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The study aimed at using the Close-Knit Regression (CKR) technique to approximate values 
absent because of the missing completely at random mechanism. Bivariate datasets were 
generated and simulated for MCAR mechanism at low (10%) and high (60%) rates. The CKR 
method was used and compared alongside other single imputation techniques like mean 
imputation, simple regression and K- Nearest Neighbors (K-NN). The difference between 
parameter estimates like mean, correlation coefficient (r), maximum, minimum and standard 
deviation which were gotten using predicted data and those using the original data as well as 
assessment of error rates like mean absolute error (MAE) and root mean square error (RMSE) 
were used as metrics in deciding the efficiency of the techniques. Results showed that the CKR 
technique was the best from those considered, with its estimated data having parameter 
estimates closer to that of the original whilst having the least error rates at 10% (MAE of 0.01 
and RMSE of 0.047) and 60% (MAE of 0.021 and RMSE of 0.073) in comparison to other 
methods, CKR technique is a suitable single imputation technique which produces estimates 
close to the original data and parameters with low error rates when data are MCAR. 
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1. INTRODUCTION 22 

 23 

The possession of high quality data is primarily important in research studies, a statistician, no matter his level of 24 
expertise can do from little to nothing without access to reliable information on the phenomena he wishes to asses.  25 
 26 
It is in fact safe to say, that one can not depend on the results of any investigation if the data source is not verifiable. In 27 
the real world however, data collection is affected by so many factors, ranging from human error or  apparatus failure to 28 
voluntary or involuntary non response or invalid answers by some participants and even loss of life[1].  29 
 30 



 

 

While some of the aforementioned dynamics are mitigatable, most are not within the complete control of the researcher 31 
which makes avoiding them almost hopelessly inevitable [2],leading to unwanted errors, lack of consistency alongside 32 
redundancy and inadequacy in data sets. This in turn can heavily compromise the process and outcome of data analysis if 33 
not making it impossible to proceed in some cases.  34 
 35 
When there are no values recorded in required information fields during research, it is referred to as missing data[3]. It is 36 
the lack of input, where input is needed. It can also be referred to as information that should have been present but isn’t, 37 
for peculiar reasons [4]. According to McKnight et.al. [5] the causes of missing data can be usually traced to: 38 
(a) The study participants, which entails errors on the part of subjects or their refusal to provide information for personal 39 
reasons (participant characteristics). 40 
(b) The study design, having to do with the structure of the data collection methods and how its tedious and overbearing 41 
nature could discourage participants from providing complete data (design characteristics). 42 
(c) The interaction of (a) and (b) above that has to do with the repercussions from the contact of study participants with 43 
design, an example of this is when some subjects in clinical trials are too sick to continue. There have also been cases of 44 
missing values due to the aforesaid reasons occurring in non-indigenous forms, they camouflage among genuine data 45 
making the task of spotting them a strenuous one.[6]  46 
 47 
The course of action that led to  missing values existing in a data set is referred to as the mechanism of missing data [7]. 48 
Little and Rubin [8] gave a deft classifying system of missing values basing mainly on their probabilities. When the 49 
probability of a variable being missing is independent of all other variables (observed and unobserved) in the data set, the 50 
mechanism in place is Missing Completely at Random (MCAR), a good example is skipping of certain items on a 51 
questionnaire by respondents due to oversight. Sometimes, the probability of a variable being missing is dependent on 52 
other observed variables in the data, this defines as Missing at Random (MAR), for example, women might exclude their 53 
age response in the demographic section of a questionnaire for sociological reasons. The last mechanism is Not Missing 54 
at Random (NMAR) and this happens when the probability of missing value occurrence is dependent on both observed 55 
and unobserved variables, take for example data on the IQ scores with data missing for subjects with low IQ values. The 56 
lack or presence of constancy in the way data are missing is referred to as its pattern. A univariate pattern happens when 57 
values are absent for only one variable. When missing values are dependent on each other it is termed to have occurred 58 
in a monotonic pattern, arbitrary patterns occur in random fashion[5]. 59 

