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ABSTRACT 
This study mainly investigates the dynamical analysis of the FitzHugh-Nagumo (FHN) neuron model. Firstly, it 

analyzes the equilibrium stability of the system in the absence of network diffusion. Then, it considers two types of 
network topologies: random networks and higher-order networks. The paper analyzes the Turing instability 
phenomenon in the presence of network diffusion, identifies the critical diffusion coefficient in the FHN model that leads 
to Turing instability, and plots the eigenvalue distribution diagram, known as the Turing pattern. The research findings 
indicate that networks with higher-order connections, as opposed to random networks, display a more intricate interplay 
among neurons. This heightened interconnection intensifies the Turing instability phenomenon, amplifying its 
significance within the system. The stability of the dynamical system can be associated with the onset of neurological 
disorders such as epilepsy, caused by abnormal neuronal firing. This analogy facilitates the transfer of content related to 
the instability of control systems to the regulation of neurological disorders. 
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1. Introduction 

The FitzHugh-Nagumo neuron model was proposed by FitzHugh[1] and Nagumo et al. [2] which is a simplified model 
capturing the neural excitability of the original Hodgkin-Huxley equation. This model is commonly referred to as the FHN 
model.In recent years, many researchers have explored the dynamics using the FHN model[3].Turing theory, originally 
proposed by Alan Turing for chemical systems, has been applied in various fields such as ecology[7], physics[9]and 
others[10].Nakao et al. [10]studied the Turing instability of activators and inhibitors in network diffusion, providing a 
theoretical foundation for subsequent research.Hens et al.[11]investigated the propagation of signals in complex 
networks.Zheng et al. [12]explored the Turing instability phenomenon in the FHN model and its relevance to short-term 
memory[15].Parker et al. [16]studied synaptic learning in the FHN model. 

The study of the dynamic behavior of a single neuron model can no longer fully explain some of the phenomena 

encountered in biomathematics. Therefore,scholars have shifted their attention to studying the model within a network 

framework. The interconnection between nodes in the network signifies the transfer of information between neurons, which 
is more conducive to studying the dynamic analysis of the model.In recent years, higher-order networks have emerged, 
considering the interaction of three or even more nodes based on the original interactions between two nodes.This 
approach is more beneficial for exploring neurological diseases caused by abnormal electrical firing of neurons.Bianconi et 
al. explored the relevance of higher-order networks in[17], while review [19] provides a detailed introduction to higher-order 
network.Gao et al. [20]adopted a combination of three models to study Turing instability in a simplicial complex.Indeed, 
there are higher-order relationships beyond two nodes, and group interactions commonly occur inthe neurobiology[21], 
ecology[22].In [23], the authors investigated the correlation between epileptic seizures and kinetic behaviors. 

In this paper,the dynamical phenomena of the FHN model are examined in random networks and higher-order 
networks. In section2, the FHN model is analyzed theoretically, including the analysis of origin without network diffusion 
and the analysis of Turing instability in network diffusion. The theoretical results are simulated in section 3. Finally, section 
4 concludes and offers prospects for further research. 
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2. Analysis with FitzHugh-Nagumo neuron model 

2.1. Dynamic analysis with FHN model without diffusive network 

In this paper, we investigate the Fitzhugh-Nagumo (FHN) model, characterized by the following equations[1]: 
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We assume that the parameters , ,a b c  are positive. Here, u  represents the voltage of the membrane, while v

denotes the recovery variable.Equation (1) implies that the equilibrium point is represented by ( *, *)u v , where 
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We have the Jacobian matrix in the equilibrium point: 
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Hence, the characteristic equation for Equation (1) is obtained as follows: 
2 det 0.trJ J          (2) 
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By applying the Routh-Hurwitz criterion and the stability theorem, we can determine the range within which the 
equilibrium point of the system exhibits asymptotic stability. Initially, we study the FHN model without a diffusive network. 

Through analyzing the Jacobian matrix corresponding to the equilibrium point in the system, we can obtain the stability 
analysis of the neuron model: 

Theorem 1. When we have b ac , the  3 0,0E  is saddle node. 

Proof: By substituting the equilibrium point value into the Jacobian matrix, we derive the following expression. 
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And we have the 𝐸3 is saddle node when we have 
3

det 0EJ b ac   , consequently, theorem 1 has been satisfied.□ 

The stable states of the other two equilibrium points can then be calculated. 
 

2.2Dynamic analysis with FHN model in diffusive network 

Neural networks are thought to be necessary for information transmission and integration.In this section, we give the 

instability analysis of network systems. In Eq (3), the expression of ( , )f u v  and ( , )g u v  equals to Eq(1), 1d  and 2d  

represent the dfiffusion coefficient of u and v ,respectively. 
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L is the Laplacian matrix in the network, the matrix element is computed as:  
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A is the adjacent matrix in the network, ik is the degree of node i . ij represent the Kronecker product, once node 

i  and node j  are connected, we have 1ij  . The characteristic equation for the Laplace matrix is: 
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Where
( ) is the Laplacian eigenvector and  is the eigenvalue. Therefore, we have the characteristic 

equation of Eq(3) is: 
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The solution to this Eq (5) is 

2

1

2

2

1
( ) ( ) 4 Q( ) ,

2

1
( ) ( ) 4 Q( ) .

