Evaluating Seasonal Changes on Water Physicochemical Properties Along Njoro River and Lake Nakuru, Kenya

Abstract

Globally, major environmental problems came into existence because of river and lake water contamination. It is more critical than ever to evaluate the water quality of rivers and lakes on an extended-term basis due to growing public concern about the deterioration of river and lake water quality. 120 water samples were taken from 5 monitoring stations across river Njoro and Lake Nakuru during the rainy and dry seasons in 2022, and their physicochemical characteristics (salinity, temperature, pH, hardness, turbidity, general nitrogen, overall phosphorus, electric conductivity, and total dissolved solids) were analyzed. The National Environmental Management Authority (NEMA) of Kenya standards was used to compare the results from the study. The findings show that the river Njoro's water quality varied with the seasons, specifically within the deeper water column. Highest mean electrical conductivity was 376.11 ± 129.14 μs/cm and lowest is 173.67 ± 114.11 μs/cm, pH range between 9.30 ± 0.88 and 8.81 ± 0.51, and salinity mean values ranging from 1.39 ± 1.49 and 1.26 ± 1.44 ppt. In addition, mean temperature showed significant differences with the warmest temperature of 19.58 ± 3.71°C and coldest temperature of 18.65 ± 4.28°C, turbidity between 19.74 ± 3.81 NTU and 21.06 ± 18.66 NTU, and mean total nitrogen between 82.94 ± 0.95966 mg/L and 41.88 ± 0.95966 mg/L. This study provides evidence that anthropogenic activity impacts water quality and the extent varies with the season. Consequently, a majority of these elements ought to be considered in downstream river control for the well-being of aquatic organisms.

Keywords: Kenya; Lake Nakuru; physicochemical parameters; River Njoro; water quality; water pollution
1. Introduction

Water plays a very vital role in the existence of all living things. Human beings need water in running their day-to-day activities and with increase in population over the years, there is a growing water demand all over the world that has led to recent water shortages around the globe. There is a prediction that by 2030 global water demand be more than supply by 40% and also that 50% of nations in the sub-Saharan part of Africa most especially will suffer from water crisis (Geng et al., 2021). In Kenya, water scarcity has resulted from limited access to water resources as a result of climate change, floods, forest degradation, insufficient rainfall, improper disposal of wastes, increase in human and animal population, improper management of available water resources which affects a large number of people who rely on water for agriculture and fishing (Githaiga et al., 2021; Mulwa et al., 2021). Many rural households lack access to enough water for their daily need. Studies have been made on the current water status of Kenya and reports identified that Kenya is amongst water-scarce nations having water per capita availability of below 1000 m³ yearly (Mulwa et al., 2021). In the Njoro sub-county of Kenya, drinking water is obtained mostly by harvesting from rain, boreholes, springs, wells, and rivers (P. Kirianki, 2018; Odanga et al., 2005b). These outlined sources are often contaminated through disposal of untreated liquid wastes from industries, leakages from sewage systems, run-offs from agricultural activities, and wastes from livestock's. The water quality of a river is often determined by its physicochemical properties and is most likely than not affected by pollution which subsequently affects the food chain and in a more general note the whole ecosystem of the river. The pollution of a river and a lake requires a multidisciplinary study as it involves several aspects in order to effectively manage and control it.

In Kenya, as cities and rural regions become more urbanized, home, industries and agricultural water use has increased as well (Iradukunda & Nyadawa, 2021). This has resulted in declining water quality and subsequent water scarcity. However, addressing water scarcity is one of Kenya's priorities under Agenda 2030, therefore it complies with their regulations. The primary river feeding Lake Nakuru, the quality of river Njoro water status was examined in this study together with its effects on the aforementioned and the environment as a whole. The premise of the study is to improve the understanding of the quality of water directed towards the heath of the freshwater ecosystem. This is essential because it affects how users and policymakers view the urgency of the water situation and the most effective courses of action. As future water solutions that will help with protecting and managing water resources,
including river Njoro and Lake Nakuru, the rules and regulations put in place to ensure that water laws are followed and investigated further.

