+ 1)(12ε+ (10ε+ 4)n+ (2ε+ 2)n

2).

(d):
∑n

k=0 p̃k =
1
6 (n+ 1) (6ε+ 9εn+ (3ε+ 3)n

2).

As a special case of the theorem 17 (b), we present following corollary.

Corollary 19.

(a):
∑n

k=0 T̃2k =
1
6 (n+ 1) (6ε+ (5 + 11ε)n+ (4 + 4ε)n

2).

(b):
∑n

k=0 H̃2k = (3ε+ 3) (n+ 1) .

(c):
∑n

k=0 Õ2k =
1
6 (n+ 1) (12ε+ (10 + 22ε)n+ (8 + 8ε)n

2).

(d):
∑n

k=0 p̃2k =
1
6 (n+ 1) (6ε+ (3 + 21ε)n+ (12 + 12ε)n

2).

As a special case of the theorem 17 (c), we present following corollary.

Corollary 20.

(a):
∑n

k=0 T̃2k+1 =
1
6 (n+ 1) ((6 + 18ε) + (11 + 17ε)n+ (4 + 4ε)n

2).

(b):
∑n

k=0 H̃2k+1 = (3ε+ 3) (n+ 1) .

(c):
∑n

k=0 Õ2k+1 =
1
6 (n+ 1) ((12 + 36ε) + (22 + 34ε)n+ (8 + 8ε)n

2).

(d):
∑n

k=0 p̃2k+1 =
1
6 (n+ 1) ((6 + 30ε) + (21 + 39ε)n+ (12 + 12ε)n

2).

Now, we present the formula that yield the summation formulas of the generalized Guglielmo numbers

with negative subscripts.

Theorem 21. For n ≥ 0, dual generalized Guglielmo numbers have the following formulas:

(a):
∑n

k=0 W̃−k =
1
6 (n+ 1) ((2n+ εn

2 − εn+ n2)W2 + (6ε− 7n− 2εn2 − εn− 2n2)W1 + (5n+ εn
2 +

2εn+ n2 + 6)W0).

(b):
∑n

k=0 W̃−2k =
1
6 (n+ 1) ((5n + 4εn

2 − εn + 4n2)W2 + (6ε − 16n − 8εn2 − 4εn − 8n2)W1 +

(11n+ 4εn2 + 5εn+ 4n2 + 6)W0).

(c):
∑n

k=0 W̃−2k+1 =
1
6 (n+ 1) ((6ε − n + 4εn2 − 7εn + 4n2)W2 + (−4n − 8εn2 + 8εn − 8n2 + 6)

W1 + (5n+ 4εn
2 − εn+ 4n2)W0).

Proof.

(a): Note that using (2.1), we get
n∑
k=0

W̃−k =

n∑
k=0

W−k + ε

n∑
k=0

W−k+1
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and using Proposition (15) the proof can be done easily.

(b): Note that using (2.1), we get

n∑
k=0

W̃−2k =

n∑
k=0

W−2k + ε

n∑
k=0

W−2k+1

and using Proposition (16) the proof can be done easily.

(c): Note that using (2.1), we get using Proposition (16), we get

n∑
k=0

W̃−2k+1 =

n∑
k=0

W−2k+1 + ε

n∑
k=0

W−2k+2

and using Proposition (16) the proof can be done easily. �

As a special case of the theorem 21 (a), we obtain the following corollary.

Corollary 22.

(a):
∑n

k=0 T̃−k =
1
6 (n+ 1) (6ε+ (−1− 4ε)n+ (1 + ε)n

2).

(b):
∑n

k=0 H̃−k = (3ε+ 3) (n+ 1) .

(c):
∑n

k=0 Õ−k =
1
6 (n+ 1) (12ε+ (−2− 8ε)n+ (2 + 2ε)n

2).

(d):
∑n

k=0 p̃−k =
1
2 (n+ 1) (2ε+ (1− 2ε)n+ (1 + ε)n

2).

As a special case of the theorem 21 (b), we obtain the following corollary.

Corollary 23.

(a):
∑n

k=0 T̃−2k =
1
6 (n+ 1) (6ε+ (−1− 7ε)n+ (4 + 4ε)n

2).

(b):
∑n

k=0 H̃−2k = (3ε+ 3) (n+ 1) .

(c):
∑n

k=0 Õ−2k =
1
3 (n+ 1) (6ε+ (−1− 7ε)n+ (4 + 4ε)n

2).