2

P P

P P

   

   





       
 

       
 

 

There is a critical value when Turing bifurcation occurs in the neuronal model: ( ) 0Q   , Turing instability occurs 

when the following conditions are satisfied:  1 2, .       And we have 
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Therefore, we have the following theorem. 

Theorem2. The diffusion coefficient 2 1k d d critical condition of Turing bifurcation is: 
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Proof: When Turing bifurcation is happened, we have Re 0  , saddle-node bifurcationoccurs in the system, as 
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So, we have min( ) 0Q    in the Eq (5), which simplifies to Eq (6).           □ 

3.Simulation 

In this part, we simulate the FHN model in a certain parameter. We set 0.8, 0.5, 0.7a b c   in the Eq(1), we have 

1 (0.4094,0.2924)E  , 2 ( 0.2094, 0.0558)E    , 3 (0,0)E  .  When we take the initial value (u,v)=(0.01,0.01). In 

Fig 1, we show the diagram of the equilibrium point of the Eq (1), the curve containing an arrow in the image represents a 
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vector field. Therefore, Figure 1 shows that this is a bistable system, 3E is an unstable equilibrium point, 1E  and 2E are 

stable equilibrium point. 
Then, we show phase diagram and time series diagram of the Eq (1) in the Fig 2, as time goes by, u and v tend to 

stabilize and remain unchanged after a small oscillation amplitude. The equilibrium point remains stable in 1E . 

 
 

Fig1. Equilibrium point state of Eq(1). 
 

  
(a) (b) 

Fig 2. (a) The phase diagram in Eq(1). (b) The time series diagram of u and v. 

 

  
(a) (b) 

Fig 3. Two types of network structure diagram. 
 (a) Random network. (b) Higher-order network. 
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(a) (b) 

Fig 4. The eigenvalues distribution of system (1). (a) and (b) represent the eigenvalues distribution of system (1) in the random 
network and higher-order network, respectively. 

In Figure 3, we show the topology of random networks and higher-order networks. The Fig3(a) represent the random 
network with N=10, which indicates that nodes are randomly connected with a certain probability. The Fig3(b) shows the 
higher-order network with N=5,which means the interconnection between multiple nodes. In the higher-order network, a 
node isa 0-simplex, a link isa 1-simplex, a triangle is a 2-simplex

[17]
, therefore, we have five 0-simplies(nodes), six 

links(1-simplices) and two triangles(2-simplices)
[17]

in the Fig3(b). 
During the simulation,networks with N=100 nodes were set up, with the interconnections between the nodes 

resembling the structure depicted in Figure 3.The average degree of nodes in the random network is 1.98, while the 
average degree of the higher-order network is 3.94. The average distance between the two networks is 5.86 and 3.49, 
respectively.Figures 4(a) and 4(b) represent the eigenvalue distribution of system (1) in the random network and 
higher-order network, respectively. The curves in the figure represents the eigenvalue distribution of system (1), while the 
scatter points represent the eigenvalues in the constructed network. The zero axis is utilized to distinguish whether Turing 
instability occurs. Scatter points situated above the zero axis indicate the occurrence of Turing instability, whereas the 
curve below the zero axis indicates that the system is stable.By comparing Figure 4(a) and Figure 4(b), it can be observed 
that the phenomenon of Turing instability is more obvious in the higher-order network than in the random network. 

 
 

4.Conclusion 

In this paper, we discuss the dynamics analysis of the FHN model, considering the phase diagram and time series 
diagram of a single neuron model, and also considering the Turing instability of the system in the presence of network 
diffusion. 

When b ac , theorem 1 gives the condition that (0,0) satisfies the saddle point.Fig 1visualizes the equilibrium point 

and its stability in the FHN model.Theorem 2 provides the critical value of Turing instability in the FHN model for network 
diffusion, and Fig4 presents simulation results to validate the theory's accuracy. 

In conclusion, we explored changes in equilibrium point stability, analyzing the network topology structure. By 
comparing the two network structures depicted in Figure 3, it becomes evident that the connections between neurons in the 
higher-order network are closer, resulting in relatively denser clusters formed by neurons. The disparity in network 
structure leads to a higher number of nodes experiencing Turing instability in the higher-order network.The research 
indicates that the Turing instability phenomenon becomes more pronounced as the network's topology becomes more 
complex and the connections between nodes become more compact. 

In [25], the authors point out that the diffusion of epilepsy undergoes phase transition, leading to cognitive impairment. 
They emphasize that studying the factors affecting this diffusion is of great value for the development of new treatments. 
This paper analyzes the dynamic stability of the network and examines diffusion-induced Turing instability, comparing 
differences between two network structures. These findings can be combined with specific data in future studies. The 
transmission of information in the neuronal model is not only related to the time delay, but also to the electromagnetic field 
stimulus and synapse. Therefore, in future research, we will further study the dynamic behavior of the external stimulus and 
its impact on the network model. 
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