2. Materials and Methods

2.1 Land Use and Land Cover (LULC)

The River Njoro watershed's water supplies have deteriorated as a result of the watershed's unstable environment and rapid population increase (Odanga et al., 2005a). The Middle portion of the River Njoro watershed is constantly changing due to land use/land cover change (LULCC), endangering the people's capacity to feed themselves and their way of life. The need to conserve biodiversity is becoming more and more at odds with the need to advance economic growth as a result of extensive competition between people and biodiversity (Mainuri et al., 2022). Surface water quality has been negatively impacted by a confluence of unchecked industrial growth, dense infrastructure, urban migration, ineffective enforcement of environmental legislation, and ambiguous institutional responsibilities for water quality management (Rahman et al., 2021). Growing agricultural activity and human population have been proven to have both direct and indirect effects on riparian vegetation, such as biomass loss and water pollution (Koskey et al., 2021). According to (Odanga et al., 2005a) utilizing Landsat data for land cover classification shows that the watershed lost 20% or so of its wooded areas between 1986 and 2003. Large-scale agricultural and wooded lands have primarily been transformed into small-scale mixed agricultural and habitations. Pressure is placed on land use and land cover by the expanding socioeconomic needs and population (Mainuri, 2018). This pressure causes unanticipated and unregulated changes in LULC (Koskey et al., 2021), and changes have had a negative impact on the ecological integrity and hydrologic processes in the watershed in general and more specific on the water quality.

2.2 Study Area and Sampling Stations

The study was conducted at river Njoro to the Fisher’s point in Lake Nakuru, Nakuru County, Kenya, illustrated in Figure 1. The source of river Njoro is in Mau Forest and flows downstream into Lake Nakuru. River Njoro also known as river Ndarugu flows for about 60 kilometers from its source in the Eastern Mau Escarpment’s native forests (2700-3000 meters above sea level) to its mouth at Lake Nakuru (1759 m above sea level). The river's long-term mean annual rainfall ranges from 1200 mm in the upper reaches to 800 mm at lake Nakuru, with peaks in April (largest), August (second largest), and November (smallest) (Kimaru et al., 2019a). Lake Nakuru on the other hand is an alkaline
lake on the southern outskirts of Nakuru town, in Kenya's rift valley, with a surface elevation of 1,754 meters (5,755 feet). It is protected by the Lake Nakuru National Park. The lake is located at 0.3667 south latitude and 36.0833 east longitude (Iradukunda et al., 2020). Lake Nakuru is fed by freshwater springs and five rivers namely: Njoro, Nderit, Larmudiak, Makalia, and Naishi in addition to direct rainfall and groundwater (Kimaru et al., 2019b). It is the heart of a well-known Kenyan national park known for its exciting bird fauna (495 species), especially the large flock of lesser flamingos (Phoeniconaias minor). Since it is located in the Rift Valley, which has experienced unusual tectonic and volcanic activity, as well as climatic changes, the lake has undergone significant changes in recent geological epochs (Kimaru et al., 2019b).

![Map of study area showing sample sites](image)

Fig 1: Map of study area showing sample sites

2.3 Field Collection and Laboratory Analysis.

While total nitrogen and total phosphorus were examined in a laboratory, the other physicochemical characteristics of surface water samples, such as temperature, pH, electrical conductivity, total dissolved solids, and salinity, were evaluated in situ. For the points along the river Njoro (Logoman, Kenyatta, Nga'mbo, and the mouth of the river...
Njoro), a bottle sampler was used to collect triplicate composite water samples. A schindler sampler was utilized for the fisher's point in Lake Nakuru. For all measures, the APHA 2012 methodology was followed (Geng et al., 2021).