 60 

      61 

Fig 1. Showing the Effect of Missing Data on a Scatter Plot of Scores from a Math and Verbal IQ Test  62 

 63 

Notwithstanding the advent of super computers with high end estimating powers in the 21
st
 century, the problem of 64 

missing value estimation has continued to trouble researchers and scientists alike[9] .Its predominance in datasets if not 65 
addressed, being one of the many causes of bias when estimating parameters[10],hence weakening the statistical and 66 
empirical powers of estimators. There are a plethora of techniques for handling missing data ranging from 67 
complete/available case analysis to  single imputation methods, likelihood based approaches and multiple imputation 68 
techniques[11]. Single imputation being one of the most flexible and general methods is easier and more direct than other 69 
techniques this in turn makes it more popular. Single imputation techniques however, tend to ignore uncertainty and 70 
almost always underestimates variance, like it was evident in the research of Paniagua et. al [12].   71 
 72 
This thesis aimed to develop and apply the close-knit-regression (CKR) approach as a single imputation method, 73 
methods, investigate its advantages and disadvantages (if any) alongside three (3) other selected single imputation 74 
techniques in widespread use, which are mean imputation, simple linear regression and K-Nearest Neighbour (K-NN) . 75 
Which for a wider scope,it will make use of these methods tried on generated data which will be simulated for MCAR 76 
mechanism at low and high rates of 10% and 60% respectively under a univariate pattern.  77 
 78 
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Literatures surveyed on single imputation methods indicate that The CN2 and C4.5 algorithms are peharps the two most 79 
simplest of all imputation methods, they in general replace missing values with the mode from entries of the variable 80 
considered. A study by Grzymala-Busse and Hu [13] categorized them both as not very good estimators of missing 81 
values. These findings were also supported by  [1] in later studies which compared the two aforesaid algorithms with more 82 
precise procedures like the K-NNI method. The mean imputation has been found to recurrently underestimate  standard 83 
error of parameters [10], [14], [15].Simple regression and using conditional means were both deemed more effective 84 
method than mean imputation [16]. 85 
 86 
Given the number of repetitious cases of missing values post data collection, a good portion of statisticians have since 87 
proposed a variety of single imputation methods that handle such inconveniences The CKR was developed to make up 88 
for some of the shortcomings of other popular single imputation methods. The proposed CKR method is expected to not 89 
overly underestimate variance while providing more accurate estimates since the imputations are conditionally random, 90 
systematic and likely to be different for each missing point.  91 
 92 

2. MATERIAL AND METHODS  93 

 94 
Data simulations will be performed in R using the ampute function as proposed by Schouten et.al [17] which works with 95 
mice, vim and MASS packages. Continous defined datasets of one thousand observations (N=1000) will be generated, 96 
which will be composed of two fairly correlated variables (V1, V2) as most real world variables are, be aware that the 97 
covariance matrix should be semi definite. Summary of variables and conditions used in this study will be specified in 98 
Table 1 below. 99 
 100 
Table 1. Summary of Variables and Conditions Used In This Study 101 
 102 

Variables Correlation (r) Missing 
mechanism 

Missing Pattern Distribution Missing Rate Techniques 

 
 
 
V1(Independent 
variable) and 
V2(Dependent 
Variable) 

 
 
 
Fairly correlated 
(0.4) 

 
 
 
MCAR 

 
 
Univariate on 
dependent 
variable (V2) 

 
 
Both are 
standard normal 
V1, V2 ~ N 
(0,1) 

 
 
10% & 60% 

Single 
Imputation : 
1) Mean 
Imputation 
2) K-NN 
3)Regression 
Imputation 
4)CKR (Proposed 
Method) 