(d):
∑n

k=0 p̃−2k =
1
6 (n+ 1) ((6ε) + (9− 9ε)n+ (12 + 12ε)n

2).

As a special case of the theorem 21 (c), we obtain the following corollary.

Corollary 24.

(a):
∑n

k=0 T̃−2k+1 =
1
6 (n+ 1) ((6 + 18ε) + (−7− 13ε)n+ (4 + 4ε)n

2).

(b):
∑n

k=0 H̃−2k+1 = (3ε+ 3) (n+ 1) .

(c):
∑n

k=0 Õ−2k+1 =
1
3 (n+ 1) ((6 + 18ε) + (−7− 13ε)n+ (4 + 4ε)n

2).

(d):
∑n

k=0 p̃−2k+1 =
1
6 (n+ 1) ((6 + 30ε) + (−9− 27ε)n+ (12 + 12ε)n

2).

We will now provide a different theorem that allows us to calculate the finite sum of dual generalized

Gaussian numbers.

Theorem 25. Suppose that x, y,m be integers. The sum formula given below is true
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m∑
k=0

W̃xk+y = (α̃A1+β̃(A2+A3))(m+1)+(α̃A2+2β̃A3)
(m+ 1)

2
(xm+2y)+ãA3

(m+ 1)

2
(x2

m(2m+ 1)

3
+2xym+2y2).

Proof. For the proof we use Binet’s formula of dual generalized Guglielmo numbers and we can write

following identity

m∑
k=0

W̃xk+y =

m∑
k=0

(α̃A1 + β̃(A2 +A3)) + (ãA2 + 2β̃A3)

m∑
k=0

(xk + y) + ãA3

m∑
k=0

(xk + y)2

= (α̃A1 + β̃(A2 +A3))(m+ 1) + (ãA2 + 2β̃A3)
(m+ 1)

2
(xm+ 2y)

+ãA3
(m+ 1)

2
(x2

m(2m+ 1)

3
+ 2xym+ 2y2).

Thus, the proof has been completed. �
From the theorem (25) we can write the following corollary.

Corollary 26.

(a):
∑m

k=0 T̃xk+y = β̃(m+ 1) + ( 12 α̃+ β̃)
(m+1)
2 (xm+ 2y) + ã (m+1)4 (x2m(2m+1)3 + 2xym+ 2y2).

(b):
∑m

k=0 H̃xk+y = 3α̃(m+ 1).

(c):
∑m

k=0 Õxk+y = 2β(m+ 1) + (α̃+ 2β̃)
(m+1)
2 (xm+ 2y) + ã (m+1)2 (x2m(2m+1)3 + 2xym+ 2y2).

(d):
∑m

k=0 p̃xk+y = β̃(m+ 1) + (− 12 α̃+ 3β̃)
(m+1)
2 (xm+ 2y) + 3ã (m+1)4 (x2m(2m+1)3 + 2xym+ 2y2).

6. Matrices related with Dual Generalized Guglielmo Numbers

In this section, we give some identities related to matrices using dual generalized Guglielmo Numbers.

Here, we examine the triangular sequence {Tn} defined by the third-order recurrence relation as follows

Tn = 3Tn−1 − 3Tn−2 + Tn−3

with the initial conditions

T0 = 0, T1 = 1, T2 = 3.

We write the third order square matrix A as

A =


3 −3 1

1 0 0

0 1 0


such that detA = 1. Then, we have the following Lemma.

Lemma 27. The following equality holds, for all integers n:

(6.1)


W̃n+2

W̃n+1

W̃n

 =


3 −3 1

1 0 0

0 1 0


n

W̃2

W̃1

W̃0

 .
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Proof. First, we get n ≥ 0. Lemma (27) can be given by mathematical induction on n. If n = 0 we get


W̃2

W̃1

W̃0

 =


3 −3 1

1 0 0

0 1 0


0

W̃2

W̃1

W̃0


which is true. We claim that the identity (6.1) given holds for n = k. Thus the following identity is true.


W̃k+2

W̃k+1

W̃k

 =


3 −3 1

1 0 0

0 1 0


k

W̃2

W̃1

W̃0

 .

For n = k + 1, we get
3 −3 1

1 0 0

0 1 0


k+1

W̃2

W̃1

W̃0

 =


3 −3 1

1 0 0

0 1 0



3 −3 1

1 0 0

0 1 0


k

W̃2

W̃1

W̃0



=


3 −3 1

1 0 0

0 1 0




W̃k+2

W̃k+1

W̃k



=


3W̃k+2 − 3W̃k+1 + W̃k

W̃k+2

W̃k+1



=


W̃k+3

W̃k+2

W̃k+1

 .