In order to measure the pH, electrical conductivity, and TDS, a multi-probe meter (MW801, Milwaukee) was employed. On the other hand a turbidity meter, an OHAUS ST10s salinity meter, and an insertion thermometer were used to test turbidity and salinity, respectively. All samples were transported to the lab in an ice chest for total nitrogen and total phosphorus analyses. The modified Kjeldahl method (Yan et al., 2016) was used to determine total nitrogen (TN), in which the sample were digested in sulfuric acid, ammonia, and distilled water before the excess acid was titrated. The water samples were filtered using a 47mm glass fiber filter (Whatman GF/A), and then the total phosphorus was calculated using the molybdenum blue-ascorbic acid method (Yan et al., 2016). At each sampling location, the probes were washed with distilled water after use (APHA, 2012). Glass beakers were cleaned with distilled water and placed in an airtight container to prevent contamination (Migwi et al., 2020). The samples were immediately placed in airtight containers and maintained at 4 oC in the refrigerator when they weren't being processed. All experimental procedures were conducted out in a lamina flow hood to prevent environmental contamination, and the procedure was finished as rapidly as feasible. All of this data was gathered between March and July of 2022.

2.4 Statistical Analysis.

The differences in mean concentrations of the selected water parameters (variables) in the five selected sampling sites were analyzed using a Kruskall-Wallis at 5% alpha level, while the two seasons were analyzed using Mann-Whitney U independent sample t-test methods. Means were separated using Turkey's Honestly Significance Difference (HSD) test, while the Least Significance Difference (LSD) investigation was used to separate physico-chemical parameters. Pearson and Covariance investigation were performed to determine existing connection linking all elements in the various sample points along the river and the Lake during each season. JMP Pro 14 was employed in performing all data analysis.

3. Results and Discussion

3.1 Results

Mean electrical conductivity levels recorded for sample points in river Njoro (Logoman, Kenyatta, Ng’ambo, and mouth of river Njoro) and fisher's point in Lake Nakuru was statistically significant (Table 1 and 2). The highest mean electrical conductivity recorded in river Njoro was at the mouth of river Njoro with a value of $(533.33 \pm 0.64 \mu s/cm)$ for the
dry season and (222.50 ± 0.62 μs/cm) in the rainy season. The lowest mean electrical conductivity still in the river ecosystem was recorded at Logoman station found within the Mau Forest with values of (240.00 ± 0.51 μs/cm) and (86.67 ± 0.54 μs/cm) for the dry and rainy seasons respectively.

The fisher's point in Lake Nakuru recorded significantly higher mean electrical conductivity in the dry season (482.5 ± 129.14 μs/cm) than in the rainy season (336.67 ± 114.11 μs/cm). The trend of electrical conductivity is illustrated in figure 2.

Figure 2: Mean ± SD variations in conductivity for river Njoro and Lake Nakuru sample points

The pH recorded from Logoman, Kenyatta, Ng’ambo, and mouth of river Njoro varied significantly amongst sample sites as seen in table 1. The pH in river Njoro varied from sample sites with the highest pH recorded at the mouth of river Njoro 9.1 – 10.1 for the dry season and (9.4 – 9.8) in the rainy season whereas the least was recorded at Ng’ambo (7.9 – 8.4) in the dry season and (8.1 – 8.5) in the wet season. The pH value recorded at Fisher’s point Lake Nakuru were (9.3 – 9.4) in the rainy season and (9.7-9.8) in the dry season.

The mean value of salinity for mouth of river Njoro sample point was higher than all the other sample locations for the river ecosystem with the mean salinity in the dry season being (2.53 ± 0.02 ppt), and the rainy season (2.59 ± 0.03 ppt) whereas the least values were recorded in Kenyatta in the rainy season (0.12 ± 0.03 ppt) and Logoman in the dry season (0.18 ± 0.01 ppt) as seen in table 1. The Fisher’s point in Lake Nakuru had values 3.73 ±1.49 ppt and 3.38 ±1.44 ppt in the dry and rainy season respectively as can be seen in table 2. Figure 3 illustrates the salinity trend from upstream (Logoman) to midstream (Kenyatta), through downstream (mouth of river Njoro) and then finally into Lake Nakuru (Fisher’s point).
The mean temperature showed significant differences between the sampling sites in river Njoro with mouth of river Njoro (downstream) being the warmest (23.64 ± 0.06 °C) in the dry season and, (23.69 ± 0.07 °C) in the rainy season while Logoman (upstream) was recorded as the coldest with values of (14.45 ± 0.05 °C) in the dry season and in the (14.22 ± 0.07 °C) rainy season as seen in table 2. Fisher’s point at Lake Nakuru recorded (23.69±3.71°C) in the dry season (23.80±4.28°C) in the rainy season as seen in table 2. The temperature recorded at Logoman, Kenyatta, and Ng’ambo and, the mouth of river Njoro were statistically different. Figure 4 illustrates the temperature trend in sample points in river Njoro from upstream, midstream, downstream, and Lake Nakuru (Fisher’s point).