 103 

 104 

2.1 Data Set Simulation 105 
 106 
After the data set generation is complete, ampute function has several other arguments which specify the nature of your 107 
missing data. First is the proportion, which in our study will vary from 10% to 60%. Next is the specification of missing 108 
mechanism which for our study will be of the univariate kind acting on the dependent variable. 109 
 110 
Another important argument in the ampute function is the one that lets you select the frequency of missing-ness across 111 
the data, ampute  divides original data into multiple  subsets, where the number of subsets which has values in 112 
proportions that sum must equal one using a single value will suit the univariate pattern assigned earlier.  113 
 114 
Specification of the mechanism to be MCAR is the next step after which assigning the weights which determines the 115 
relative missing-ness in the data set with respect to the variables, A weighted sum score uses a linear regression with 116 
coefficients assigned, it is of the form  117 
 118 

wssi= W1 · V1i + W2 · V2i …(1) 119 
 120 
where wssi is the weighted sum score of case i, V1i and V2i are the variable values of case i and W1 and W2 are the 121 
specified weights.  122 
 123 
 Keeping in mind that MCAR is completely random and the variables don’t influence its being missing, a zero weight is 124 
assigned to both variables. The last argument in ampute is not applicable to the MCAR mechanism. 125 



 

 

 126 

 127 

Fig 2. Flowchart showing steps in the ‘Ampute’ process(Adapted from Schouten et.al [17]) 128 

 129 

2.2 Techniques Considered In the Study 130 

 131 

A total of four single imputation techniques were considered in this study, three (3) are already commonly used and the 132 
last is the method proposed, they are : 133 
 134 
a)Mean Imputation 135 
b)K-NN 136 
c)Simple Regression 137 
d) CKR (Proposed Method) 138 
 139 
A brief description of these methods will be in focus. 140 
 141 
 142 
2.2.1 Mean Imputation  143 
 144 
The mean imputation is one of the most popularly known methods. It replace the missing values in a variable with the 145 
mean of all present values for continous data, while it replaces the missing values with the mode in discrete data. The 146 
disadvantages of the mean method is mainly on how it tends to underestimate variance by repeating values since the 147 
mean is a constant, correlation coefficient values are also stunted cause of the  repititive  nature of its outcome. 148 
Mathematically If xij of the k-th class Ck is missing, then it is replaced by 149 

𝑉2𝑖 =  
𝑣2𝑖

𝑛𝑘
𝑖: 𝑣2𝑖𝜖𝐶𝑘

…(2) 150 

 151 
2.2.2 K-Nearest Neighborhood (K-NN).   152 
 153 
The K-NN method replaces the missing values by considering the given number of occurences that are most similar to the 154 
value of interest.It has numerous advantages, as it can be used for both qualitative and quantitative features in a data set, 155 
it doesn’t make use of a predictive model too, the K-NN method also considers the correlation structure of the data. The 156 
first set back of this method is in the consideration of what distance function to use, it also requires a lot of time which is 157 
based on the choice of k. The procedure is as follows: 158 
a) Given a data set V2, Divide V2 into two parts. Let V2mis be the set containing the instances in which at least one of the 159 
features is missing. The remaining instances with complete feature information form a set called V2pres. 160 
b) For each vector V2 in V2miss: Divide the instance vector into observed and missing parts as V2 = [V2obs; V2miss]. 161 
Calculate the distance between  V2 and all the instance vectors from the set V2pres. Use only those features in the 162 
instance vectors from the complete set V2pres, which are observed in the vector V2. 163 
c) Use the K closest instances vectors (K-nearest neighbors) and perform a majority voting estimate of the missing values 164 
for categorical attributes. For continuous attributes replace the missing value using the mean value of the attribute in the 165 
k-nearest neighborhood. The median could be used instead of the mean in cases of categorical data. 166 
 167 
The K-NN takes into consideration the correlation structure of the data set and is so an improvement on using the mean.  168 
 169 
 170 
 171 
2.2.3 Regression Method   172 
 173 
This is usually used for univariate or monotone missing data pattern. The first step involves building a model from the 174 
observed data. Predictions for the incomplete cases are then calculated under the fitted model, and serve as 175 
replacements for the missing data. The demerits of this method is usually the model estimated values are usually more 176 



