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Alternative proof of Linear Tangle and Linear Obstacle: An Equivalence Result 
Abstract: 
Linear-width is a widely recognized and highly valued graph width parameter. The 
concepts of linear tangle and linear obstacle are dual concepts of linear-width. In this 
concise paper, we present an alternative proof of the equivalence between linear tangle 
and linear obstacle. 
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1. Introduction 
The examination of width parameters holds significant importance in the fields of graph 
theory and combinatorics, as evidenced by the numerous publications on this topic (e.g., 
[4, 5, 6, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21]). Linear width, a parameter of graph 
theory, has been studied in several papers [2, 3, 21]. 
Linear tangle, a concept initially introduced in reference [1], plays a critical role in 
determining whether a linear width is at most k (k is a natural number), where k+1 
represents the order of the tangle (also see references [2, 3, 6]). 
Graph searching games are well-known in the fields of graph theory and game theory. A 
strategy in which the player always emerges victorious is termed a "winning strategy". 
This winning strategy is characterized by various width parameters and their dual 
concepts commonly employed in graph theory (e.g., [6, 7, 8, 9]). For instance, the 
concept of (k, m)-obstacle on connectivity systems is proposed in reference [6]. 
In this succinct paper, we present a direct proof for the equivalence between linear 
tangles and (k, 1)-obstacle, which are referred to as linear obstacle in this paper. 
 
2. Definitions and Notations in this paper 

In this section, we provide mathematical definitions for each concept. 
 
2.1 Symmetric Submodular Function  
The definition of a symmetric submodular function is given below. 
 
Definition 1: Let X be a finite set. A function f: X → ℝ is called symmetric submodular 
if it satisfies the following conditions: 



 

 

· ∀A⊆X, f(A) = f(X/A). 
· ∀A, B⊆X, f(A) + f(B) ≥ f(A∩B) + f(A∪B). 

In this short paper, a pair (X, f) of a finite set X and a symmetric submodular function f 
is called a connectivity system. In this paper, we use the notation f for a symmetric 
submodular function, a finite set X, and a natural number k, m. A set X is k-efficient if 
f(X)≤k. 

2.2. Linear tangle 
The definition of a linear tangle is given below. 
 
Definition 2 [1]: A linear tangle of order k+1 on a connectivity system (X,f) is a family 
L of k-efficient subsets of X, satisfying the following axioms: 
(L1) ∅∈L, 
(L2) For each k-efficient subset A of X, exactly one of A or X/A in L, 
(L3) If A,B∈L, e∈X, and f({e})≤k, then A∪B∪{e}≠X holds. 

2.3 Linear obstacle: Deep relation to (k,m)-obstacle 
The definition of (k,m)-obstacle is shown below. 

Definition 3 [10]: In a connectivity system (X,f), the set family O ⊆2X is called a 
(k,m)-obstacle if the following axioms hold true: 
(O1) A ∈ O, f(A) ≤ k, 
(O2) A ⊆ B ⊆ X, B ∈ O, f(A) ≤ k ⇒ A ∈ O, 
(O3) A, B, C ⊆ X, A ∪ B ∪ C = X, A ∩ B = ∅, f(A) ≤ k, f(B) ≤ k, |C| ≤ m ⇒ either A 
∈ O or B ∈ O. 
 
This paper deals with (k,m)-obstacle for the case where m = 1. In this article, we 
call (k,1)-obstacle "Linear obstacle" of order k+1. Therefore, a linear obstacle is 
defined as follows: 

Definition 4: In a connectivity system (X,f),  the set family O ⊆2X is called a linear 
obstacle of order k + 1 if the following axioms hold true: 
(O1) A ∈ O, f(A) ≤ k, 
(O2) A ⊆ B ⊆ X, B ∈ O, f(A) ≤ k ⇒ A ∈ O, 
(O3) A, B, C ⊆ X, A ∪ B ∪ C = X, A ∩ B = ∅, f(A) ≤ k, f(B) ≤ k, |C| ≤ 1 ⇒ either A 
∈ O or B ∈ O. 



 

 

 
3. Equivalence between linear tangle and linear obstacle 
The main result of this paper is below. 
 
Theorem 1. Under the assumption that f({e})≤k for every e∈X, F is a linear tangle of 
order k+1 on (X,f) iff F is a linear obstacle of order k+1 on (X,f) . 