Figure 4: Mean ± SD temperatures for river Njoro and Lake Nakuru sample points

The mean turbidity values recorded in Logoman, Kenyatta, Ng’ambo, and the mouth of river Njoro recorded exhibited significant differences between the sampled locations (Figure 5). The highest turbidity levels were recorded
at the mouth of river Njoro (23.48 ± 0.15 NTU) and (36.03 ± 0.35 NTU) for the dry and rainy seasons respectively, whereas the least was recorded at Logoman point (14.59 ± 0.12 NTU) and (13.95 ± 0.27 NTU) for the dry and rainy seasons respectively (table 1). The Fisher’s point in Lake Nakuru recorded (24.27 ±3.81 NTU) for the dry season and (23.63 ±18.66 NTU) for the rainy season (table 2). Figure 5 illustrates the turbidity trend for the sample points in river Njoro and Lake Nakuru.

![Figure 5: Mean ± SD turbidity for River Njoro and Lake Nakuru sample points](image)

The total dissolved solids (TDS) levels recorded in Logoman, Kenyatta, Ng’ambo, and mouth of river Njoro were found to be statistically different between seasons. The highest mean TDS value was recorded at the mouth of river Njoro (243.33 ± 0.04 ppm) for the dry season and (140.8 ± 0.09 ppm) for the rainy season while the lowest recorded value was in Mau Forest at the Logoman point (120.83 ± 0.10 ppm) in the dry season and (46.67 ± 0.11 ppm) in the rainy season as seen in table 1. Fisher’s point in Lake Nakuru recorded (243.33±25.57 ppm) in the dry season and (136.67 ±19.72 ppm) in the rainy season. Figure 6 illustrates the trend of TDS from upstream (Logoman), midstream (Kenyatta, Ng’ambo), downstream (mouth of river Njoro), and Fisher’s point Lake Nakuru.
The total nitrogen (TN) levels recorded at Logoman, Kenyatta, Ng’ambo, and mouth of river Njoro were found to be statistically different between the dry and rainy seasons (Table 1). The highest TN levels were recorded at Logoman 8.57 ± 3.18 mg/L in the rainy season and 6.94 ± 3.75 mg/L in the dry season. The lowest levels were recorded at the mouth of river Njoro 6.41 ± 3.55 mg/L in the rainy season and at Ng’ambo 5.97 ± 3.24 mg/L in the dry season (table 1). The Fisher’s point Lake Nakuru (7.95 ±0.94 mg/L) in the rainy season and (6.70 ±0.72 mg/L) in the dry season. Figure 7 illustrates the TN trend from river Njoro to Lake Nakuru.

Total phosphorus (TP) levels were significantly different between Logoman, Kenyatta, Ng’ambo and the mouth of river Njoro for both seasons. TP levels were high in the rainy season with the mouth of river Njoro recorded highest
level 9.41 ± 1.84 mg/L and Logoman recorded the lowest level 7.49 ± 1.75 mg/L. While for the dry season, Logoman recorded the lowest level 7.57 ± 2.11 mg/L and Ng’ambo recorded the highest level 9.21 ± 1.75 mg/L as shown in table 1. The Fisher’s point in Lake Nakuru recorded in the dry 10.32 ±1.07 mg/L and 15.13 ±3.00 mg/L rainy seasons respectively.