 

 

artificial than the true values, also the technique could suffer from a lack of precision especially  if there are no 177 
relationships among the values in the data set and the attribute with missing data, it is sometimes a tedious process too, 178 
since depending on the number of variables with missing data, so many models could be created . 179 
 180 
Suppose that there are 2 variables V1,  V2 in a data set and missing data are uniformly or To impute the missing values 181 
for a  variable, one first constructs a regression model using observed data on V1 through V2. 182 

𝑉2 =  𝛽𝑜 + 𝛽1𝑉1…(3) 183 
The regression model in above yields the estimated regression coefficients 𝛽𝑜 ,  𝛽1 and the corresponding covariance 184 
matrix. Based on these results, one can impute one set of regression coefficient. from the sampling distributions of β. 185 
Next, the missing values in V2 can be imputed by plugging 𝛽𝑜 , 𝛽1 into the above equation and adding a random error 186 

𝜀 resulting in one complete data set. 187 
 188 
2.2.4 Close-Knit Regression (CKR): Proposed Method  189 
 190 
The proposed method combines certain aspects of the K-NN regression with simple linear regression, The close-knit-191 
regression has two stages, first the close-knit sample-selection-stage where numerical values present in the incomplete 192 
data set that we think would give us the best estimate of missing data points are selected. Then the estimation stage 193 
where linear regression is applied to the selected sample and a model is built to use in interpolating (preferably) or 194 
extrapolating missing data points.  It was built to handle univariate missing patterns. 195 
 196 
Given two fairly correlated variables (V2,V1). Let V1 (v1i's) be the complete data set of the predictor variable, and V2(v2i's) 197 
the outcome variable with some missing values, for a univariate missing pattern in (V1,V2). To use the close-knit 198 
regression algorithm of V2 on V1 to estimate missing values in V2, we follow the steps below: 199 
a) Sort the entire data set, by re-arranging the complete predictor variable V1  in ascending or descending order. 200 
b) For a value say V2n missing in the outcome variable V2, compute all |V1n-V1i|'s, a set of absolute differences. 201 
c)  Say the smallest absolute difference is obtained at V1i=V1a 202 
   ==> |V1n-V1a| < all |V1n-V1i|'s for all values of i not equal to a. 203 
And it is so that V1a has a corresponding non-missing value in V2 say V2a. 204 
form a set of closely knitted samples, C and add (V1a,V2a) as the first set of element, that is C= {(V1a,V2a)}, 205 
d)  i)  If V1n-V1a>0 i.e V1n>V1a then for the next entry V1b with a corresponding V2b value, search for values closest to 206 

V1n  i.e the smallest |V1n-V1b| where V1n-V1b < 0 i.e V1n < V1b. 207 
ii)  If on the other hand, V1n-V1a<0 i.e V1n<V1a then for the next entry V1b with a corresponding V1b value, search for 208 
values closest to V1n. i.e the smallest |V1n-V1b| where V1n-V1b > 0 i.e V1n >V1b. 209 
iii) If no such values exists as in i or ii, then for the next entry V1b with a corresponding V2b value, only search for 210 
values closest to V1n i.e  

 
the smallest |V1n -V1b|. 211 

e)  In similar fashion, sets of bivariate entries (V1,V2) are added to the set C till a chosen number of elements which is 212 
the close knitted sample size (n) is reached. 213 

          n{C}=n 214 
 215 
f)  Simple-linear regression involving the elements of C is then performed to obtain coefficients, these are then used to 216 

estimate the missing data point V2n. 217 
g)  The procedure is repeated till there are no missing data points in V2. 218 
 219 
The logic behind this method is straightforward, once a missing data point is located in our outcome variable V2, find data 220 
points in the predictor variable V1 that are nearest to value that was supposed to have generated the missing point in V2. 221 
Then use a selected number of those points in V1 to build a model involving non missing points in V1 and V2 which will be 222 
used to  give the best predictor equation of the missing point in V2. The method is expected to produce good parameter 223 
estimates while not inflating their standard errors.  224 
 225 

