Population dynamics of leafhopper (*Empoasca flavescens*) and thrips (*Scirtothrips dorsalis*) of castor (*Ricinus communis L.*)

ABSTRACT

The experiment on population dynamics against leafhopper and thrips of castor, a field experiment was conducted during 2021 & 2022 on castor (*Ricinus communis*) at Regional Agricultural Research Station Palem, PJTSAU. The studies on population dynamics of leafhopper (*Empoasca flavescens*) revealed that the activity of leafhoppers was moderate to heavy with maximum of 120.8 leafhoppers/3 leaves/plant was recorded during the second fortnight of December (52 SMW, 24th-31st Dec). Leafhopper population had non-significant and negative correlation with maximum temperature (r = -0.24 and r = -0.29, respectively), whereas it had significant association and negative correlation with minimum temperature, morning relative humidity, evening relative humidity as well as rainfall (r = -0.64 - 0.50, r=-0.61 and -0.52, respectively). Thrips infestation was observed from October first fortnight (40 SMW 1st Oct -7th Oct) to December second fortnight (52 SMW, 24th-31st Dec) with peak infestation 31.1 thrips/spike. Thrips population had non-significant and negative correlation with maximum temperature (r = -0.29), whereas it had significant association and negative correlation with minimum temperature, morning relative humidity, evening relative humidity as well as rainfall (r = -0.68, r = -0.55, r=-0.63 and, r= -0.49 respectively). Leafhopper and thrips has significant association and positive correlation with sunshine hours (r=0.55 & r=0.51).

Keywords: Castor, Leafhopper, thrips, weather, dynamics

INTRODUCTION

Castor (*Ricinus communis L.*) is an important non edible oilseed crop of dry land area with huge industrial importance (Ramanjaneyulu AV et al., 2017). It is widely distributed and adapted throughout the tropics, subtropics and temperate areas due to its low demand on soil fertility, requirement of moderate rainfall, less competition with other food crops and food grade oils. Castor is grown for its seeds, which is extracted for the non-edible oil mainly used in the manufacturing of paints, lubricants, soaps, hydraulic brake fluids, polymers and perfumery products, among others; several derivatives of castor oil are used in a variety of industries. (Anjani K., 2012). India is the major producer in the world, castor seed with a production of 17.95 lakh tonnes (lt) during 2021-22 season, against 17.89 lt in 2020-21. (Anon, 2022). Among states, Gujarat is leading with 6.52 lakh ha (13.45 lakh tonnes) under castor followed by Rajasthan 1.77 lakh ha (2.76 lakh tonnes), Andhra Pradesh 0.16 lakh ha (0.064 lakh tonnes), and Telangana 0.022 lakh ha (0.037 lakh tonnes). According to government 2nd advance estimates, all India castor production in 2022-23 is at area 8.917 lakh ha, production 18.82 lakh
tonnes. [Source: Directorate of Economics and Statistics (DES). * 2nd Advance estimates. Castor is attacked by insect pests right from sowing to harvesting. More than 60 species of insects and mites have been reported to cause damage to the castor crop and their related yield loss has been estimated to be about 40-89% [Lakshminarayana M and Duraimurugan P (2014), Rai BK (1976), Kote SJ (1995)]. These yields losses in castor due to insect pests varied with the season, the severity of the pest and the hybrid variety of the plant (Hegde DM, 2006). The sucking pests such as leafhoppers (Empoasca flavescent), whiteflies and thrips have been known to be the most important pests attacking castor resulting in excessive loss of grain yield (Patel BC et al., 2015). 14-15% of yield loss caused by sucking pests was recorded in Guajarat in India (Khanpara DV et al., 2002). Nymphs and adults of leafhopper suck the sap from the under surface of the leaves causing leaf margins to become yellow, curling and under severe infestation, hopper burn symptoms were also noticed (Jayaraj S 1967).

Castor is attacked by insect pests right from sowing to harvesting. Among these insects, sucking pests viz., leafhoppers and thrips play an important role in early stages resulting in extensive loss in the grain yield. Hence it is necessary to know the dynamics of different sucking pests in castor crop for sustainable management.