![Figure 8: Mean ± SD TP for River Njoro and Lake Nakuru sample points](image)

Table 1: Mean ± SD of watervariables for River Njoro sample points

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Season</th>
<th>Logoman</th>
<th>Kenyatta</th>
<th>Ng’ambo</th>
<th>Mouth of River Njoro</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC (μs/cm)</td>
<td>Dry</td>
<td>240.00 ± 0.51</td>
<td>284.17 ± 0.53</td>
<td>340.83 ± 0.63</td>
<td>533.33 ± 0.64</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>86.67 ±0.54</td>
<td>73.33 ± 0.55</td>
<td>149.17± 0.62</td>
<td>222.50 ± 0.62</td>
</tr>
<tr>
<td>pH</td>
<td>Dry</td>
<td>7.9 – 10.1</td>
<td>8.4 – 8.5</td>
<td>7.9 – 8.4</td>
<td>9.1 – 10.1</td>
</tr>
<tr>
<td>Season</td>
<td>EC (μs/cm)</td>
<td>pH</td>
<td>Salinity (ppt)</td>
<td>Temperature (°C)</td>
<td>TotalDissolvedSolids (ppm)</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>----</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Dry</td>
<td>482.5 ± 129.14</td>
<td>9.3 - 9.7</td>
<td>3.73 ± 1.49</td>
<td>23.69 ± 3.7</td>
<td>243.33 ± 25.57</td>
</tr>
<tr>
<td>Wet</td>
<td>14.2 ± 0.11</td>
<td>18.33 ± 0.15</td>
<td>71.67 ± 0.03</td>
<td>23.69 ± 0.07</td>
<td>140.8 ± 0.09</td>
</tr>
</tbody>
</table>

Table 2: Mean ± SD of water variables for Fisher’s point Lake Nakuru
3.2 Discussion

In comparison to past research, the conductivity range of 533-73 μs/cm obtained in this investigation was generally low. The conductivity range found in this study was less than that found in previous investigations in the same lake, including (Ochieng et al., 2007). The different sample times, locations, and seasons may be to blame for the variations in conductivity levels found.

The high pH levels in Lake Nakuru are attributed to excessive nutrients entering the lake, degradation caused by deforestation, and inappropriate land use changes causing siltation (Ndungu et al., 2015). Generally, salinity increases when no inflows of rainwater and so is the trend between sample sites with fisher's point Lake Nakururecording the highest due to its saline nature.

In the principal component analysis (PCA), three principal components which were significant, both by the broken stick model and the randomization test are retained in the solution with Eigenvalue greater than 1 as shown in table 3 below. It is observed that 49.70% of the variance is explained by the first component and is positively correlated to all the water parameters except TN which was negatively correlated. Component 2 and component 3 are not as dominant as component 1. The second component (explaining 17.3% of the variance) is negatively correlated to the TN and was not correlated with the pH. The third component (explaining 13.22% of the variance) is negatively correlated to EC and not correlated to pH and TDS. The three components cumulatively explained 80.23% of the variance in the data as illustrated in figure 9.

| We | Wet | 336.6 | 9.38 ±1.44 | 23.80±4.2 18 | 136.67 ±19.72 | 23.63 ±18.66 | 7.95 ±0.94 | 15.13 ±3.00 |
| Season | 7 | ±114. 11 | 9. 8 |

Table 3: Eigenvalues, variance explained, and factors loading of the three principal components

<table>
<thead>
<tr>
<th>Component</th>
<th>Total Variance</th>
<th>% of Total Variance</th>
<th>Cumulative %</th>
<th>Extraction Sums of Squared Loadings</th>
<th>% of Total Variance</th>
<th>Cumulative %</th>
<th>Rotation Sums of Squared Loadings</th>
<th>% of Total Variance</th>
<th>Cumulative %</th>
</tr>
</thead>
</table>

12
In addition, with the increased population around the Lake, there is increased pressure on the waste disposal facilities, land, and soil fertility. This results in forest clearance and the inevitable use of pesticides and fertilizers by both small-scale farmers and large-scale horticultural farms (Wicaksono et al., 2021). These activities increase nitrogen and phosphorus levels which are transported into Lake Nakuru through the inflow rivers and especially during heavy rains.