2.3 Performance Measures 226 

 227 

The indicators used to asses the precision of the missing data techniques relative to the complete data are the correlation 228 
coefficients (𝑟), means, minimums, maximums, ranges, mean absolute errors and root mean square errors, they are 229 
described briefly below. 230 

 231 

2.3.1 Comparison of Parameters 232 
 233 



 

 

Firstly, the arithmetic mean of the complete data and imputed data will both be calculated and compared using the basic 234 
formula given by: 235 

𝑉 =
1

𝑛
 𝑉 𝑖
𝑛
𝑖=1 …(4) 236 

Where 𝑌  is the mean of the data in focus, n is the size, and 𝑉 𝑖  the data points. The mean will tell us about the comparative 237 
centrality of our datasets. Next, the correlation and standard deviation of the complete data and imputed data  will also 238 
both be estimated and assessed comparatively using the Pearson correlation coefficient formula  given by the two 239 
formulas respectively 240 
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 …(5)     𝑆𝑣2 =  
1

n
 (V2i

n
i=1 − V2    )2…(6) 241 

Where for n data points, 𝑉1𝑖  𝑎𝑛𝑑 𝑉2𝑖  are the values of both complete and estimated data points of V1 and V2, with means  242 

and standard deviations  𝑉1    / 𝑉2      and  21 / vv ss  respectively. The values of each of the correlation gotten from MDTs will 243 

be compared with that of the complete data. Contrasting the correlation coefficients and standard deviation will tell us 244 
about the spread and the strength as well as direction of the bivariate linear relationships and existing in the full and 245 
imputed data sets respectively. 246 
 247 
The maximum and minimum values from the complete and estimated data points of the outcome variable Y in focus will 248 
gotten and there on, used to calculate the range to give us a quick sense of the spread. 249 

Maximum value of V i =max (V i) , Minimum value of V i =min (V i) ,  250 

Range V i = max (V i) −min (V i). 251 

 252 
2.3.2 Comparison of Errors 253 
 254 
We here will be comparing the error arising from the differences in values between the complete simulated data and that 255 
estimated We will be using the Mean absolute error (MAE) and the Root mean square error (RMSE). To compute the  256 
MAE and RMSE, the difference between the estimated dataset points (Dest.) and complete data set points (Dcom) will be 257 
used to get the  MAE and RMSE which represents the sample standard deviation of the MAE [18]. 258 

𝑀𝐴𝐸 =  
n

DD

n

i

estcom ||
1






…(7)   𝑅𝑀𝑆𝐸 =  
 (𝐷𝑐𝑜𝑚 −𝑛
𝑖=1 𝐷𝑒𝑠𝑡 )2

𝑛
…(8) 259 

 260 

 261 
 262 

3. RESULTS AND DISCUSSION 263 

 264 
Results of data analysis after simulations are presented in this chapter, the techniques were applied to the datasets 265 
altered to suit the conditions given in Table 1.  266 

 267 

3.1 Presentation of Results 268 

 269 

Results are shown in terms of the proximity of the parameters estimated using techniques to that from the original dataset 270 
(Table 2 and Table 3)  and then consideration was given to the error rates the parameters generated (Table 4 and Table 271 
5). 272 
 273 
3.1.1 Comparison of Parameter Estimates 274 
 275 
The summary of statistics of the originally generated data before missing conditions were implemented showed that fair 276 
correlation between the variables V1 and V2 with, r (V1,V2) = 0.4, Our variable of concern was V2 where the minimum and 277 
maximum values were -0.98 and 8.67 resulting in a range of 9.65.. V2 also had a mean and standard deviation of -0.0001 278 
and 1.001 respectively. 279 
 280 



 

 