Proof of Theorem 1: 
Step 1: 
Assume F is a linear tangle of order k+1 on connectivity system (X,f). We need to show 
that F satisfies the axioms of a linear obstacle of order k+1. 
We show that axiom (O1) holds. From the definition of a linear tangle, F contains 
k-efficient subsets of X. By the assumption that f({e})≤k for every e∈X, any set A in F 
satisfies f(A)≤k, which is consistent with the requirement in (O1). 
Next, we show that axiom (O2) holds.  Let A⊆B⊆X such that B∈F and f(A)≤k. We know 
from the linear tangle definition that exactly one of B or X/B is in F. If A=B, then A∈F. If 
A≠B, then X/A⊆X/B. Since X/B∉F and f(X/A)=f(A)≤k, A∈F. Thus, axiom (O2) holds for 
F. 
Finally, we show that axiom (O3) holds. To demonstrate axiom (O3), we will use proof by 
contradiction. Assume that axiom (O3) does not hold, which means either A ∉ L and B ∉ 
L or A ∈ L and B ∈ L. We will consider both cases. 
Case 1: A ∉ L and B ∉ L 
Since f(B) ≤ k, by axiom (L2), B ∈ L. As A ∩ B = ∅, we have A ⊆ B. Since f(A) ≤ k, by 
the previously demonstrated axiom (O2), A ∈ L, which leads to a contradiction. 
Case 2: A ∈ L and B ∈ L 
In this case, there is a contradiction with axiom (L3). 
Thus, in both cases, we arrive at contradictions, which means axiom (O3) must hold. 
 
Step 2: 
Assume F is a linear obstacle of order k+1 on (X,f). We need to show that F satisfies the 
axioms of a linear tangle of order k+1. 
We show that axiom (L1) holds. Since f(∅) = f(X) ≤ k, ∅ is k-efficient, and by axiom (O1), 
∅∈F. 
Next, we show that axiom (L2) holds. Let A be a k-efficient subset of X. Since f(A) ≤ k 
and f(X/A) = f(A) ≤ k, either A∈F or X/A∈F by axiom (O3) with B=A, C=∅. If both A and 
X/A were in F, it would contradict (O3) with B=X/A and C=∅. Hence, exactly one of A or 



 

 

X/A is in F. 
Finally, we show that axiom (L3) holds. Now, consider the three sets A, B, and C. We 
have: 
1.A ∪ B ∪ C = X, 
2.A ∩ B = ∅ (since A and B are both in F and F is a linear obstacle), 
3.f(A) ≤ k, f(B) ≤ k (as A, B ∈ F and F is a linear obstacle), 
4.|C| = 1. 
From the definition of a linear obstacle, either A ∈ F or B ∈ F must hold. Since A, B ∈ 
F by assumption, this does not contradict the definition. Therefore, A ∪ B ∪ {e} ≠ X, 
satisfying axiom (L3). 
 
We have now proven both directions of Theorem 1: F is a linear tangle of order k+1 on 
(X,f) if and only if F is a linear obstacle of order k+1 on (X,f). This proof is completed. 
 
3. Future tasks 
In the world of logic, the concept of a weak ideal is known [16, 17]. This is a concept 
where some of the axioms of an ideal are replaced with weaker ones.  
The definition below is based on the concept of an ideal on connectivity system (X, f) as 
defined in literature [4], and is an extension of the definition of weak ideal using the 
underlying set and power set, as defined in literature [1]. And an ideal on connectivity 
system (X, f) is dual concept of branch-width. 
Our future goal is to investigate the relationship between weak ideal and various graph 
parameters and linear tangle. We also plan to study the dual concept of weak ideal, 
which is the concept of a weak filter. 
 
Definition 5 : In a connectivity system, the set family W ⊆2X is called a weak ideal of 
order k+1 if the following axioms hold true: 
(IB) For every A ∈W, f(A) ≤ k. 
(IH) If A, B ⊆ X, f(A) ≤ k, A is a proper subset of B and B belongs to S, then A belongs 
to S. 
(WIS) If A belongs to S, B belongs to S and f(A ∪ B) ≤ k, then A ∪ B ≠ X. 
(IW) X does not belong to S. 
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