The sample points in river Njoro and Lake Nakuru, the surface water physicochemical parameters were found to have significant differences between the sampling locations along river Njoro and Lake Nakuru. These were attributed to the presence of water macrophytes and human activities along...
themaininflowriver(river Njoro) or around the lake. The high amount of precipitation in the wet season affected some water parameters such as pH, and salinity, as a result of the dilution effect brought about by the high influx of freshwater. Similarly, although the total nitrogen and phosphorus levels were high above the WHO maximum permissible levels for water, the high concentrations recorded and mostly at the main inflow (mouth of River Njoro) into Lake Nakuru were attributed to anthropogenic activities such as wastedisposal, and the intensive agricultural use of fertilizers and pesticide.

According to Pearson correlational analysis, seasonal TDS is significant difference with $p<0.05$ showed significant amongst water parameters as seen below in (Table 4). A relationship between TDS and turbidity was found, as TDS values increases, turbidity values also increase and vice versa. The values of total nitrogen and phosphorus varied significantly between the two seasons.

Table 4: Pearson correlation coefficients among the water parameters

<table>
<thead>
<tr>
<th></th>
<th>EC</th>
<th>pH</th>
<th>Salinity</th>
<th>Temp</th>
<th>TDS</th>
<th>Turbidity</th>
<th>TN</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>0.442**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salinity</td>
<td>0.627**</td>
<td>0.529**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp</td>
<td>0.605**</td>
<td>0.370**</td>
<td>0.861**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>0.874**</td>
<td>0.485**</td>
<td>0.674**</td>
<td>0.638**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>0.185*</td>
<td>0.161</td>
<td>0.356**</td>
<td>0.567**</td>
<td>0.191*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>-0.336**</td>
<td>-0.127</td>
<td>-0.013</td>
<td>-0.291**</td>
<td>-0.425**</td>
<td>-0.246**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>0.221*</td>
<td>0.158</td>
<td>0.633**</td>
<td>0.522**</td>
<td>0.217*</td>
<td>0.172</td>
<td>0.151</td>
<td>1</td>
</tr>
</tbody>
</table>

**: p<0.01, *: p<0.05; EC: electrical conductivity; Temp: Temperature; TDS: total dissolved solids; TN: total nitrogen; TP: total phosphorus
Conclusion
In this study, water quality parameters were measured over two seasons to examine the degree of water contamination along river Njoro and Lake Nakuru. It was found that anthropogenic sources mainly caused water pollution, and the interconnection linking many examined variables supported this finding by multi-variate statistical methods including Pearson’s correlation characteristic examination and group analysis were performed to assess the periodic changes in surface water quality data.

Along river Njoro and Lake Nakuru, the surface water physical-chemical parameters concentrations were determined through field measurements in five sampling locations. The variables temperature, pH, turbidity, conductivity, total dissolved solids, total nitrogen, and phosphorus were found to have significant differences between the sampled locations along river Njoro and Lake Nakuru. These were attributed to the presence of water macrophytes and human activities, along the main inflow river (river Njoro) or around the lake (Lin et al., 2021). The high amounts of precipitation in the wet season affected some water parameters such as pH and salinity, as a result of the dilution effect brought about by the high influx of freshwater. The water quality along the river followed the trend as follows; dry season > wet season with higher values recorded at Mouth of river Njoro and the lowest values recorded at Logoman point. Similarly, although the total nitrogen and phosphorus levels were high above NEMA maximum permissible levels for river and lake water, the high concentrations recorded and mostly at the main inflow (mouth of River Njoro) into Lake Nakuru were attributed to anthropogenic activities such as waste disposal, and the intensive agricultural use of fertilizers and pesticides. The study recommends proper treatment, management, and disposal of waste into the river which eventually flows into the Lake, this will reduce the level of water contamination, and furthermore, it will decrease the degradation of the freshwater ecosystem.

Data Availability Statement
The data that support the findings of this study are available upon request from the corresponding author, Petra Kienyi Chui.

References