Results of Table 2, at 10% missing-ness for MCAR mechanism, CKR (Our proposed method) produced estimates with the 281 
best proximity to the full data with correlation coefficient of 0.39, mean of -0.003, minimum of -0.71, maximum of 8.3 and a 282 
range of 9.01. Results of simple linear regression were closely related to those of k-NN and Mean. The simple linear 283 
regression technique produced results with a correlation coefficient of 0.37, a mean of 0.001, minimum of -0.5, as well as  284 
a maximum and range of 8.2 and 8.7 respectively. The mean imputation technique produced data points with a  285 
correlation of 0.36, mean and range of 0.01 and 7.74 respectively while having a minimum of -0.44 and a maximum of 286 
7.30. For K-NN imputation, the generated data points had  a correlation coefficient of 0.36 with mean and a range of 0.03 287 
and 8.03. The least value was -0.63 and the highest was 7.4. 288 
 289 
 290 
Table 2. The Four Parameters Before and After Estimation from MCAR with Techniques at 10% rate 291 
 292 
 293 

 MCAR @ 10% 

 
 
 

Parameter 

  
                  Single Imputation Technique 

 

     Proposed 
Method 

Full Data Simple Reg Mean K-NN CKR 

r 0.40 0.37 0.36 0.36 0.39 

Mean -0.0001 0.001 0.01 0.003 -0.003 

Min -0.98 -0.5 -0.44 -0.63 -0.71 

Max 8.67 8.2 7.30 7.4 8.3 

Range  9.65 8.7 7.74 8.03 9.01 

Std. Dev.  1.001 1.3 0.74 1.51 1.4 

 294 
 295 
After the missing rate was increased to 60%, results  as seen in Table 3 showed that CKR estimated data sets produced 296 
results with the best correlation estimate of 0.34. The coefficients of correlation produced by using  Simple regression, 297 
mean and K-NN were 0.31, 0.3 and 0.29 respectively. CKR had the best mean estimate from the single imputation 298 
methods with a value of -0.12, values from KNN, Simple Regression and mean were the next in line with 0.14, 0.15 and 299 
0.11 respectively. The proposed CKR produced a data set with a range of 8.51. K-NN, mean and simple linear regression 300 
produced data sets with ranges of 8.22, 8.7 and 7.81 respectively. Our proposed method alsp produced data points with a 301 
minimum of  -0.12. Other single imputation techniques like K-NN, Mean and simple regression had there least figures as -302 
0.23,-0.1 and -0.4 respectively. Simple linear regression, CKR and KNN methods produced maximum estimates of 7.99, 303 
7.9 and 7.71. 304 
 305 
 306 
Table 3. The Four Parameters Before and After Estimation from MCAR with Techniques at 60% rate 307 

 308 

 MCAR @ 60% 

 
 
 

Parameter 

  
                       Single Imputation Technique 

 

     Proposed 
Method 

Full Data Simple 
Reg 

Mean K-NN CKR 

r 0.40 0.31 0.30 0.29 0.34 

Mean -0.0001 0.11 0.15 0.14 -0.12 

Min -0.98 -0.4 -0.1 -0.23 -0.61 

Max 8.67 7.99 8.1 7.71 7.9 

Range  9.65 8.5 7.81 8.22 8.51 

Std. Dev. 1.001 1.28 0.66 1.39 1.3 

 309 
3.1.2 Comparison of Parameter Estimates 310 
 311 



 

 

The MAE and RMSE values are shown in tables 4, and 5. Small values are in general preferable as they imply better 312 
accuracy of missing data techniques. We earmarked (in boldface) small MAE values, with those less than or equal to ( ≤ ) 313 
0.01 being indicative of methods with good precision.  314 
 315 
Results of Table 4 show error rates from estimations of MCAR simulated datasets at 10 %, In general low MAE values 316 
were from CKR and K-NN techniques which were each 0.01. Simple regression and mean imputation techniques had 317 
MAE values of 0.02 and 0.04 respectively. Using the CKR method gave us an RMSE of 0.047. K-NN, Simple regression 318 
and the mean imputation gave us RMSE values of 0.048, 0.064 and 0.074 respectively. 319 
 320 
 321 
Table 4. Errors between Original and Predicted Data from MCAR at 10% rate 322 
 323 
 324 