For the case n < 0 the proof can be done similarly. Consequently, by mathematical induction on n, the proof

is completed.

Note that

An =


Tn+1 −3Tn + Tn−1 Tn

Tn −3Tn−1 + Tn−2 Tn−1

Tn−1 −3Tn−2 + Tn−3 Tn−2

 .

For the proof and more detail see [23].
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Theorem 28. If we define the matrices N
W̃
and E

W̃
as follow

N
W̃

=


W̃2 W̃1 W̃0

W̃1 W̃0 W̃−1

W̃0 W̃−1 W̃−2

 ,

E
W̃

=


W̃n+2 W̃n+1 W̃n

W̃n+1 W̃n W̃n−1

W̃n W̃n−1 W̃n−2

 .

then the following identity is true:

AnN
W̃
= E

W̃
.

Proof. For the proof, we can use the following identities

AnN
W̃

=


Tn+1 −3Tn + Tn−1 Tn

Tn −3Tn−1 + Tn−2 Tn−1

Tn−1 −3Tn−2 + Tn−3 Tn−2




W̃2 W̃1 W̃0

W̃1 W̃0 W̃−1

W̃0 W̃−1 W̃−2

 ,

=


a11 a12 a13

a21 a22 a23

a31 a32 a33


where

a11 = GW̃2Tn+1 + W̃1 (Tn−1 − 3Tn) + W̃0Tn,

a12 = W̃1Tn+1 + W̃0 (Tn−1 − 3Tn) + W̃−1Tn,

a13 = W̃0Tn+1 + W̃−1 (Tn−1 − 3Tn) + W̃−2Tn,

a21 = W̃2Tn + W̃1 (Tn−2 − 3Tn−1) + W̃0Tn−1,

a22 = W̃1Tn + W̃0 (Tn−2 − 3Tn−1) + W̃−1Tn−1,

a23 = W̃0Tn + W̃−1 (Tn−2 − 3Tn−1) + W̃−2Tn−1,

a31 = W̃2Tn−1 + W̃1 (Tn−3 − 3Tn−2) + W̃0Tn−2,

a32 = W̃1Tn−1 + W̃0 (Tn−3 − 3Tn−2) + W̃−1Tn−2,

a33 = W̃0Tn−1 + W̃−1 (Tn−3 − 3Tn−2) + W̃−2Tn−2.

Using the Theorem (12) the proof is done. �
From Theorem (28), the following corollary can be written.

Corollary 29.
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(a): We assume that the matrices NT̃ and ET̃ are defined as following

NT =


T̃2 T̃1 T̃0

T̃1 T̃0 T̃−1

T̃0 T̃−1 T̃−2

 ,

ET̃ =


T̃n+2 T̃n+1 T̃n

T̃n+1 T̃n T̃n−1

T̃n T̃n−1 T̃n−2

 ,

so that the identity given below is true for An, NT̃ , ET̃ ,

AnNT̃ = ET̃ ,

(b): Let’s suppose that the matrices NH̃ and EH̃ are defined as following

NH̃ =


H̃2 H̃1 H̃0

H̃1 H̃0 H̃−1

H̃0 H̃−1 H̃−2

 ,

EH̃ =


H̃n+2 H̃n+1 H̃n

H̃n+1 H̃n H̃n−1

H̃n H̃n−1 H̃n−2

 ,

so that the identity given below is true for An, NH̃ , EH̃ ,

AnNH̃ = EÕ.

(c): Let’s suppose that the matrices NÕ and EÕ are defined as following

NÕ =


Õ2 Õ1 Õ0

Õ1 Õ0 Õ−1

Õ0 Õ−1 Õ−2

 ,

EÕ =


Õn+2 Õn+1 Õn

Õn+1 Õn Õn−1

Õn Õn−1 Õn−2

 ,

so that the identity given below is true for An, NÕ, EÕ,

AnNÕ = EÕ.

(d): Let’s suppose that the matrices Np̃ and Ep̃ are defined as following

Np̃ =


p̃2 p̃1 p̃0

p̃1 p̃0 p̃−1

p̃0 p̃−1 p̃−2

 ,
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Ep̃ =


p̃n+2 p̃n+1 p̃n

p̃n+1 p̃n p̃n−1

p̃n p̃n−1 p̃n−2

 .

so that the identity given below is true for An, Np̃, Ep̃,

AnNp̃ = Ep̃.
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