MATERIALS AND METHODS

The field experiment was conducted at Regional Agricultural Research Station, Palem during 2021-2022 to study on population dynamics of major sucking pests viz., leafhopper (Empoasca flavescent Fabricius), and thrips (Scirtothrips dorsalis Hood) was carried out on castor hybrid PCH-111 in an isolated plot of 500 m² with a row spacing of 90 cm and 60 cm between the plants. All the recommended agronomic practices were followed to raise the crop. The area was kept unsprayed throughout crop season. The observations were made at various growth stages of castor at weekly intervals to know the occurrence of sucking pests (leafhopper & thrips) on crop from seedling stage to harvest of the crop. Twenty-five plants were randomly selected and tagged to assess the incidence of insect pests. Leafhopper counts (nymph) were recorded on three leaves in each plant selecting one leaf from top (excluding 2 topmost leaves), middle (medium maturity) and bottom (leaving one or two bottom most leaves) on the main shoot. Population recorded as number of leafhoppers/3 leaves per plant and percent leaf area burnt per plant (average of 5 plants). Hopper burn injury was recorded as per the scale suggested by Anjani et al. (2018) and Absolute population of thrips per spike was recorded by beating the spikes on a white or black cardboard sheet and counting the number of adults and nymphs of thrips. The data on weather parameters like maximum temperature (Tmax), minimum temperature (Tmin), morning and evening relative humidity (RHM and RHE), rainfall (mm) and sunshine (hours) were recorded from the agro meteorological observatory located at RARS, Palem. The correlation coefficients between weather parameters and pest incidence were worked using OPSTAT software.
RESULTS AND DISCUSSION

Survey conducted at the research station on the incidence of insect pests of castor (cv. PCH-111) revealed heavy infestation of leafhopper and thrips. The activity of leafhoppers was moderate to heavy with maximum of 120.8 leafhoppers/3 leaves/plant was recorded during the second fortnight of December (52 SMW, 24th-31st Dec). Similar results were reported by Singh et al. 2002 who observed highest incidence of hoppers during the month of December. Correlation studies revealed that leafhopper population had non-significant and negative correlation with maximum temperature (r = -0.24 and r = -0.29, respectively), whereas it had significant association and negative correlation with minimum temperature, morning relative humidity, evening relative humidity as well as rainfall (r = - 0.64 - 0.50, r=-0.61 and - 0.52, respectively). Temperature stress conditions coupled with less relative humidity has resulted in higher incidence of leafhopper. On the other hand, continuous rainfall during the crop growth creates unfavorable conditions for leafhopper incidence (Ranganath et al., 2021). In addition to the current findings, several studies also reported significant impact of sunshine hours on leafhopper incidence Jena and Kuila 1996. However in contrary to the findings several studies have also reported an increase in bright sunshine hours and morning relative humidity has a positive effect on the population (Patel RD et al., 2015). The variable effect of different weather parameters on the pest population might be due to the difference in phenology of the crop and time of appearance of the pest at different localities, where crops have been grown.

Thrips infestation was observed from October first fortnight (40 SMW 1st Oct -7th Oct) to December second fortnight (52 SMW, 24th-31st Dec) with peak infestation 31.1 thrips/spike. Thrips population had non-significant and negative correlation with maximum temperature (r = -0.29), whereas it had significant association and negative correlation with minimum temperature, morning relative humidity, evening relative humidity as well as rainfall (r = - 0.68, r= -0.55, r=-0.63 and, r= - 0.49 respectively). Leafhopper and thrips has significant association and positive correlation with sunshine hours (r=0.55 & r=0.51).

However it has shown non-significant positive correlation (r = 0.28) with mean bright sunshine hours. Thus, present investigation revealed that thrips population favours low temperature as well as relative humidity and a positive effect with bright sunshine hours. According to Bhede et al. (2008) thrips population exhibited significant negative correlation with morning and evening relative humidity and rainfall and positive correlation with bright sunshine. Duraimurugan and Jagadish (2002) reported significant negative correlation with mean relative humidity which confirms the present finding.

<table>
<thead>
<tr>
<th>Insect pests & natural</th>
<th>Max. Temp.</th>
<th>Mini. Temp.</th>
<th>RH-1 (%)</th>
<th>RH-2 (%)</th>
<th>Rainfall (mm)</th>
<th>Sunshine</th>
</tr>
</thead>
</table>

Table 1. Correlation analysis of leafhopper and thrips of castor with weather parameters (Palem, 2021& 2022)
<table>
<thead>
<tr>
<th>enemies</th>
<th>(°C)</th>
<th>(°C)</th>
<th>(°C)</th>
<th>(°C)</th>
<th>(hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leafhopper (No./3 leaves/plant)</td>
<td>-0.24 NS</td>
<td>-0.06 **</td>
<td>-0.50 *</td>
<td>-0.61 **</td>
<td>-0.52 *</td>
</tr>
<tr>
<td>Thrips (No./spike)</td>
<td>-0.29 NS</td>
<td>-0.68 **</td>
<td>0.55 *</td>
<td>-0.63 **</td>
<td>-0.49 *</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level (2-tailed); *Correlation is significant at the 0.05 level (2-tailed)

CONCLUSION

Castor crop is mainly grown as a rainfed crop in dry land areas thus weather plays a crucial role in crop growth and incidence of leafhopper and thrips on the crop. Rainfall during crop growth stage reduces the leafhopper and thrips incidence. The pest scenario of a particular region and the trend of pest population, Incidence of new pests will be known which helps in taking control measures and the farmers thus shall get benefit on adoption of the control measures of key pests suggested.

REFERENCES