 MCAR @ 10% 

 
 
 

Error 

  
        Single Imputation 

 

    Proposed Method 

Mean Simple Reg. K-NN CKR 

MAE 0.04  0.02 0.01  0.01 

RMSE 0.074 0.064 0.048  0.047 

MAE values in boldface are less than or equal to (≤) the  0.01 threshold 325 

 326 
After Intensifying the missing-ness to 60% as seen in Table 5, The proposed CKR method gave us an MAE of  0.02 and 327 
an RMSE of 0.073. For the K-NN method MAE value was 0.07 while simple regression and mean imputation had values 328 
of 0.05 and 0.09 respectively. The RMSE value from using the K-NN method was 0.101. the mean imputation technique 329 
had the highest RMSE with a value of 0.117 and that for simple regression was a value of 0.078 which was higher than 330 
that of our proposed CKR method. 331 
 332 
 333 
Table 5. Errors between Original and Predicted Data from MCAR at 60% rate 334 
 335 
 336 

 MCAR @ 60% 

 
 
 

Error 

  
          Single Imputation 

 

    Proposed Method 

Mean Simple Reg. K-NN CKR 

MAE 0.09  0.05 0.07 0.02  

RMSE 0.117  0.078 0.101  0.073 

 337 
 338 

4.0 DISCUSSION 339 
 340 
The missing mechanism considered in this study was MCAR at two (2) missing rates (low or 10% - high or 60%) which 341 
was simulated on a bivariate dataset with a univariate missing pattern on the outcome variable V2 after which the 342 
techniques were applied and data analysis on estimated data took place. The performance of the methods were 343 
compared regarding parameter estimates such as correlation coefficients, means, standard deviation/error, minimum, 344 
maximum and range alongside MAE and RMSE error metrics. 345 
 346 
Results show that all single imputation techniques tended to produce consistent parameter estimates in MCAR simulated 347 
data sets at all missing rates considered which was expected since the methods didn’t have to deal with problems of non-348 
normality[19].While this is so, it is important to consider that the precision of  all techniques reduced slightly as missing-349 



 

 

ness increased from 10% to 60%. The  mean imputation also produced reasonable estimates, which is largely due to the 350 
complete randomness of our missing values making the reduced sample a random subset of our original data as 351 
suggested by[20]. Our proposed CKR regression performed as the best among all methods considered as it gave closer 352 
estimates to the original and didn’t grossly underestimate our standard error as presumed.  MAE rates for the CKR and 353 
MICE technique fell on and below the postulated threshold of 0.01 respectively. The simple regression and K-NN 354 
techniques in general faired better than mean imputation which had the highest MAE and RMSE rates from 10% to 60 % 355 
missing-ness. The findings are consistent with those in reviewed literature and confirm their recommendations.[1], [14], 356 
[18], [21]. 357 

 358 

4.1 CONCLUSION 359 
 360 
In accordance to our aim of developing and investigating the efficacy of CKR, it was found to be well suited for MCAR 361 
mechanism as it outperformed other single imputation techniques, this was evident in the nearness of its parameter 362 
estimates to that of the original data and its relatively low MAE and RMSE rates, the performance of K-NN and Simple 363 
regression were very nearly at par. The slight superiority of the CKR over the two previously mentioned techniques was 364 
attributed to the idea that the concept of  CKR is mainly the amalgamation of them both with only nuances in execution 365 
the proposed CKR also proved to be the most robust among all single imputation techniques as changes in its error rates 366 
while increasing missing proportions where low. The CKR technique was concluded to be an effective single imputation 367 
technique in comparison to its counterparts considered in this study, it was seen to perform its very best in MCAR 368 
conditions having low missing rates of about 10%. 369 
 370 
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